

International Centre for Theoretical Physics

() International/ Energy Agency

SMR/1758-19

"Workshop on Ion Beam Studies of Nanomaterials: Synthesis, Modification and Characterization"

26 June - 1 July 2006

Quantum Wells/Dots & Nanowires for Optoelectronic Device Applications

Michael Q. Gao Dept. of Electronic Materials Engineering The Australian National University Canberra, Australia

Quantum Wells/Dots and Nanowires for Optoelectronic Device Applications

Michael Q. Gao, H. Hoe Tan, Chennupati Jagadish

(Michael_Gao@ieee.org)

Department of Electronic Materials Engineering Research School of Physical Sciences and Engineering The Australian National University, Canberra, Australia

The Group

Few people are missing (M. Buda, Y. Kim, Q. Gao, J. Wong-Leung, H. Hattori)

Overview

- Introduction
- Growth of Quantum Dots by Metal Organic Chemical Vapour Deposition (MOCVD)
- Towards Quantum Well/Dot Photonic Integrated Circuits
 - Intermixing (QW/QD) by ion implantation
 - > Quantum Well/Dot Lasers
 - > Quantum Well/Dot Infrared Photodetectors (QDIPs)
- Carrier lifetime Modification by Ion Implantation for untra-fast detectors and THz emitters
- Nanowires
- Summary

Overview

Introduction

- Growth of Quantum Dots by Metal Organic Chemical Vapour Deposition (MOCVD)
- Towards Quantum Well/Dot Photonic Integrated Circuits
 - Intermixing (QW/QD) by ion implantation
 - > Quantum Well/Dot Lasers
 - > Quantum Well/Dot Infrared Photodetectors (QDIPs)
- Carrier lifetime Modification by Ion Implantation for untrafast detectors and THz emitters
- Nanowires
- Summary

Optoelectronics

Compound Semiconductors – GaAs, GaP, GaN, AlAs, InAs, InP, InN, AlN, ZnO

LEDs for Lighting Applications

J. Pankove I. Akasaki S. Nakamura

II	111	IV	V	VI
Ве	В	С	Ν	0
Mg	ΑΙ	Si	Ρ	S
Zn	Ga	Ge	As	Se
Cd	In	Sn	Sb	Те
Hg	TI	Pb	Bi	Po

Optical Fiber Communications

Lasers, Modulators, Photodetectors 1310 and 1550 nm

Communications capacity - Growth

RELATIVE INFORMATION CAPACITY, BITS/S

Wavelength Division Multiplexing

High Density Data Storage / Entertainment

Infra-red Photodetectors

Long-wavelength infrared radiation detection (2-30µm):

- Applications
 - Thermal imaging, night vision, space ranging, thermal analysis, atmospheric sensing
- Type of semiconductor detectors
 - Intrinsic: HgCdTe, InSb, PbS, PbSe
 - Extrinsic: Si:In, Si:Ga, Si:As
 - Intersubband transition (III-V): QWIPs
- Advantages of QWIPs (and QDIPs)
 - Mature epitaxial and fabrication technologies
 - High degree of uniformity
 - Easy to fabricate large arrays and monolithic integration
 - Lower cost

How a Semiconductor Laser Works?

How a QW/QD Infrared Detector (QDIP) Works?

3D Carrier Confinement in QDs Leads to Atom-Like Density of States

QD Optoelectronic Devices

• Lasers

- reduced threshold current
- increased differential gain (gain per injected electron)
- less temperature sensitive threshold current and emission wavelength
- longer wavelength VCSELs (1.3 and 1.55 um)
- Infrared Photodetectors (Inter sub-band)
 - normal incidence operation
 - higher detector responsivity
 - higher operating temperature

QDIPs: Normal incidence detection

Introduction

Growth of Quantum Dots by MOCVD

- Towards Quantum Well/Dot Photonic Integrated Circuits
 - Intermixing (QW/QD) by ion implantation, IFVD
 - > Quantum Well/Dot Lasers
 - > Quantum Well/Dot Infrared Photodetectors (QDIPs)
- Carrier lifetime Modification by Ion Implantation for untra-fast detectors and THz emitters
- Nanowires
- Summary

Self-assembled Growths of Quantum Dots

Metal Organic Chemical Vapour Deposition (MOCVD)

 $\begin{array}{ll} Ga(CH_3)_3(g) + AsH_3(g) & \rightarrow GaAs(s) + 3CH_4(g) \\ In(CH_3)_3(g) + AsH_3(g) & \rightarrow InAs(s) + 3CH_4(g) \end{array}$

Department of Electronic Materials Engineering

Molecular Beam Epitaxy (MBE)

MOCVD - high T growth and lack of in-situ monitoring

- Aixtron 200/4 MOCVD reactor
- TMGa, TMAI, TMIn, AsH₃,PH₃ (Dissociation of gases)
- In_{0.5}Ga_{0.5}As, InAs Quantum dots
- Dot growth ~500-550°C, Other layers at 600-650°C
- AFM (surface dots) and PL (buried dots)

Growth Parameters

Amount of Material (Size and Density) Growth Temperature (Adatom Mobility, Size & Density) Growth Rate (Size and Density) V/III Ratio (Adatom Mobility, Atomic Hydrogen)

Desired Properties

High density of smaller coherent islands

Good size uniformity

Minimize / avoid formation of dislocated large islands

InAs/InP QDs

- Introduction
- Growth of Quantum Dots by MOCVD
- Towards Quantum Well/Dot Photonic Integrated
 Circuits
 - Intermixing (QW/QD) by ion implantation
 - > Quantum Well/Dot Lasers
 - > Quantum Well/Dot Infrared Photodetectors (QDIPs)
- Carrier lifetime Modification by Ion Implantation for untra-fast detectors and THz emitters
- Nanowires
- Summary

Photonic Integrated Circuits / Optoelectronic Integrated Circuits

- Integrated Circuits Show Superior Performance Over Discrete Devices
- Multi-functional circuits, e.g. WDM sources
- Integrated Transceivers
- Low Cost, Packaging

WDM

Photonic Integrated Circuits

Different Bandgaps on the same chip

Quantum Well/Dot Intermixing / Selective Area Epitaxy

Non-uniform composition profile

Quantum Well/Dot Intermixing

•Diffusion of In and Ga across interface creates graded region in the case of GaAs/InGaAs Quantum Dots

•Changes Bandgap, refractive index, absorption Coefficient

Methods Widely Used for Quantum Well (Dot) Intermixing

Impurity Induced Disordering, e.g. Zn, Si Impurity Free Interdiffusion, e.g. SiO₂, SOG **Ion Implantation Induced Interdiffusion**

Defects introduced by these methods enhance atomic interdiffusion

Goals: High Selectivity and Low Concentration of Residual Defects while achieving large band gap differences

Why Ion Implantation?

Widely used in Microelectronics Industry Defect Concentration

 Ion Dose, Ion Mass, Implant Temperature, Dose Rate
 Defect Depth - Ion Energy

Selective Ion Implantation using Masks

Ion implantation induced quantum well/dot intermixing

Schematic of 4 QW structure (40 keV Proton Defect Profile)

10K Photoluminescence Spectra

H.H. Tan et.al., Appl. Phys. Lett. 68, 2401 (1996).

Energy Shifts vs. Proton Dose

900°C, 30 sec 200 \times QW1 Ο (meV) \triangle QW2 QW1 =1.4 nm \times QW3 150 QW2=2.3 nm \Diamond QW4 shift QW3=4.0 nm QW4=8.5 nm 100 energy H.H. Tan et.al., 50 Appl. Phys. Lett. 68, 2401 (1996). 0 10¹⁶ 10^{14} 10^{15} 10¹⁷ implant dose (H/cm^2)

Implantation Induced InGaAs QD Interdiffusion

P. Lever et al, Appl. Phys. Lett. 82, 2053 (2003)

Low Dose $- 80 \text{ keV O} \rightarrow$ ZnO/Zn_{0.7}Mg_{0.3}O

- Implanted a-axis epitaxial MQW ZnO(2 nm)/Zn_{0.7}Mg_{0.3}O(5.5 nm) sample with low energy oxygen ions. Low doses in the range 5 x 10¹⁴ O⁻cm⁻² 1 x 10¹⁶ O⁻cm⁻²
- Following implantation, MQW samples were annealed for 60 s at 800 °C under Ar ambient. Energy shifts, caused by interdiffusion of Mg and Zn species between the well and barrier were observed with CL spectroscopy
- Study on unimplanted MQW samples showed them to be thermally stable under this annealing regime, meaning that all observed changes arose as a result of defects introduced during implantation

Department of Electronic Materials Engineering

CL spectra of O implanted ZnO/ZnMgO MQW sample implanted with varying doses of O ions and RTA at 800 °C for 60s under Ar Ambient

Diffusion length, L_d and peak energy shift as a function of implantation dose

V. Coleman et al, Semicond. Sci. Technol. 21, L25 (2006)

Department of Electronic Materials Engineering

MRS Fall Meeting 2005 EE

Tuning the Emission Wavelength of GRINSCH Quantum Well Lasers

GaAs/AIGaAs QW Lasers

Lasing Spectra and L-I Characteristics of GaAs/AIGaAs QW Lasers

(900°C, 60 sec)

H.H. Tan and C. Jagadish, Appl. Phys. Lett. 71, 2680 (1997).

Multi-Step Implantation Scheme for Improved GaAs/AIGaAs QW Laser Performance

Quantum Wire Lasers

Cross-sectional TEM of GaAs-AlGaAs quantum wire structure

Light emission from quantum wire laser array

Tuning the Detection Wavelength of Quantum Well Infrared Photodetectors (QWIPs)

QWIP spectral response

Department of Electronic Materials Engineering

Responsivity

L. Fu et al, Appl. Phys. Lett. 78, 10 (2001).

- Introduction
- Growth of Quantum Dots by MOCVD
- Towards Quantum Well/Dot Photonic Integrated Circuits
 - Intermixing (QW/QD) by ion implantation, IFVD
 - > Quantum Well/Dot Lasers
 - > Quantum Well/Dot Infrared Photodetectors (QDIPs)
- Carrier lifetime Modification by Ion Implantation for untra-fast detectors and THz emitters
- Nanowires
- Summary

Implantation for Ultrafast photodetector materials

Ultrafast photodetector materials - GaAs

2 MeV Ga/As into SI GaAs, dose = 1×10^{16} cm⁻²

Department of Electronic Materials Engineering

H.H. Tan et al., IEEE Sel. Topics Quan. Electron. 2, 636 (1996)

Ultrafast photodetector materials - InP

- At 600-700°C, recovered most crystalline damage and original mobility
- Increased carrier concentration with annealing temperature (due to shallow donors)

C. Carmody et al., J. Appl. Phys. 94, 1074 (2003)

$\mu_{eff} (x10^3 \text{ cm}^2 \text{V}^1 \text{s}^{-1})$ 2.5 18-2.0 16 1.5 1.0 14 0.5 Lifetime (ps) 12-0.0 10 10¹⁴ 8 ^c, HO¹³ ^s 10¹³ ^s 10¹² 10¹³ 6semi-insulating InP implanted at 200°C 0 4 to 10^{16} cm⁻² and annealed at 600°C for 30s 2 10¹¹ 0 10¹⁴ **10**¹⁵ 10¹⁶ 10⁵ Dose (cm⁻²) R₅ (Ω/□) 10⁴ 10³ • By implanting into p-type, the shallow donors .3x10¹⁸ cm⁻³ p -lnP 10² can compensate the acceptors cm • Short lifetimes with high mobility and **10**¹⁵ **10**¹⁶ **10**¹² **10**¹³ **10**¹⁴ high resistivity could be achieved Dose (cm⁻²)

Ultrafast photodetector materials - InP

1 MeV P into p-type InP, annealed 600°C, 30sC. Carmody et al., J. Appl. Phys. 94, 1074 (2003)

Ultrafast photodetector materials - InGaAs

2 MeV Fe into InGaAs

- Implantation creates shallow donors, as in InP
- Higher dose required to achieve high resistivity, hence no luminescence observed due to highly defected material
- Use Fe instead as it creates a deep level
- ps lifetimes and with reasonable resistivity, mobility maybe achieved

C. Carmody et al., Appl. Phys. Lett. 94, 1074 (2003)

Summary of ultrafast photodetector materials by implantation

GaAs

- Relatively easy ps lifetimes, high resistivity, high mobility
- Compromise btw carrier lifetimes and resistivity/mobility

InP

- Implantation creates shallow donor
- Hence, need p-type material and careful control of impl. dose
- ps lifetimes, high resistivity, high mobility achievable

•InGaAs

- Implantation creates shallow donor
- Higher implantation dose required, compared to InP (highly defective material)
- By using Fe (deep trap), ps lifetimes with reasonable resistivity, high mobility achievable

Implanted III-V Materials for THz Emitters

UNITS: 1THz / 1ps / 300µm / 4.1meV / 47.6K

Why are we interested in THz photonics?

- THz spectroscopy covers energy range of correlated systems (excitons, Cooper Pairs, phonons, plasmons...)
- Also energy range for molecular rotations and vibrations (plastic explosive detection)
- Non-contact probe of conductivity
- High resolution electric field detection in devices (chip diagnostics)
- Time resolved probe of dielectric properties of materials & devices
- Non ionising (medical/dental imaging)
- Non destructive testing (imaging faults)
- MANY MORE USES ACROSS DIVERSE FIELDS!!

Single-cycle terahertz emitters

What optimization is required? Improve spectral intensity Increase bandwidth

Ion implanted GaAs

[Phys. Rev. B 70 235330; Appl. Phys. Lett. 86:254102 (2005)]

- GaAs was implanted with dual, high energy doses of As⁺ at 1MeV and 2.4MeV, creating:
 - An approximately uniform vacancy damage profile
 - Extending over the infrared (800nm) absorption depth of GaAs
- Past work used low energy (~200keV) As ions
 [Appl. Phys. B: Lasers Opt. 72, 151; J. Appl. Phys. 93, 2996]
- Annealed at 500°C for 30 min to allow mobility to recover, while retaining ultrashort carrier lifetimes (~0.1ps) [Appl. Phys. Lett. 66 3304; 76 1306]
- Also In_{0.53}Ga_{0.47}As:Fe⁺ and InP:Fe⁺

Terahertz emission from GaAs:As⁺ surfaces

Effects of Annealing on THz Emission

 For low implant dose, annealing causes an increase in maximum THz field from 1.6 V m⁻¹ to 3.0 V m⁻¹, but a decrease in the frequency of peak power from 2.1 THz to 1.6 Thz.

Overview

- Introduction
- Growth of Quantum Dots by Metal Organic Chemical Vapour Deposition (MOCVD)
 - InGaAs/GaAs, InAs/GaAs
 - InAs/InP, InAs/InGaAsP/InP
- Towards Quantum Well/Dot Photonic Integrated Circuits
 - Intermixing (QW/QD) by ion implantation, IFVD
 - > Quantum Well/Dot Lasers
 - > Quantum Well/Dot Infrared Photodetectors (QDIPs)
- Nanowires Single Photon Sources / Detectors Photonic Crystals
- Summary

The Australian National University Research School of Physical Sciences and Engineering

Exploration of truly one-dimensional Heterostructure semiconductor devices

InAs on GaAs (ANU)

Vapor-Liquid-Solid Growth of GaAs (111)B nanowires

Nanowires Growth Methods

- Significant diameter dispersion of nanowires due to random agglomeration
- Poor reproducibility due to the difficulty in Au film thickness control
- Possible high optical/structural quality

Nanowires Growth Methods

Poly-L-lysine (*PLL*, one of polymer electrolytes)attracts negatively charged gold nanoparticles

• prevents the agglomeration of gold nanoparticles

See the difference !

without PLL treatment

with PLL treatment

Image of a single GaAs NW PL

TEM of GaAs nanowire

Sonicated GaAs nanowire grown @ 450 °C

 Perfect crystalline property except stacking faults

Department of Electronic Materials Engineering

InGaAs nanowires on GaAs (111)

Y. Kim, H. Joyce. Q. Gao, H.H. Tan, C. Jagadish, M. Paladugu, J. Zou, A. Suvorova, Nano Lett. 6, 599-604 (2006)

Heterostructural Nanowires on GaAs (111)

Department of Electronic Materials Engineering

InAs NWs on GaAs sub

GaSb nanowires on GaAs (111)

HRTEM of GaSb/GaAs NWs

Future: Ordered Nanowires

Department of Electronic Materials Engineering

Summary

- Quantum Dots strongly affected by growth conditions
- MOCVD growth of Quantum Dots is challenging and promising for optoelectronic device applications
- Quantum Well and Quantum Dot Intermixing Techniques
 are promising for Optoelectronic Device Integration
- Understanding defect generation, diffusion and annihilation processes are important for achieving QWI and QDI
- Carrier lifetime
- Nanowires offer opportunities to develop novel nanophotonic devices, e.g. single photon sources, QD lattices, photonic crystals

Acknowledgment

- Kallista Stewart, Sudha Mokkapati, Satya Barik, Greg Jolley, Victoria Coleman, Michael Fraser, Paulus Gareso, Mykhaylo Lysevytch, Ian McKerracher, Hannah Joyce, Mohan Paladugu (UQ)
- Fu Lan, Jenny Wong-Leung, Yong Kim, Michael Aggett
- Mike Gal, University of New South Wales
- Matthew Phillips, University of Technology, Sydney
- Zou Jin, University of Queensland
- A. Suvorova, University of Western Australia

Australian Research Council

Michael_Gao@ieee.org

Department of Electronic Materials Engineering