

The Abdus Salam International Centre for Theoretical Physics





SMR/1758-11

"Workshop on Ion Beam Studies of Nanomaterials: Synthesis, Modification and Characterization"

26 June - 1 July 2006

Creation of nano structuring by ion beams

D.K. Avasthi Inter University Accelerator Centre New Delhi, India

## **Creation of nano structuring by ion beams**

#### **D.K.Avasthi**

# Inter University Accelerator Centre New Delhi-110067

ICTP, Trieste, 26<sup>th</sup> June- 1<sup>st</sup> July, 2006

#### Inter University Accelerator Centre (Formerly known as Nuclear Science Centre

## Introduction

## Nano structuring by low energy ions

(i) Atom beam co sputtering
(ii) low energy ions (0.5 to a few keV) co-sputtering
(iii) Ripple formation at surface by keV ions
(iv) Ion implantation

Nano structuring by swift heavy ions

**Influence of SHI on nano particles** 

Summary



## Energetic ion beams (keV to a few MeV):

# Up to a few keV ions are used

\*To sputter the target material and the sputtered atoms re-assembles at suitable surface to form nano particles

\* To generate nanostructures at surface which acts as template to grow nanostructure

## • Up to a few MeV are used for:

\* Creating nanostructures by ion implantation and subsequent annealing

\* Creating nanostructures by irradiation

# **Basic ion beam interaction and phenomena**



# Specific features of ion beams



# Nano structuring by low energy ions

#### **Growth of nano particles by ion beam co-sputtering**



## Growth of nano-particles in silica by co deposition





#### Atom beam co-sputtering

#### $\omega_{\text{plasmon}}$ tuned by:

- nature of metal
- cluster size, shape, separation
- dielectric matrix

#### **Thermal co-deposition**



#### Au nanoparticles by co-sputtering



8

Application of metal polymer nanocomposite as band pass filter



#### **Ripple formation in Si by 1.5 keV Ar atom beam**



## Synthesis by ion implantation







#### Characterization

- Photoluminescence
- UV-Visible Absorption

*T.Mohanty et al, Nanotechnology 15 (2004) 1620* 

#### Size distributions of Au nanoparticles achieved from different techniques



## Nano phase by low energy ions

#### The C precipitation is characterized by TEM and a strong red luminescence

TEM image with energy filtering: electronscattered by C in red, by Si in blue example: MTES+10<sup>14</sup> Au 3 MeV



CSNSM Orsay/NSC Delhi Indo French Project NIMB 236 (2005) 73.

Clusters grow and become graphitic (like in thermally treated films) with increasing fluence  $\phi$ example : MTES + 3 MeV Au



# **Particles formed by mixing-reprecipitation**



2 sets of Ag particles formed by (a) spheroidization and (b) mixing + reprecipitation from a 8 nm layer under 4 MeV Au irradiation (10<sup>16</sup>/cm<sup>2</sup>)

#### •Pivin et al (2002) European Physical Journal D 20, 251

# Nano structuring by swift heavy ions

Engineering of defects by ion beams
 Ion mass and Energy : S<sub>e</sub>
 Type of defects

 Fluence (ions / cm<sup>2</sup>)
 No. of defects



### Nano phase generation by swift heavy ion beam



EFTEM image (red: carbon, turquoise: silicon)

### Nano phase generation by SHI



S.K. Srivastava et al, Nanotechnology (in press)

Low energy & SHI irradiation of Si based polymers









Strain-free patterned substrates for heteroepitaxial growth of quantum dots or wires in nanotechnology

Templates



2 days in a bath containing 0.04 mol% AgNO<sub>3</sub> and irradiated with 10<sup>16</sup> He/cm<sup>2</sup>. The cluster size used in the fit (dotted line) is of 1.075 nm and the matrix refractive index that of pure silica. The matrix contribution (dashed line) has been subtracted for obtaining the resonance peak shown with the continuous line. CSNSM Orsay NSC Delhi

#### **Creation of conducting carbon channels in fullerene film by irradiation of 120 MeV Au ions: Evident by conducting atomic force microscopy**



#### **A.Tripathi et al. NIMB 244(2006) 15**







#### **Fullerene pentagon pinch mode vibrations**



C atoms forming 12 pentagons & 20 hexagons Density - 1.65 (g cm<sup>-3</sup>) Diameter of Molecule -10 Å Length of C-C - 1.46 Å

## **Role of Electronic Energy Deposition on conducting channels**

#### 200 nm C60/Au/Si films were irradiated (Fluence: 6x10<sup>10</sup> ions/cm<sup>2</sup>) with different energy region ions

120 MeV Au ion Applied Bias: 0.5 V Se: 1300 eV/A Sn: 15.3eV/A 180 MeV Ag ion Applied Bias: 2 V Se:1100 eV/A Sn: 2.7eV/A

55 MeV Ti ion Applied Bias: 9 V Se: 505.5 eV/A Sn: 0.8 eV/A



# Electrical conductivity variation with electronic energy deposition



# Synthesis by SHI irradiation





#### Tilt of the magnetization easy axis of Fe nanoparticles by SHI



#### **Application: perpendicular magnetic recording**

Tandem deposited Teflon AF/Au nanocomposite irradiated by 120 MeV Au beam at different ion fluences (Kiel Univ./NSC)



# Achieving narrow particle size distribution in 3d magnetic metals in triethoxysilane by ion irradiation

TH-3%Ni irradiated 10<sup>15</sup> Au: gaussian, mean D=4.0 nm

TH-3%Ni annealed 1h at 1000°C in vacuum: log-normal, mean D=5.5 nm, and porosities



Pivin et al, Eur. Phys. J. B37 (2004) 329

#### Growth of Au particle size in silica matrix by SHI



#### SHI for creating submicron pores in polymer





Ion Energy (MeV)



# **Possible Applications**

Antibacterial effects Localized heating by SPR Bio sensor Gas sensor Magnetic recording Flat panel display Field emission High frequency applications

#### The influence of Au and Ag particles embedded in PTFE with Si as substrate on growth of bacteria



Kiel Univ Inst. Of Virology

Jaypee Univ. Noida

# **The Pelletron Accelerator**





![](_page_49_Picture_0.jpeg)

## **LEIBF with HR Spectrometer**

![](_page_50_Picture_1.jpeg)

New Materials Science building: Low energy ion beams from 200 kV deck potential with ECR source. High resolution ERD/RBS, implantation based work.

![](_page_50_Figure_3.jpeg)

![](_page_51_Picture_0.jpeg)

# **Conclusion** Nano structure synthesis

Atom beam co-sputtering: Low energy ion irradiation:

Ag particles in silica Ripple formation Si particles in silica

#### Swift heavy ion irradiation:

Conducting C tracks in fullerene C clusters along ion path in Si based polymers Ripple formation at surface in Ni oxide films

## Influence of SHI on nano particles

Metal particles in insulating matrix Tilt of plane of magnetization

# **Collaborators**

J.C. Pivin, CSNSM Orsay, France **E. Pippel, MPI Halle, Germany** F. Faupel, Kiel University A. Biswas, Atlanta, USA N.P. Lalla, DAE-CSR, Indore S.K. Srivastava, TIFR Mumbai A.Tripathi, IUAC New Delhi D. Kabiraj, IUAC, New Delhi Fouran Singh, IUAC New Delhi **Amit, IUAC New Delhi** Yogendra, IUAC New Delhi

# **THANK YOU**