

International Centre for Theoretical Physics

() Internationa Energy Ager

SMR.1759 - 9

Fourth Stig Lundqvist Conference on Advancing Frontiers of Condensed Matter Physics

3 - 7 July 2006

Dynamics of molecules at confined interfaces

ZHU Xiaoyang University of Minnesota Department of Chemistry 235 Smith Hall 207 Pleasant St., S.E. Minneapolis, MN 55455-0431 U.S.A.

These are preliminary lecture notes, intended only for distribution to participants

Dynamics of molecules at confined interfaces

Xiaoyang Zhu

Electron transfer/transport

h١

hν

University of Minnesota Minneapolis, MN 55455, USA

http://www.chem.umn.edu/groups/zhu

molecule

metal

Ge

Molecular junctions

I/V

мст

Organic semiconductor

Light

Photovoltaic

What is the consequence of confinement on molecular motion?

Grand Opinical Mathe Opinical Street Street

The formation of H-bnded bidgs!

Matthew McGrath, Ilja Siepmann (Minnesota)

Sten

Number of H-bonds to -COOH surface

Tetrahedral order parameter

Nature 409, 318 (2001)

Population of H₂O within the nanogap

70Å x 80 Å, periodic

H₂O/SiO₂ - measurement in air

Spectroscopic evidence of "ice-like" water on hydrophilic surfacs

^{2005,} *109*, 16760-16763

Other studies: SFG

Q. Du, E. Freysz, and Y. R. Shen, <u>Phys. Rev. Lett. **72**</u>, 238 (1994).

V. Ostroverkhov, G. A. Waychunas, and Y. R. Shen, <u>Phys. Rev. Lett. **94**</u>, <u>046102 (2005)</u>.

14

The interfacial H₂O is like... peanut butter

WHY is interfacial water so different???

- An H-bond to the surface is not much stronger than that in H₂O, but
- Breaking an H-bond in water is assisted by the forming of a new one.
 Energy cost minimal
- Breaking an H-bond at the surface or confined interface is not assisted. Energy cost significant

It's confinement!

• Confinement is the sole reason?

Hyperbranched Polyglycidol (HPG)

Surface-Initiated Polymerization of Hyperbranched Polyglycidol (HPG)

Majad Khan and Wilhelm T. S. Huck Macromolecules 2003, 36, 5088-5093

H

$HS(CH_2)_{10}COOH : HS(CH_2)_9CH_3 = 1:20, 40°C$

 $HS(CH_2)_{10}COOH : HS(CH_2)_9CH_3 = 1:20, 40°C$

Volume Distribution of HPG molecules

 $HS(CH_2)_{10}COOH : HS(CH_2)_9CH_3 = 1:20$

Hydrogen Bond Energy 2-10kcal/mol Au-S Bond Energy 40kcal/mol VdW energy in the SAM ~30 kcal/mol

Controlling the local environment

-COOH :-CH₃=1:20

When the matrix is also hydrophilic...

Conclusion

• Nocovalent interaction with the local environment can lead to the breaking of covalent bond for a surface tethered macromolecule.

Capillary condensation and meniscus formation between hydrophobic and hydrophilic surfaces

