

SMR.1759 - 1

Fourth Stig Lundqvist Conference on Advancing Frontiers of Condensed Matter Physics

3 - 7 July 2006

Superfluid disorder in He-4: from edges and interfaces to superglass

> Nikolay PROKOFEV University of Massachusetts Department of Physics Amherst, MA 01003 U.S.A.

> > and

Universita' degli Studi di Trento Dipartimento di Fisica Via Sommarive 14 38050 Pove (TN) Italy

These are preliminary lecture notes, intended only for distribution to participants

Superfluid disorder in He-4. From edges and interfaces to superglass

Nikolay Prokof'ev	UMass, Amherst
Massimo Boninsegni	Univ. of Alberta
Boris Svistunov	UMass, Amherst
Evgeni Burovski	UMass, Amherst
Evgeni Kozik	UMass, Amherst
Lode Pollet	ETH
Matthias Troyer	ETH
Anatoly Kuklov	CSI CUNY

NASA

Trieste July 3-7 (2006)

Outline

- Andreev-Lifshitz & Chester scenario for supersolids
- Experimental facts.
- Theorem: Continuous-space supersolids are always incommensurate
- He-4 *hcp* crystals are commensurate and insulating.
- Vacancies and interstitials are activated; vacancy gas is unstable
- Superfluid interfaces in lattice models (proof of principle)
- He-4 superglass
- Superfluid grain boundaries and ridges in polycrystalline samples

What is supersoilid?

$$E = \frac{1}{2}I\Omega^2$$

$$I \neq I_0 = \int \rho(r) r^2 dV$$

Non classical moment of inertia. Some of the crystal mass is not rotating with the lattice

Superflow or persistent current through the solid state; pressure Equilibration, etc.

Start from a perfect structure

1. Create a static vacancy; $\delta \varepsilon = E_0 > 0$

2. Let the vacancy move around; $\delta \mathcal{E} = -zt < 0$

Reduction of kinetic energy of n.n. atoms $\delta p \sim h / \delta r$

3. IF $\mathcal{E}_V = E_0 - zt < 0$, making vacancies is favorable for the structure.

$$E \approx \varepsilon_V n_V + \frac{U}{2} n_V^2 \rightarrow n_V = \frac{|\varepsilon_V|}{U}$$

Weakly-interacting gas goes superfluid in 3D below

$$T_C \sim n_V^{2/3}$$

$$H = \frac{\kappa \varphi^2}{2} + \frac{I \dot{\varphi}^2}{2}$$
$$\Omega = \sqrt{\kappa / I}$$
$$I = I_{classical} \quad \text{if} \quad \rho_s = 0$$
$$I < I_{classical} \quad \text{if} \quad \rho_s > 0$$

Oscillation period drop = onset of superfluidity

 $\rho_{\rm S} \rightarrow {\rm reduced}$ by nearly two orders of magnitude

Problems with homogeneous 3D interpretation

Decoupled mass = ρ_S ideal 2D 3D observed (Kim & Chan)

Strongly disordered system with a broad distribution of $T_C(\vec{r})$

• He-3 impurities:
$$\rho_3 / \rho_s \sim 10^{-3}$$
 !

impossible to understand in the homogeneous bulk state physics of Josephson-junctions or weak-links cutting the flow is involved

 "Elimination of the supersolid state through crystal annealing" Rittner & Reppy '06. Supersolid samples are far more disspative !

• $C(T) \propto T$ at low temperatures < 0.1 K

Kim & Chan measurements. Typical for a glass (or 1D superfluid).

Theorem: The state without vacancies and interstitials is normal.

(Groundstate wave function; Path-integrals) NP, Svistunov '04

No interstitial-vacancy symmetry in the supersolid $\longrightarrow n_V \neq n_i$. Thus, supersolids are always incommensurate

Experiments:

He-4 is a commensurate solid, X-ray (accuracy 0.1%)

Vacancies and interstitials are activated, X-ray, ion and He-3 mobilities

Simulations: Density matrix (or ODLRO) $n(r) = \left\langle \psi^+(r, +0)\psi(0, 0) \right\rangle$ Green function $G(p = 0, \tau) = \int dr \left\langle \psi^+(r, \tau)\psi(0, 0) \right\rangle$

Why should we trust simulations?

No free parameters; helium mass + V(r) and go ...

 $L\rho_{\rm s}/m$ 2048 4 1024 1 512 I 0.8 128 4 0.6 U(1) T_c^(Aziz) 0.4 T^(exp) 2.14 2.16 2.12 2.18 2.2 T(K) $T_c = 2.193$ calculated $T_{C} = 2.177$ experiment

Up to **2048** atoms (path-integral MC worm algorithm updates) Better then 1% agreement at all T after finite-size scaling

Exponential decay of the single-particle density matrix

Green function (polaron effect + gaps)

 $G(p,\tau \to \infty) \to Ze^{-E_{i,v}|\tau|}$

Large activation energies at all Pressures (thermodynamic limit)

Various vacancy-induced supersolid scenarios

In real experiments will anneal at the grain boundaries, dislocations, and other crystalline defects ...

Superfluid disorder

Burovski ,**Kozik**, NP, Svistunov '05

Proof of concept for grain boundaries

Superfluid disorder

3D network of superfluid interfaces and ridges. (disorder, different interfaces)

 $T_C(\vec{r})$

He- 3 goes to interfaces and then to ridges connecting them. Ridges \rightarrow Josephson junctions

He- 3 at grain boundaries, ridges and corners prevents crystals from growing (stabilizes disorder)

Numbers:

$$\rho_s \sim d / D \longrightarrow D \sim \# \mu m$$
 "heliu

'helium milk" (B. Hallock)

$$\rho_3 \sim (d/D)^2 \sim \rho_s^2 \longrightarrow \sim 10^{-4}$$

Superglass state of He-4

Monte Carlo temperature quench from normal liquid $n = 0.0359 A^{-3}$, $T = 100 K \rightarrow 0.2 K$, N = 800

ODLRO, $\rho_{s} = 0.07(2)$

Superglass state of He-4

Condensate wave function maps reveal broken translation symmetry $\phi_0(r) \sim \text{density of points}$

10 slices across the z-axis

A rough estimate of metastability:

 $t_{relax} > 10^4 J_{4-4} \sim 10^{10} \omega_D^{-1} \sim 10^{-3} s$

Superglass state of He-4

"Strange" outcome of the quantum-nucleation experiment

F. Werner, G. Beaume, A. Hobeika, S. Nascimbene, C. Herrmann, C. Caupin, and S. Balibar J. Low Temp. Phys., Vol. 136, Nos. 1/2, 2004

pressure wave, T=0.05 K

Bulk nucleation of a solid was predicted to occur at P~ 65 bar. Nothing was observed up to 160 bar !

Authors \rightarrow very viscous (glassy), normal liquid.

Superfluid ridges and interfaces in He-4

Summary:

Ideal *hcp* crystals are not superfluid. Large gaps for vacancies and interstitials at all pressures.

Non-equilibrium vacancies is an unstable, phase separating system.

Some (not all!) grain boundaries and ridges in helium are superfluid.

Helium can form a meta-stable superglass phase (very stable even in contact with crystals!).

Open questions: can easily fill next five slides!