

() International A Energy Agency

SMR/1758-14

"Workshop on Ion Beam Studies of Nanomaterials: Synthesis, Modification and Characterization"

26 June - 1 July 2006

Tailoring of Optical Properties of LiNbO₃ by ion implantation

> Cinzia SADA Department of Physics University of Padova Padova, Italy

Tailoring of optical properties of LiNbO₃ by ion implantation

Dr Cinzia Sada Physics Department, University of Padova

G.G. Bentini, M. Bianconi, M. Chiarini IMM-CNR di Bologna

N. Argiolas, M. Bazzan, P. Mazzoldi Physics Department, University of Padova

Outline

The material Optical properties Linear (LO) and nonlinear (NLO) optical response

Exploitation of ion implantation for nanoclusters formation

Exploitation of ion implantation for waveguides formation Applications: optical modulator for gas tracing

Exploitation of ion implantation in photonics Photonic structures Realisation and characteristics Applications

The material

C axis <001>

Lithium Niobate $(LiNbO_3)$

Ferroelectric with a spontaneous polarization P_s=0.71 C/m² parallel to the c-axis

Due to its large Electro-Optic and Acousto-Optic coefficients, LiNbO₃ is used for optical applications:

1.Optical modulators 2.Pockel Cells switches, 3.Integrated waveguides 4.Second harmonic generation

Optical properties

Linear optical properties

Nonlinear optical properties

Ordinary refractive index n_o Extraordinary refractive n_e (E ⊥ c axis) (E // c axis)

Negative birifrangence (at 633n)

n_e=2.2219 n_o=2.28<u>78</u>

Transmission: 80% in the range 350nm-4000nm

Applications of ion implantation on LiNbO₃

Native nonlinear properties

Laser at $\lambda/2$

Blue-green wavelenth for Optical recording

Induced nonlinear properpies

ON configuration

Switch

Input

Output

Off configuration

Optical

Induced nonlinear properties

Ion implantation of metals in $LiNbO_3$ for realisation of metal nanoparticles Works reported in literature: implantation of Au, Ag, Cu in the KeV region

Best results obtained on Cu:LiNbO₃

Induced nonlinear optical properties

Stability of nanoparticles in LiNbO₃ induced by negative Cu ions and ultrafast nonlinear optical property

N. Kishimoto^{a,*}, N. Okubo^b, O.A. Plaksin^c, N. Umeda^b, J. Lu^a, Y. Takeda^a

Nuclear Instruments and Methods in Physics Research B 218 (2004) 416-420

Cu- implanted at E=60KeV I=10-50 μ A/cm²

Fig. 1. Optical absorbance spectra of various dielectric substrates implanted with 60 keV Cu⁻ at 10 μ A/cm² to 3.0×10¹⁶ ions/cm².

Fig. 2. Optical absorbance spectra of LiNbO₃ implanted with 60 keV Cu⁻ at various fluxes to 2×10^{17} ions/cm².

Induced nonlinear optical properties

Ion-induced metal nanoparticles in insulators for nonlinear optical property

N. Kishimoto^{a,*}, Y. Takeda^a, N. Umeda^b, N. Okubo^b, R.G. Faulkner^c

Nuclear Instruments and Methods in Physics Research B 206 (2003) 634-638

Fig. 1. Cross-sectional TEM image of LiNbO₃ implanted with 60 keV Cu⁻ ions at a dose rate of 10 μ A/cm² to a dose of 3×10^{16} ions/cm².

Cu- implanted at:

E=60KeV I=10-50 μA/cm²

Non spherical nanocluster D=10nm

Sub-picosecond nonlinear response

Fig. 5. Non-linear transient absorption of LiNbO₃ implanted with 60 keV Cu⁻ at 10 μ A/cm² to 3×10¹⁶ ions/cm². The pumping and probing energies are 2.16 and 2.05 eV, respectively.

Linear optical properties

Ion implantation of:

heavy elements (Si 30KeV), medium light (C,O,N 3-5MeV) light elements (H, He 0.5-1MeV)

to modify locally the refractive index of the medium and guarantee the light confinement

Waveguides for integrated optics

Linear optical properties: waveguide

Light confinement in optical waveguides

n_{waveguide}-n_{substrate}>0

Total internal reflection

n_{atmosphere} n_{waveguide} n_{substrate}

Integrated optics: optical waveguide

How to prepare an optical waveguide

Standard approach

Introduction of suitable dopant

Methods: Thermal diffusion Ion exchange Ion implantation

=n<n_{substrate}

Methods: Ion implantation

Standard approach

Increase of the refractive index in the doped region

Refractive index behaviours of He implanted optical waveguides in LiNbO₃, KTiOPO₄ and Li₂B₄O₇

Fig. 6. Extraordinary (n_c) and ordinary (n_o) index profiles of He⁺ implanted LiNbO₃ waveguide (solid lines) with the implanted helium concentration profile (dashed line) obtained by TRIM simulation.

P. Bindner et al, NIMB 142 (1998) 329-337

Implantation parameters: Energy and helium dose

	Dimensions (mm ³)	Implantation parameters	
		Energy (MeV)	Dose (×10 ¹⁶ ions/cm ²)
LiNbO3 KTP	$20 \times 10 \times 1$ 6.87 × 10 × 2.1	2 2	2
LTB	$1 \times 4 \times 10$	2	1.5

Concerning the He⁺ implanted LiNbO₃ waveguide, at the surface, the index variations observed are: a decrease in the extraordinary profile $(\Delta n_e = -0.5\%)$ and a slight increase in the ordinary one $(\Delta n_o = +0.07\%)$. The index barrier is more pronounced in the extraordinary $(\Delta n_e = -6\%)$ case than in the ordinary one $(\Delta n_o = -2\%)$. The corre-

Ion implantation: alternative approach

Interaction of the medium light elements with the material

Surface damage due to the electronic energy loss

End of range damage due to the nuclear energy loss

Questions

- 1. Origin of the surface damage
- 2. Dependence of the surface; damage on the implantation conditions.

High implant fluences of medium light elements increase the surface damage

Higher damage with increasing atomic number of the implanted species

Ion Implantation:

- i) The energy lost by electronic interaction mostly generates localised colour centres and/or few structural isolated defects. These defects can be easily annealed at lower temperatures than the more complex defect clusters generated at the End-of-Range by nuclear interaction.
- ii) This is a general trend rather independent of the target material.
- iii) The energy lost by Nuclear interaction, generates collision cascades and large defect clusters.

Surface damage

$$N_D = 1 - \exp\left[-\left(\frac{\Phi}{\Phi_c}\right)^n\right]$$

N _D	defects density in the region
	nearby the surface
Φ	fluence
Φ_{C}	critical fluence

 Φ_{c} =(3.1±0.6)·10¹⁴/cm² n=(2.75±0.25),

n=1 n=1.5÷2.5 n=3-4 1-D defect2-D defects3-D defects

End of range damage

Linear dependence of the end of range damage up to a threshold value that depends on the implanted species

Above a give threshold in the electronic energy loss the surface damage occurs

The overlap between the damage due to the electronic regime and the nuclear one give the final damage profile

Ion implantation: alternative approach

Structural modification

relative lattice mismatch $\Delta d/d$ $\Delta d=d_{film}-d_{substrate}$ $d=d_{substrate}$

C:LiNbO₃ Surface region: $\Delta d/d < 0.0002$

End of range (EOR): peak: $\Delta d/d \sim 0.00255$

O:LiNbO₃ Surface region: peak at ∆d/d~0.0025

End of range damage peak at $\Delta d/d \sim 0.0035$

Ion implantation: alternative approach

Optical properties

The variation in the refractive index can be due to the following contributions:

Variation in the optical refraction due to composition and ion polarizability	∆n ^R
Variation in the molar volume	∆n [∨]
Variation in the spontaneous polarization	∆n ^P
Variation due to the structural modification Elasto-optic effect	Δn ^ε

 $\Delta n^{tot} = \Delta n^{R} + \Delta n^{V} + \Delta n^{P} + \Delta n^{s}$

Ion implantation

Effect of implantation on the optical properties

Results of ion implantation

Compositional analysis

Refractive index

- C excess in the EOR region, LiNbO₃ composition unaltered
- Low optical losses <3dB/cm)

Optical waveguide

O:LiNbO₃ waveguide

• 3 inch

Losses < 3dB/cm

Ion implantation combined with photolitographic process can be used to prepare optical circuit and devices

One of the most important application is the optical modulator: the input signal is modulated by interference effect due to the different refractive index value in the two optical branches

Damage Profile of a Channel Waveguide realized by High Energy Ion Implantation

Application: optical modulator

How to change the refractive index in one branch? Via the electro-optic effect

Electro-optic effect

Change in refractive index with the applied electric field:

Where:

n= Refractive index
r = Linear Electro-Optic coefficient
P = Quadratic Electro-Optic Coefficient
E = Applied Electric Field

Electro-optic effect

Modulation of the refractive index through the applied electric field

Material	r (pm/V)	n
КТР	35	1.86
KNbO ₃	25	2.17
LiNbO ₃	29	2.2
Ba ₂ NaNb ₅ O ₁₅	56	2.22
SBN (25-75)	56-1340	2.22
GaAs	1.2	3.6
BaTiO ₃	28	2.36

Ion implantation: application to gas tracing

Ion implantation: application to gas tracing

Transmitted solar light (without the absorbed wavelenght)

Application to gas tracing

Mach-Zehnder

Input

Different refractive index in the two branches=different phase velocity of the optical beams

At the output, beams recombination gives light interference

The interference pattern contains the information on the input signal

Post analysis of the interference pattern allows the identification of the input signal, i.e gas element

Output

Reconstruction

Application to gas tracing

High selectivity on the wavelength

Position of the waveguides below the driving electrodes

Nanotech applied to LiNbO₃

Realization of periodic grating acting as wavelength filters

Periodic structure in the nanoscale region obtained by laser irradiation: band pass filter

Ion implantation: application in nanotech

Ion implantation through a mask

Chemical etching on the implanted surface

Ion implantation: application in nanotech

Effect of the damage on the etching rate

Implanted region are chemically attached faster than unimplanted ones

Selective etching!

Ion implantation: application in nanotech

Patterns obtained on LiNbO₃ by ion Implantation and selective etching

Ion implantation: application to nanotech

Simulation of the electromagnetic field propagation in a Photonic Device obtained by ion implantation + selective etching

Outline **Resonant Cavity** 1 0.8 0.6 0.4 0.2 10µm EHT = 5.00 kV Signal A = InLens Date :13 Sep 2005 Mag = 3.45 K X WD = 5 mm Photo No. = 353 Time :13:03:55 4.25 4.35 4.3 4.45 4.5 4.4

Resonant Cavity, periodicity of the Photonic Structures: 600 nm

Photonic Band Gap of the cavity, (Theory)

Nanotech applied to LiNbO₃

Lower period can be obtained by laser irradiation

Conclusions

Ion implantation is a very versatile techinique to modify the LiNbO₃ properties

In combination with photolitography it allows for the relaization of optical pattern

In principle any complex optical device can be realised, with tailored performances and functionalities