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* Motivation (recent experiments of phase coherent transport in
ferromagnetic systems)

* Introduction to theory of disordered metals

* Analog of Universal Conductance Fluctuations in nanomagnets



Motivation:
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Mesoscopic Resistance Fluctuations in Cobalt Nanoparticles

Y. G. Wei, X.Y. Liu, L. Y. Zhang, and D. Davidovic

Georgia Institute of Technology, Atlanta, Georgia 30332, USA
(Received 15 September 2005; published 14 April 2006)
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Copper SEES

Picture taken from Davidovic group

Cu-Co interface are good contacts /

/~5nm

L, ~30nm cos(d)=m-m

{ <<L,, disordered regime

C(0)=<G(MG(M) > - < G(m) >*



Physical System we are Studying [2]

C(0)=<G(M)G(M) > - < G(M) >
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Data/Pictures: Y. Wei, X. Liu, L. Zhang and D. Davidovic, PRL (2006)




Physical System we are Studying [3]

C(0)=<G(M)G(M') >—-<G(m)>*> 6, iscorrelation angle
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Universal Conductance Fluctuations

PHYSICAL REVIEW B VOLUME 35, NUMBER 3 15 JANUARY 1987-11

Universal conductance fluctuations in metals:
Effects of finite temperature, interactions, and magnetic field

P. A. Lee
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetis 02139
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FIG. 1. Comparison of aperiodic magnetoconductance fluctuations in three different systems. (a) g (B) in 0.8-um-diam gold ring,
analysis of data from Refs. 3 and 4, reprinted with the permission of Webb et al. (the rapid Aharonov-Bohm oscillations have been
filtered out). (b) g(B) for a quasi-1D silicon MOSFET, data from Ref. 9, reprinted with the permission of Skocpol er al. (c) Numeri-
cal calculation of g(B) for an Anderson model using the technique of Ref. 11. Conductance is measured in units of ¢’/h, magnetic
field in tesla. Note the 3 order-of-magnitude variation in the background conductance while the fluctuations remain order unity.
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Theory: Lee and Stone (1985), Altshuler (1985)



Review of Diagrammatic Perturbation
Theory (Kubo Formula)
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Calculating Weak Localization and UCF

G
<G> < GG >,

Weak Localization Universal Conductance Fluctuations



Calculation of UCF Diagrams
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Effect of Spin-Orbit
(Half-Metal example) [1]
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Effect of Spin-Orbit
(Half-Metal example) [2]

Without S-O

With S-O

V.

K-k

<V, V, >= AChLY

Ve o =iV %k - (k'xk) /K

<VqSOVqS.O S = 5(q —( )

2rotV 2ot V
1
1 .
2 . D 2_' - m
1 1
(DY’ — i) T[qu_im“m'mj
TSO

NOTE: For m=m’, Spin-Orbit does not affect the Diffuson (classical motion)
but large S-O kills the Copperon (interference)




Calculation of C(m,m’) in Half-Metal

Without S-O With S-O
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Results for Half-Metal

D=1, Analytic Result
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Full Ferromagnet

Half Metal

Ferromagnet
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Results for C(m,m’) in Ferromagnet
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Limiting Cases for m = m’

m=m’ SO C D spin | Total
Normal Metal - 1/15 | 1/15 4 8/15
Half Metal No 1/15 | 1/15 1 2/15
Half Metal Strong 0 1/15 1 1/15
Ferromagnet Weak | 1/15 | 1/15 2 4/15
Ferromagnet Strong 0 1/15 1 1/15




Conclusions:

Showed how spin-orbit scattering causes Mesoscopic Anisotropic
Magnetoconductance Fluctuations in half-metals (This is the analog of UCF

for ferromagnets)

This effect can be probed experimentally
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Magnetic Properties of Nanoscale
Conductors

Shaffigue Adam

Cornell University



Backup Slide
Introduction to Phase Coherent Transport

Smaller and coldet!

Image Courtesy (L. Glazman)

Sample dependent fluctuations are
reproducible (not noise)

Ensemble Averages

Need a theory for the mean <G> and = wolp—r i
B (10%Teslas)

fluctuations <GG> [Mailly and Sanquer, 1992]
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Introduction to Phase Coherent Transport [2]

Electron diffusing in a dirty metal

Impurities i = path e /)
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Classical Contribution Quantum Interference

Diffuson Cooperon
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Introduction to Phase Coherent Transport [3]

Weak Localization in Pictures For no magnetic field, the phase depends
only on the path.
X *
Every possible path has a twin that is
exactly the same, but which goes
= around in the opposite direction.

Because these paths have the same flux
and picks up the same phase, they can
interfere constructively.

Therefore the probability to return to the
starting point in enhanced (also called
enhanced back scattering).

In fact the quantum probability to return
is exactly twice the classical probability
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Introduction to Phase Coherent Transport [4]

Weak Localization in Equations AN
- yan
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Classical Contribution Quantum Interference

Diffuson Cooperon
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C(0)=<G(M)G(M') >—-<G(m)>*> 6, iscorrelation angle

Aharanov-Bohm Spin-Orbit Effect
contribution
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Density of States quantifies how closely packed are energy levels.

DOS(E) dE = Number of allowed energy levels per volume in energy window
E to E +dE

DOS can be calculated theoretically or determined by tunneling experiments

s+ DiE) DOS( E)

3+

Energy

Fermi Energy[

Fermi Energy 1s energy of adding one more electron to the system (Large energy because
electrons are Fermions, two of which can not be in the same quantum state).
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* Magnetic Field shifts the spin up and spin
down bands

Energy T l
MW Ferromagnet
Fermi Energy
Spin Up Spin Down\ :>
DOS(E) DOS(E) /
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Spin DOS Half Metal
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Weak localization (pictures)

X ¥

For no magnetic field, the phase depends
only on the path.

Every possible path has a twin that is
exactly the same, but which goes
around in the opposite direction.

Because these paths have the same flux
and picks up the same phase, they can
interfere constructively.

Therefore the probability to return to the
starting point in enhanced (also called
enhanced back scattering).

In fact the quantum probability to return
is exactly twice the classical probability
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Weak localization (equations)
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Weak Localization and UCF in Pictures

<G>

<G G> f/f \ < \ Xt \1
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G = lim — [ dtexp™ 6(¢)([I(t), [(0)]), (1.15)
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Figure 1.6: (a) Diagram for the conductance G before impurity averaging. Elec-
trons propagate from r to r’ while being scattered by impurities located at
r1, T2, - -Tp Which are represented by the dashed lines and crosses. (b) Diagram for
the impurity averaged variance of conductance (GG}, where the shaded area repre-
sents impurity averages involving both classical Diffusion modes and the Cooperon

quantuim correct 101mSs.
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Figure B.1: Diagrams contributing to conductance correlations. For each of the
diagrams, the shaded area represents Diffuson or Cooperon Ladders. The dashed

line in diagram (e) represents an additional single impurity scattering.
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Figure B.2: Different tvpes of current vertices found in the conductance correla-
tion diagrams shown in Fig. B.1. Diagrams (a), (c), (d), (f) do not change their

analyticity at the vertex, while (b) and (e) do.
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Introduction to Quantum Mechanics

Energy is Quantized
Wave Nature of Electrons (Schrodinger Equation)

Wavefunctions of electrons in the Scanning Probe Microscope Image of

Hydrogen Atom (Wikipedia) Electron Gas (Courtesy A. Bleszynski)





