

International Centre for Theoretical Physics





SMR/1758-2

"Workshop on Ion Beam Studies of Nanomaterials: Synthesis, Modification and Characterization"

26 June - 1 July 2006

Ion Channeling through Carbon Nanotubes

Zoran Miskovic Dept. of Applied Mathematics University of Waterloo Ontario, Canada

> University of Pavia Department of Physics Padova, Italy

# Ion channeling through carbon nanotubes

#### Zoran Miskovic



Department of Applied Mathematics University of Waterloo, Ontario, Canada

Collaborators:

University of Waterloo: F.O. Goodman D.J. Mowbray J. Zuloaga S. Chung Dalian University of Technology, China: Y.-N. Wang D.-P. Zhou Institute of Nuclear Sciences, Belgrade: N. Neskovic S. Petrovic D. Borka



# Outline

- Reminder: Channeling in single crystals
- ☐ Ion interactions with carbon nanotubes
- ☐ High-energy channeling (~GeV)
  - Potentials and beam deflection
  - Rainbow effect in short ropes
  - Medium-energy channeling (~MeV)
    - Modeling the dynamic response
    - Simulations of ion distributions
    - New developments
- ❑ Low-energy channeling (~keV)
  - MD simulations
  - Related problems
- Outlook

## Ion channeling in crystals

- "
  "Accidental" discovery in computer simulation
  (1963)
- □ Theory:
  - Continuum-potential models
  - Binary collision approximation
  - De-channeling, ...
- □ Applications:
  - Medium energies:
    - ion implantation
    - probing impurities in crystals
    - thin films & interface analysis
  - High-energy physics:
    - using bent crystals for beam extraction & collimation at particle accelerators (CERN, JINR, FNAL, BNAL, IHEP, INFN-LNF)

#### Channeling of fast ions in single crystals Shadow cone Side view of ion beam channeling Average potential along atomic rows Equipotential curves Front view of Si channels Axial channeling 53\_1.2E2 10 4.6 23 5Ś .n or 0.40 y [Å] 0.0 eV -0.5 10 2.0 -1.5 2.0 531.2E2 2.0 -0.90 -2.0 -0.0 0.5 1.0 1.5 -1.0 -0.5 -1.5 x [Å]

Axial channeling through single crystal L.C. Feldman *et al., Materials Analysis by Ion Channeling* (1982)



Planar channeling through crystal bent in x direction V.M. Biryukov *et al., Crystal Channeling and Its Applications at High-energy Accelerators* (1997)



#### Ion channeling through carbon nanotubes? Dream vs. reality



# Outline

- **Reminder: Channeling in single crystals**
- Ion interactions with carbon nanotubes
  - High-energy channeling (~GeV)
    - Potentials and beam deflection
    - Rainbow effect in short ropes
  - Medium-energy channeling (~MeV)
    - Modeling the dynamic response
    - Simulations of ion distributions
    - New developments
- **Low-energy channeling** (~keV)
  - MD simulations
  - Related problems
- Outlook

### Carbon nanotubes

### □ Properties:

- Electrical, mechanical, thermal
- Dependent on: molecular structure, geometric confinement, local modification
- □ Applications:
  - Nanoelectronic devices
  - New composite materials
  - Sensitive chemical detectors
  - Ion storage (H, Li)
  - Field emission displays
  - Nanoelectromechanical systems (NEMS)

#### Formation of single-wall carbon nanotube (SWNT)



Diameter ~ 1 - 2 nm, Length ~ 1 mm

#### (n,m) nomenclature of SWNTs



n - m = 3q (q: integer): metallic n - m  $\neq$  3q (q: integer): semiconductor Stacking of nanotubes by van der Waals forces with inter-wall separations ~ 0.34 nm

Rope of SWNTs in hexaginal lattice



#### Rope of DWNTs in hexaginal lattice

# d

#### Multi-walled carbon nanotube



Ion irradiation of carbon nanotubes



- Beam characteristics:
  - Directions oblique or perpendicular to nanotube
  - Energies from ~ 100 eV to ~ 100 MeV
  - Heavy and light ions
  - Strong dependence on irradiation dose
  - Beam diameter for local modifications (FIB)
- ☐ Effects on nanotubes:
  - Creation of local defects (~ 20 eV per atom)
  - Doping, functionalization
  - Inter-tube junctions (with high-T annealing)
  - Amorphization, welding
  - Stiffening, bending, buckling
  - Observed by: SEM, TEM, RS, FEM, AFM, STM, ...

Ion channeling through carbon nanotubes

- Advantages over single crystals
  - Wider channels: weaker dechannelling
  - Broader beams (using nanotube ropes)
  - Wider acceptance angles (~ 0.1 rad)
  - Lower minimum ion energies (< 100 eV)</li>
  - 3-D control of beam bending over greater lengths
- Applications
  - Creating and transporting highly focused nano-beams
  - Nano-implantation in electronics, biology & medicine
  - Beam extraction, steering & collimation at accelerators
  - Manipulate plasma deposition, molecule transmission
  - Sources of hard X- and gamma-rays

#### Some issues regarding realization of channeling

Open ends (sputter etching)
 J.F. AuBuchon *et al.*,
 J. Appl. Phys. 97 (2005) 124310



H<sup>+</sup> beam

Straightening (using Ga<sup>+</sup> beam) Y.J. Jung *et al.,* Nano Letters 4 (2004) 1109



**Clamping** by metal wires

H. Stahl *et al., Phys. Rev. Lett.* 85 (2000) 5186



# Outline

- Reminder: Channeling in single crystals
  Ion interactions with carbon nanotubes
- ☐ High-energy channeling (~GeV)
  - Potentials and beam deflection
  - Rainbow effect in short ropes
  - Medium-energy channeling (~MeV)
    - Modeling the dynamic response
    - Simulations of ion distributions
    - New developments
- **Low-energy channeling** (~keV)
  - MD simulations
  - Related problems
- Outlook

#### Continuum approximation for nanotube wall potential

- Repulsive potential of a C atom,  $U_{at}(R)$  (Lindhrad, Molière, Doyle-Turner)
- Atomic row potential from longitudinal average

$$U_{row}(r) = \frac{1}{d_{at}} \int_{-\infty}^{\infty} U_{at} \left(\sqrt{r^2 + z^2}\right) dz$$

• Wall potential for zig-zag and armchair nanotubes with radius  $|r_j| = a$ 

$$U_{z,a}(r,\varphi) = \sum_{j=1}^{N} U_{row} \left( \sqrt{r^2 + a^2 - 2ra\cos(\varphi - \varphi_j)} \right)$$

• Wall potential for chiral nanotubes with radius *a* from averaging over circumference

$$U_{chi}(r) = a\sigma_{at} \int_0^{2\pi} \int_{-\infty}^{\infty} U_{at} \left( \sqrt{z^2 + r^2 + a^2 - 2ra\cos\varphi} \right) \, dz \, d\varphi$$

# Continuum approximations for the repulsive atomic potential in SWNTs

X. Artru et al., Phys. Reports 412 (2005) 89



# Continuum potential due to atomic rows in <u>achiral</u> SWNTs

N.K. Zhevago and V.I. Glebov, J.E.T.P. 91 (2000) 579





#### Ion channelling through <u>rope</u> of <u>armchair</u> SWNTs(10,10) A.A. Greenenko and N.F. Shulga, *Nucl. Instr. Meth.* B 205 (2003) 767

Equi-potential surfaces (eV)



Ion trajectories with beam momentum 10 GeV/c and perpendicular energies 30, 50, and 100 eV





Ion channelling through a straight <u>chiral</u> SWNT(11,9) N.K. Zhevago and V.I. Glebov, *Phys. Lett.* A 250 (1998) 360 & 310 (2003) 301



Optimal nanotube diameter for GeV proton beam steering in bent <u>chiral</u> SWNTs V.M. Biryukov and S. Bellucci, *Phys. Lett.* B 542 (2002) 111



#### GeV proton beam steering in bent <u>chiral</u> DWNTs S. Bellucci *et al.*, *Phys. Lett.* B 608 (2005) 53



Deflected beam fractions in bent ropes of SWNTs

#### Rope of armchair SWNTs(10,10)

A.A. Greenenko and N.F. Shulga, Nucl. Instr. Meth. B 205 (2003) 767



#### Rope of chiral SWNTs(11,9)

12

8

N.K. Zhevago and V.I. Glebov, Phys. Lett. A 310 (2003) 301

# Outline

- **Reminder: Channeling in single crystals** 
  - I lon interactions with carbon nanotubes
- High-energy channeling (~GeV)
  - Potentials and beam deflection
  - Rainbow effect in short ropes
  - Medium-energy channeling (~MeV)
  - Modeling the dynamic response
  - Simulations of ion distributions
  - New developments
- **Low-energy channeling** (~keV)
  - MD simulations
  - Related problems
- Outlook

#### Theory of rainbows in <u>short</u> ropes of SWNTs

• Scattering angles depend on impact parameters (x<sub>0</sub>, y<sub>0</sub>) and length L

$$\Theta_{x} = \Theta_{x}(x_{0}, y_{0}; L), \quad \Theta_{y} = \Theta_{y}(x_{0}, y_{0}; L)$$

• In the small-angle approximation for short nanotubes, the differential cross section for ion transmission

$$\sigma = 1/|J|$$

•  $J = \partial_x \Theta_x \partial_y \Theta_y - \partial_x \Theta_y \partial_y \Theta_x$  is the Jacobian of the mapping

$$(x_0,y_0) \to (\Theta_x,\Theta_y)$$

• Rainbow lines in the impact parameter plane are defined by

$$J(x_0, y_0; L) = 0$$

- Total potential is sum over all atomic rows on all nanotubes in the rope
- Could be used for precise measurement of electron density in nanotubes



Rainbow effect after 1GeV proton channelling through a <u>short</u> rope of <u>armchair</u> SWNTs(10,10) S. Petrovic *et al., Eur. Phys. J.* B 44 (2005) 41



Rope length 1 µm

# Rainbow effect after 1GeV proton channelling through longer ropes of armchair SWNTs(10,10)

S. Petrovic et al., Nucl. Instr. Meth B 234 (2005) 78





# Outline

- Reminder: Channeling in single crystals
  - **I** Ion interactions with carbon nanotubes
- **High-energy channeling** (~GeV)
  - Potentials and beam deflection
  - Rainbow effect in short ropes
- ❑ Medium-energy channeling (~MeV)
  - Modeling the dynamic response
  - Simulations of ion distributions
  - New developments
- Low-energy channeling (~keV)
  - MD simulations
  - Related problems
- Outlook

#### Electron image states around carbon nanotubes Theoretical prediction: B.E. Granger *et al., Phys. Rev. Lett.* 89 (2002) 135506



# Experimental confirmation: M. Zamkov *et al., Phys. Rev. Lett.* 93 (2004) 156803



#### 2D hydrodynamic model of electron response D.J. Mowbray *et al., Phys. Rev.* B 70 (2004) 195418



Plasmon spectra:  $\sigma$  and  $\pi$  electrons on SWNT



#### Dynamic polarization of electrons on SWNT by proton



#### Proton stopping power for MWNT with n = 10 walls



Proton self energy (image potential) for MWNT with n = 10 walls (single-fluid model)



# Outline

- Reminder: Channeling in single crystals
  - **J** Ion interactions with carbon nanotubes
- **High-energy channeling** (~GeV)
  - Potentials and beam deflection
  - Rainbow effect in short ropes
- ❑ Medium-energy channeling (~MeV)
  - Modeling the dynamic response
  - Simulations of ion distributions
  - New developments
- **Low-energy channeling** (~keV)
  - MD simulations
  - Related problems
- Outlook

Total potential for proton moving parallel to a chiral SWNT(11,9) with image and Doyle-Turner potentials

![](_page_42_Figure_1.jpeg)

Comparison of Doyle-Turner and Moliere potentials for proton moving parallel to SWNT(11,9) at v = 3 and 5 a.u.

Nanotube radius  $\approx$  13 a.u.

![](_page_43_Figure_2.jpeg)

# Rainbow effect for proton channelling in <u>short</u> chiral SWNT(11,9) with image & Doyle-Turner potentials

![](_page_44_Figure_1.jpeg)

![](_page_45_Figure_0.jpeg)

# Proton channelling through a <u>wider & longer</u> chiral SWNT with image and Moliere potentials

D.P. Zhou et al., Phys. Rev. A 72 (2005) 23202

![](_page_46_Figure_2.jpeg)

Creation of hollow nano-beam of protons after channelling through a SWNT due to image force D.P, Zhou et al., Phys. Rev. A 72 (2005) 23202

Proton speed = 4 a.u., NT radius = 20 a.u., NT length =  $10^5$  a.u.

(b)

12 14

![](_page_47_Figure_2.jpeg)

#### Coulomb explosions during H<sub>2</sub><sup>+</sup> channelling in SWNT D.P. Zhou *et al., Phys. Rev.* A 73 (2006) 33202

![](_page_48_Figure_1.jpeg)

# Outline

- Reminder: Channeling in single crystals
  - **J** Ion interactions with carbon nanotubes
- **J** High-energy channeling (~GeV)
  - Potentials and beam deflection
  - Rainbow effect in short ropes

### ❑ Medium-energy channeling (~MeV)

- Modeling the dynamic response
- Simulations of ion distributions
- New developments
- **Low-energy channeling** (~keV)
  - MD simulations
  - Related problems
- Outlook

#### Dynamic polarization of SWNT coated by metal D.J. Mowbray *et al., Phys. Rev.* B (2006) submitted

TEM images of a=5 nm SWNT: Y. Zhang et al., Chem. Phys. Lett. 331 (2000) 35

![](_page_50_Figure_2.jpeg)

![](_page_50_Figure_3.jpeg)

#### Static image interaction near an open end of a SWNT K. Whyte and Z.L. Miskovic, in preparation

![](_page_51_Figure_1.jpeg)

# Planar channeling in Highly Oriented Pyrolytic Graphite

J. Zuloaga et al., ICACS 2006, to be published

Graphene planes in HOPG

For **single** graphene sheet, calculate stopping power and image force using Kitagawa's dielectric function:

$$\epsilon^{-1}(\mathbf{r}_1, \mathbf{r}_2, \omega) \cong \frac{\omega^2}{\omega^2 - \omega_p^2(\mathbf{r}_1)} \left[ \delta(\mathbf{r}_1 - \mathbf{r}_2) - \frac{1}{\omega^2 - \omega_p^2(\mathbf{r}_2)} \frac{(\mathbf{r}_2 - \mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|^3} \cdot \vec{\nabla} n(\mathbf{r}_1) \right]$$

(High-frequency approx.≈ Local + Non-local terms)

#### **Compare 3D and 2D electron-gas models**

![](_page_52_Figure_7.jpeg)

# Outline

- Reminder: Channeling in single crystals
  - **J** Ion interactions with carbon nanotubes
- High-energy channeling (~GeV)
  - Potentials and beam deflection
  - Rainbow effect in short ropes
  - Medium-energy channeling (~MeV)
    - Modeling the dynamic response
    - Simulations of ion distributions
    - New developments
- Low-energy channeling (~keV)
  - MD simulations
  - Related problems
- Outlook

Molecular Dynamics (MD) simulations of ion irradiation effects on carbon nanotubes

- □ Atomistic simulations, solving Newton's equations
- Low impact energies, nuclear stopping dominates
- □ Empirical potentials (Tersoff/Brenner, van der Waals, and ZBL or Lennard-Jones), truncation issues, no charging
- □ Ab-initio (DFT) potentials, limited number of C atoms
- Dynamic structure evolution, but limited simulated time
- □ Finite length of nanotubes (~ 10 nm), energy dissipation
- □ Simulate temperature effects (annealing of defects)
- □ Simulate chemical reactions and mechanical response

MD sim. of channelling of C<sup>+</sup> ions in SWNT & DWNT C.S. Moura and L. Amaral, J. Phys. Chem. B 109 (2005) 13515

![](_page_55_Picture_1.jpeg)

Tersoff potential for C-C in the walls ZBL potential for projectile - target

![](_page_55_Figure_3.jpeg)

#### MD sim. of channelling of keV Ar<sup>+</sup> ions in MWNT

A.V. Krasheninnikov and K. Nordlund., Phys. Rev. B 71 (2005) 245408

![](_page_56_Figure_2.jpeg)

#### **Conclusions:**

- channelling dominated by nuclear energy loss (50-100 eV per collision)
- channelling possible even at low energies and large angles (~ 10°)
- less effective between walls of MWNT
- temperature effects weak
- amorphization of entrance opening for high ion beam doses may be problem but central hollow remains open

Critical angle for channelling agrees with continuum model

$$\psi_{\rm c} = \sqrt{U(r_{\rm c})/E}$$

![](_page_56_Figure_11.jpeg)

#### MD sim. of channelling of ~100eV C<sup>+</sup> ions in SWNT W. Zhang *et al., Nanotechnology* 16 (2005) 2681

![](_page_57_Figure_1.jpeg)

# Outline

- Reminder: Channeling in single crystals
  - **I** lon interactions with carbon nanotubes
- **High-energy channeling** (~GeV)
  - Potentials and beam deflection
  - Rainbow effect in short ropes
  - Medium-energy channeling (~MeV)
    - Modeling the dynamic response
    - Simulations of ion distributions
    - New developments

### Low-energy channeling (~keV)

- MD simulations
- Related problems

Outlook

Transmission of highly-charged ions through arrays of metallic capillaries with diamater ~ 100 nm experiment: Y. Yamazaki, *Nucl. Instr. Meth.* 193 (2002) 516

![](_page_59_Figure_1.jpeg)

Transmission of highly-charged ions through arrays of metallic capillaries with diamater ~ 100 nm

theory: K. Tókési et al., Phys. Rev. A 64 (2001) 42902

![](_page_60_Figure_2.jpeg)

### Guiding keV Ne<sup>7+</sup> ions through insulating capillaries

experiment: Gy. Vikor *et al., Nucl. Instr. Meth.* B 233 (2005) 632; theory: K. Schiessl *et al., Phys. Rev.* A 72 (2005) 62902

![](_page_61_Figure_2.jpeg)

### Outlook

- Simulations of ion channelling through carbon nanotubes predict great advantages in comparison with single crystals & offer new applications
- Theoretical modeling of ion interactions with nanotubes needs improvements at all energies: ab-initio potentials, dynamic response, energy loss, projectile charge states, entrance effects, defects in nanotube structure, ...
- Experimental realization of ion channelling still pending, but all major technical issues seem manageable (ongoing activity at INFN-LNF & IHEP)
- Exciting new developments expected in near future for particle channeling through carbon nanotubes, following recent success of ion transport through nano-capillaries