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Effective Hamiltonian: A simple Example

The effective-mass Hamiltonian

H =

∫
d3xψ†(~r)

(
− ∇2

2m∗ − µ

)
ψ(~r)

is an example of an Effective
Hamiltonian. Its validity range is
determined by conditions

µ� ∆E , T � ∆E , ω � ∆E

and
ka � 1

The Effective Hamiltonian describes the low-energy long-wavelength
physics of the system disregarding the high energy detail.
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Universality

The effective-mass Hamiltonian

Reduces all the complexity of the spectrum to a single
parameter m∗

Describes an enormous range of doped materials with
completely different chemical composition and lattice
structure

Definition

The set of physical Hamiltonians with common low energy effective
Hamiltonian is called the universality class.

The model whose Hamiltonian is the effective Hamiltonian is also
often called the universality class.

Vadim Cheianov Introduction in Bosonization II
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In This Part of the Course...

We shall try to understand the origins of universality, that is
what makes completely different systems alike at low energies.
This will lead us to the concept of scaling.

We shall develop a mathematical formalism, called the
Renormalization Group. This will give us a quantitative tool
for constructing effective Hamiltonians.

We shall establish that the Luttinger Model is a low energy
effective theory for a universality class of one-dimensional
interacting many-particle systems, called Luttinger Liquids .

We shall briefly discuss some known physical systems
belonging to this universality class.

Vadim Cheianov Introduction in Bosonization II
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Scaling

Here we introduce some ideas of scaling theory using an example
of a 1+1 -dimensional free-fermion hopping model.
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Formalization of The Problem

Physical properties of a system are encoded in correlation
functions. For example, for a system of non-relativistic spinless
fermions in 1 + 1 D the particle distribution function and the
tunneling density of states can be found from

G (x , t) = −i〈Tψ(x , t)ψ†(0)〉, G (k, ω) =

∫
dxdte−ikx+iωtG (x , t)

Low energy, or infrared, limit corresponds to small k and ω ( large
x and t). The effective Hamiltonian should ”generate” the long
distance asymptotics of correlation functions. For example,

G (λx , λt), λ→∞

Vadim Cheianov Introduction in Bosonization II
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A Simple Example: Spinless Lattice Fermions

Spinless fermions {ci , c
†
j } = δi ,j

H = −
∞∑

i=−∞
t c†i ci+1 + h.c.

In Fourier space cj =

∫
dk

2π
√

a
e ikajc(k)

The model Hamiltonian

H =

∫
dk

2π
c†(k)E (k)c(k)

E (k) = −2t cos(ka)

Vadim Cheianov Introduction in Bosonization II
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Lattice Fermions. Low Energy Excitations.

All low energy processes only
involve fermions near the Fermi
points k = K and k = −K .

Introduce two types of Fermions:

ψR(k) = c(K + k)

ψL(k) = c(−K + k)

Denote by ψ(x) = cj/
√

a where x = aj then

ψ(x) = e iKxψR(x) + e−iKxψL(x), ψR,L =

∫ K

−K

dk

2π
ψR,L(k)e ikx

Vadim Cheianov Introduction in Bosonization II
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The Gradient Expansion I

In ψL,R(k) basis the Hamiltonian becomes

H =

∫
dk

2π

[
ψ†L(k)E (−K + k)ψL(k) + ψ†R(k)E (K + k)ψR(k)

]
Note: here we dropped the limits of integration since high k
energies do not contribute to low energy spectrum.

The gradient expansion:

H =

∫
dk

2π
(vk + c3k

3 + . . . )
[
ψ†L(k)ψL(k)− ψ†R(k)ψR(k)

]
where v = 2at, c3 = ta3/3.
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The Gradient Expansion II

In space-time domain

H = H0 +

∫
dx

∑
n≥1

γn [QL,n(x)− QR,n(x)]

where H0 is the Dirac Hamiltonian

H0 = v

∫
dx(iψ†L∂xψL − iψ†R∂xψR)

and Q are local operators of the form

Qα,n(x) = ψ†α(x)(∂x)
2n+1ψα(x), α = L,R

Vadim Cheianov Introduction in Bosonization II
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Zooming Out

Scaling Transformation

x → λx , t → λt, ψ → 1√
λ
ψ

H[ψ,ψ†] → λH

[
ψ√
λ
,
ψ†√
λ

]
The result of scaling transformation

H → H̃ = H0 +

∫
dx γ̃n [QL,n(x)− QR,n(x)]

where

γ̃n =
1

λ2n
γn

Vadim Cheianov Introduction in Bosonization II
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Marginal and Irrelevant Operators

We can draw the following conclusions:

The Dirac-Like part of the Hamiltonian is not affected by
scaling. We shall call such operators marginal.

Other terms in the gradient expansion scale to zero at large
distances, that is

γ̃a → 0 when λ→∞.

In we shall call such operators irrelevant.

The effective low-energy Hamiltonian of the system is the
Hamiltonian of a free massless Dirac field

Vadim Cheianov Introduction in Bosonization II
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Infrared Asymptotics of Green’s Function

Introduce a shorthand x = (x , t).

GR(x) = −i〈TψR(x)ψ†R(0)〉

Apply scaling

GR(λx) = − i

λ
〈Tψ(x)ψ†(0)〉H̃

In the large λ limit H̃ = H0

GR,L(λx) →
1

λ(x ∓ vt)
, λ→∞

Vadim Cheianov Introduction in Bosonization II
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Summary

For a system of free spinless fermions on a lattice at a half-filling

H = −
∞∑

i=−∞
t c†i ci+1 + h.c.

we derived the effective low energy Hamiltonian, which is the
hamiltonian of a free massless Dirac field. At large distances

〈Tcj(t)c
†
0(0)〉 = e i2KxGR(x , t) + e−i2KxGL(x , t),

where K = π/2a, x = aj and GR,L are chiral fermion propagators
in free massless Dirac theory

GR(x) =
1

x − vt
, v = 2atH

Vadim Cheianov Introduction in Bosonization II
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Renormalization Group

Here we generalize the scaling approach to systems with
interactions
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Scaling of the Luttinger Hamiltonian

H = v

∫
dx

[
ψ†Li∂xψL − vψ†R i∂xψR + γρL(x)ρR(x)

]
Apply the scaling transformation

x → λx , t → λt, ψ → 1√
λ
ψ, H[ψ,ψ†] → λH

[
ψ√
λ
,
ψ†√
λ

]

H → H̃ = H

This would imply that e.g.

GR(λx) =
1

λ
GR(x) which is wrong!!!

Vadim Cheianov Introduction in Bosonization II
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Quantum Corrections to Scaling

In actual fact, from exact solution

GR(x) = 〈TψR(x , t)ψ†R(0)〉 =
c

(x − vct)∆(x + vct)∆̄

it follows that

GR(λx) =
1

λ∆+∆̄
GR(x), ∆ + ∆̄ =

K + K−1

2

Due to interactions scaling properties of operators change! This is
a result divergencies in perturbation theory, which introduce the
ultraviolet cutoff scale.

Vadim Cheianov Introduction in Bosonization II
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Generalized Scaling Theory

Consider some field theory with a set of local operators Qa(x) and
a Hamiltonian H

H =

∫
dxγaQa(x).

Write a generalized scaling relation for a correlation function

〈TQa1(λx1) . . .QaN
(λxN)〉H = 〈TQ̃a1(x1) . . . Q̃aN

(xN)〉H̃

where
Q̃a = ΛabQb

If we calculate the Hamiltonian H̃ and the transformation matrix Λ
as a function of λ, we can derive the effective theory.

Vadim Cheianov Introduction in Bosonization II
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The Beta Function

There is a relation between H̃ and Λ

iλ
∂

λ∂t
〈TQa(λx) . . . 〉H = i

∂

∂t
〈TQ̃a(x) . . . 〉H̃ ⇒

λ〈T [Qa(λx),H] . . . 〉H = 〈T [Q̃a(x), H̃] . . . 〉H̃
One immediately finds

H̃ =

∫
dx γ̃aQa(x), γ̃a = λ2Λabγb

In the infinitesimal form the β-function appears

λ
d

dλ
γa = βa(~γ), βa = 2γa + λ

d

dλ
Λabγb
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Back to Non-Interacting Example.

In the non-interacting lattice model we had

Qa ∼ ψ†∂2n+1
x ψ.

Under the scaling transformation x → λx

Qa →
1

λ2n+2
Qa, ⇒ Λab =

1

λ2n+2
δab

The beta-function is given by

βa = 2γa + λ
d

dλ
Λabγb = −2nγa

Vadim Cheianov Introduction in Bosonization II
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RG Flows and Fixed Points

The trajectories of the
equation

λ
d

dλ
γa = βa(~γ)

have fixed points in the
space of couplings at
points where

∀a βa(~γ) = 0
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Lyapunov Analysis of the Fixed Point

Let ~γ∗ be some fixed point. Then for a small deviation

δ~γ = ~γ − ~γ∗, λ
d

dλ
δγa = T̂abδγb

The right hand side can be diagonalized

δ~γ = U~g , U−1TU = diag(2− h1, 2− h2, . . . )

In the vicinity of the critical point γ∗ there exists a basis of local
operators which have definite scaling dimensions ha (quasi-primary
fields)

Φa = U−1
ab Qb, Φ̃a(x) = λ−haΦa(λx)
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Stability of the Fixed Point

Write the effective Hamiltonian near γ∗ in terms of quasi-primaries

H∗ = H∗
0 +

∑
a

∫
dxgaΦa(x)

Note that only quasi-primaries consistent with fundamental
symmetries of the system are allowed in this expression!

As we have just seen, for small enough ga

λ
d

dλ
ga = (2− ha)ga

The fixed point is only stable if the dimensions of quasi-primaries
allowed in the Hamiltonian by symmetries satisfy ha > 2.
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Universality Classes

Stable fixed points attract RG flows from some vicinity in the
space of couplings γ. All systems, whose parameters are inside this
vicinity will have the same infrared description given by the fixed
point of the RG flow. Stability of a fixed point is achieved by
removing relevant operators (that is operators of dimension h < 2)
from the theory by either some symmetry or using fine-tuning.

Universality classes are scale-invariant effective field theories, which
do not contain dangerous operators, that is relevant quasiprimary
fields respecting the fundamental symmetries of the system.
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The Luttinger Liquid

The Luttinger Model is a stable fixed point of RG for spinless
fermion systems with conserved particle number and momentum.
The corresponding universality class is called the Luttinger Liquids.

Using bosonization one can derive the complete spectrum of
dimensions of quasiprimaries. The list of dangerous fields is

operator dimension physical meaning

∂xθ 1 current carrying state

∂xφ 1 shift of the chemical potential

ψ†RψL + h.c . = cos(2φ) K < 1 bulk backskattering

Problem

Find missing ”dangerous” fields and explain their meaning.
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Summary

We have found that in interacting quantum systems naiive
scaling of fields does not lead to the right answers

We have reviewed some results from a more rigorous
Renormalization Group approach

We have seen that in the RG theory rescaling generates a flow
of effective Hamiltonians in the space of coupling constants.

We analyzed the fixed points of this flow and derived the
criterion for the fixed point to be a universality class

We have shown that the Luttinger model is a universality class
of clean one-dimensional interacting systems.
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Examples of Physical Systems

Here we shall briefly discuss some known examples of Luttinger
Liquids encountered in condensed matter physics.
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Carbon Nanotubes

R. Egger, A. Bachtold, M.
Fuhrer, M. Bockrath, D.
Cobden, P. McEuen,
cond-mat/0008008

Armchair nanotubes are metallic.
Zig-zag and Chiral can be either
metallic or semiconducting. There
are four conducting channels,
labelled by two projections of spin
and two projections of isospin. Each
conducting channel is a Luttinger
Liquid. There is a density-density
coupling between the channels. The
typical Luttinger parameter is quite
small K ∼ 0.2
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Semiconductor Quantum Wires

O.M. Auslaender et al. , Science
295, 825 (2002)

Good one-dimensional wires
became available with the
cleaved edge overgrouth
technique. Luttinger Liquid
effects have been investigated on
these devices. Previously
Luttinger liquid effects were
observed in V-groove quantum
wires.
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Quantum Hall Edge States

I. Neder, M. Heiblum, Y.
Levinson, D. Mahalu, V.
Umansky, cond-mat/0508024

A single quantum Hall edge is
described by the chiral Luttinger
liquid (which would be a subject
of a separate lecture course).
However, two edges brought
together make a nice Luttinger
Liquid.
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