

Workshop on

ROLE OF PARTITIONING AND TRANSMUTATION IN THE MITIGATION OF THE POTENTIAL ENVIRONMENTAL IMPACTS OF NUCLEAR FUEL CYCLE

20 - 24 November 2006

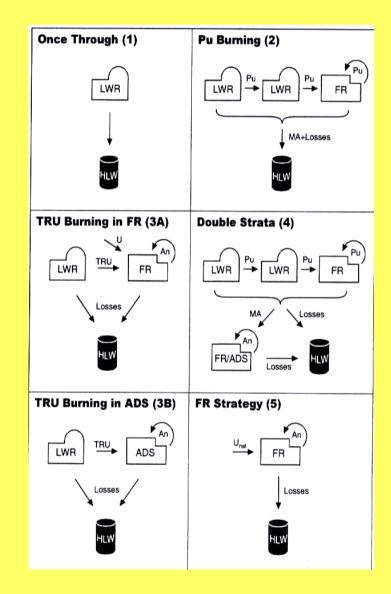
ICTP - Trieste, Italy

1774/2

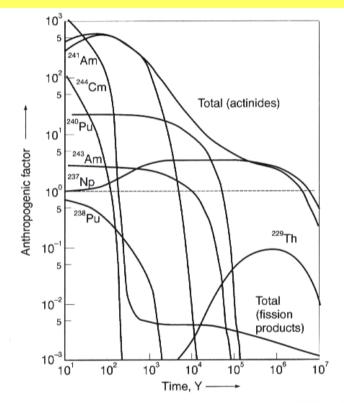
Overview of the P&T Strategies

L. Koch Germany

Overview of the FST Strategies


Lothar Koch

koch.weingarten@t-online.de (Retired Division Head, Nuclear Chemistry Institute for Transuranium Elements, Karlsruhe) Originally, <u>only Pu-</u> recovered from spent LWR fuels- was foreseen to initiate the "U-238 - Pu breeding cycle" in FBR.


For future fuel cycle schemes it is likely, that <u>Pu together with</u> <u>the minor actinides (MA)</u> will be partitioned from spent fuel by pyro- or advanced aqueous reprocessing technology and transmuted.

Nuclear Fuel Cycle Schemes

- Scheme 1 + 2 are present fuel cycles
- Scheme 3(A + B) recycles all An in FR/ADS
- When FR will have replaced LWR economy (Scheme 5), then all self generated An are recycled
- In between Tu might be burned in LWR and FR, while the An are transmuted in dedicated Burners (Scheme 4)

- If the radiotoxicity of the needed U-ore is taken as reference, we have to reduce the An by two orders of magnitude
- Even if the radiotoxicity of f.p. decreases after 200a below that for U-ore, we have to consider that some f.p. may migrate out of the repository

Time-dependence of radiotoxicity in a spent LWR fuel 33 GWd/t normalized to the radiotoxicity of the uranium ore (dashed line) mined to produce the fuel

uates for nuclear	uansmutation
Nuclide	$T_{1/2}$ [a]
14 C	$5.7 \cdot 10^{3}$
³⁶ Cl	$3.0 \cdot 10^{5}$
129 I	$1.6 \cdot 10^{7}$
¹³⁵ Cs	$2.0 \cdot 10^{7}$
⁷⁹ Se	6.5 · 10⁴
⁹³ Zr	$1.5 \cdot 10^{6}$
⁹⁰ Sr	$2.9 \cdot 10^{1}$
¹²¹ Sn	$5.0 \cdot 10^{1}$
¹²⁶ Sn	$1.0 \cdot 10^{5}$
^{137}Cs	$3.0 \cdot 10^{1}$
⁹⁹ Tc	$2.1 \cdot 10^{5}$

List of long-lived radionuclides considered as can dates for nuclear transmutation

List of radiotoxic nuclides				
Yearly uptake of elements [g]	nuclide	T ¹ / ₂ [a]	ALI [Bq]	Isotopic abundance [%]
1.1 E5 1.9 E3 7.3 E-2 3.6 E-3	¹⁴ C ³⁵ Cl ¹²⁹ I ¹³⁵ Cs ⁷⁹ Se ⁹³ Zr ⁹⁰ Sr ¹²¹ Sn ¹²⁶ Sn ¹³⁷ Cs ⁹⁹ Tc ²³⁷ Np ²³⁸ Pu ²³⁹ Pu ²⁴⁰ Pu ²⁴⁰ Pu ²⁴¹ Pu ²⁴² Pu ²⁴¹ Pu ²⁴² Am ²⁴² Am ²⁴² Am ²⁴³ Cm ²⁴³ Cm ²⁴⁴ Cm ²⁴⁵ Cm ²⁴⁶ Cm ²⁴⁷ Cm	5.7 E3 3.0 E5 1.6 E7 20 E6 6.5 E4 1.5 E6 28.5 50 10.5 30.17 21 E5 2.1 E6 87.7 2.4 E4 6.5 E3 14.4 3.7 E5 432 141 7.3 E3 28.5 18.1 8.5 E3 4.7 E3 1.5 E7 3.4 E5	Nuclides w below 100 into stable	t ions with otopic diluent forming no nt ions rith half-lives a decaying

List of radiotoxic nuclides

 $\frac{dN}{dt} = \sum (f\sigma *\phi + z\lambda^*)N * -(\sigma\phi + \lambda)N$

Shows the formation of N from all parent (radioactive) nuclides N^* and its depletion in pile and by decay

The in pile depletion of a nuclide can be expressed as half-life and compared with its natural decay

 $\sigma \phi = \lambda$ ($\lambda = \ln 2/T_{1/2}$), σ is the integral neutron cross section

In a FR the transmutation half-lives, T1/2 of An are between 1 to 4 years, for f.p., however, considerably larger; in case of Tc-99, 10 to 30 years

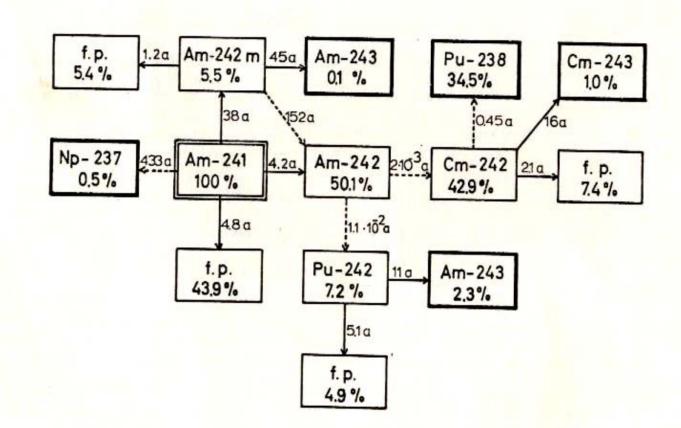
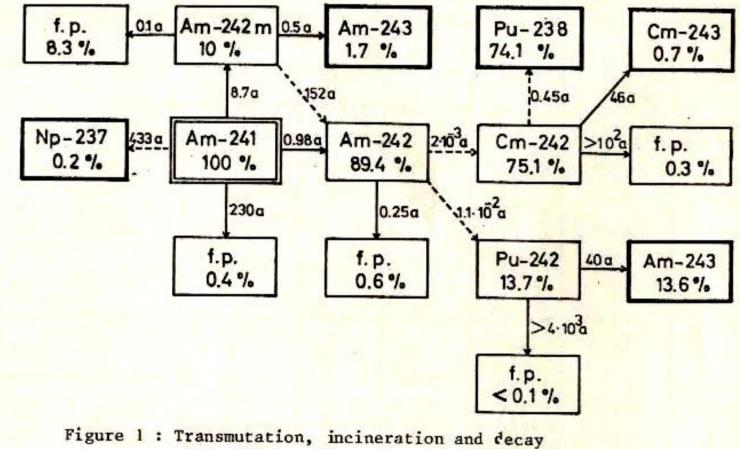
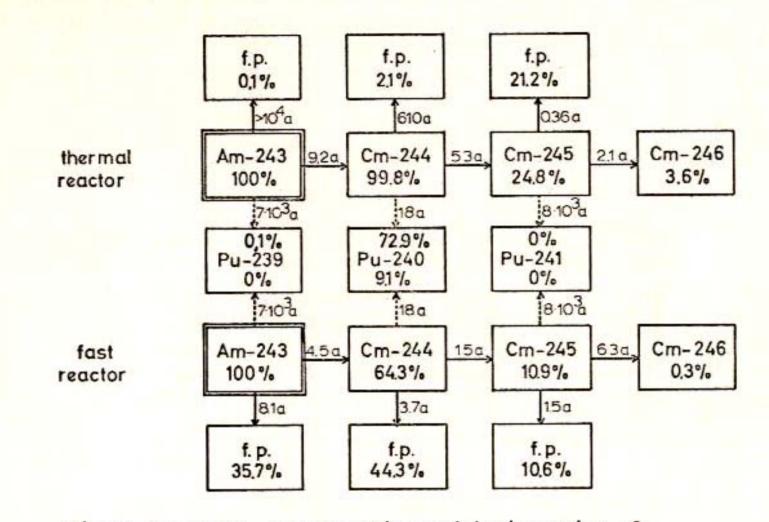
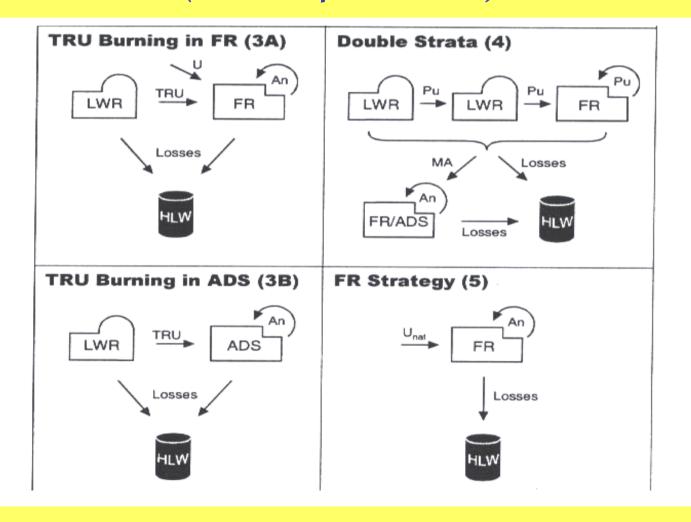
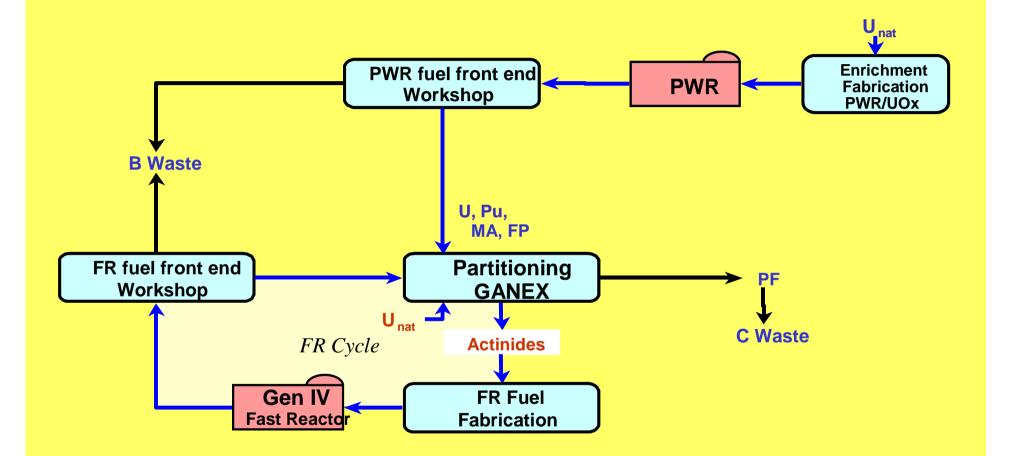



Figure 2 : Transmutation, incineration and decay of Am-241 in a fast reactor neutron flux of 7.10¹⁵n sec⁻¹ cm⁻²

of Am-241 in a thermal neutron flux of 3.10¹³n sec-1 cm-2

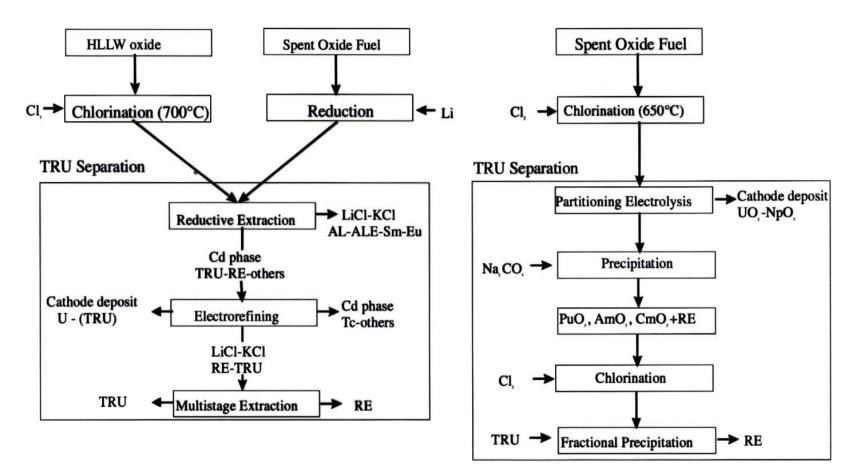
462

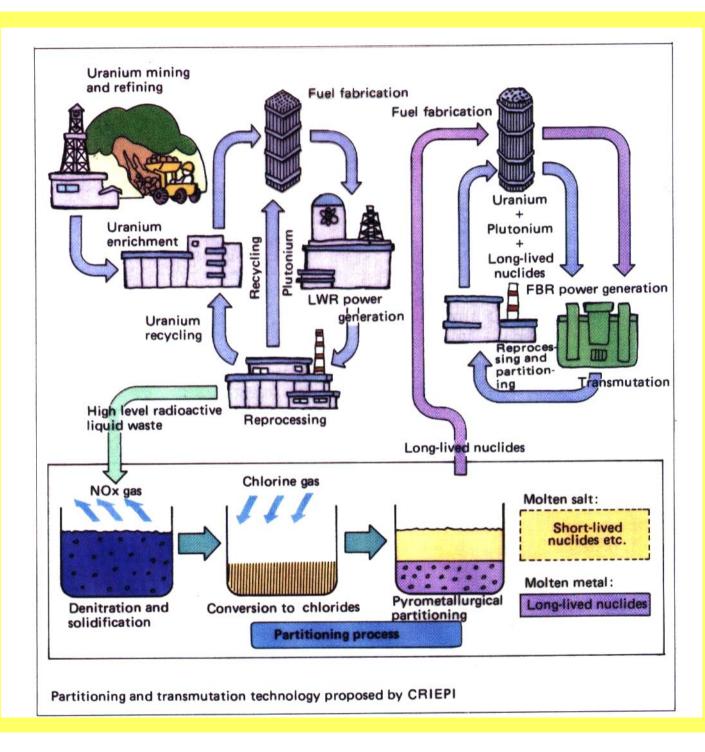



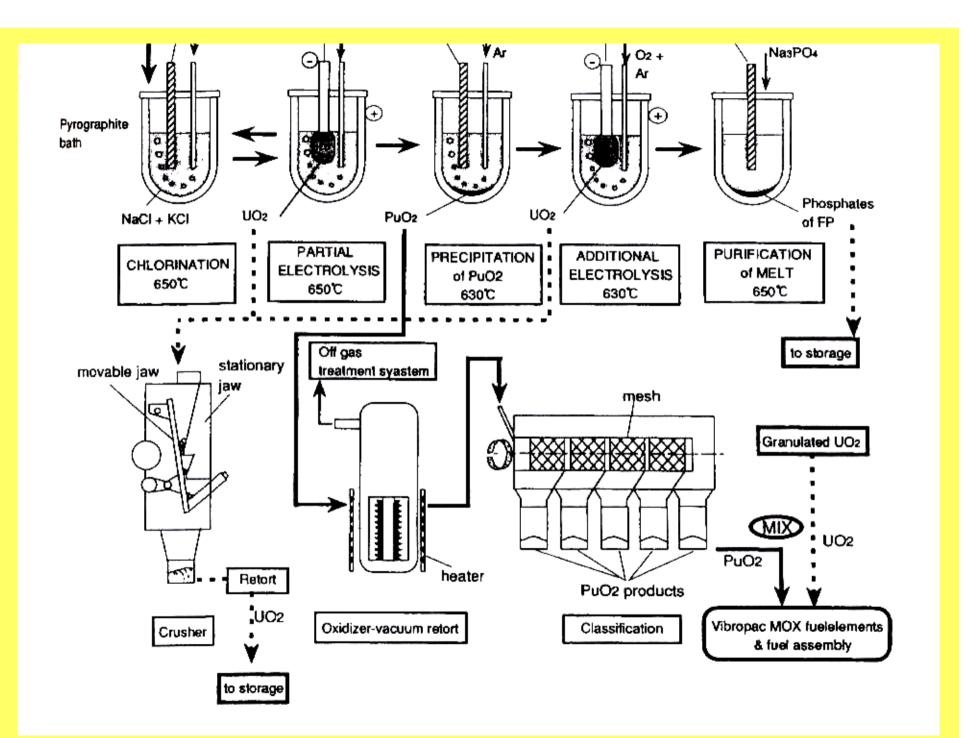

Figure 3 : Decay, transmutation and incineration of Am-243 and Cm-244 in a thermal neutron flux of 3.10¹³n sec⁻¹ cm⁻² and a fast reactor neutron flux of 7.10¹⁵n sec⁻¹ cm

Longlived Radiotoxicity confined in the Nuclear Generating System instead in a Geological Repository

Actinide	Natural Decay [a]	Decay in FR [a]	
²³⁷ Np ²³⁹ Pu ²⁴⁰ Pu ²⁴² Pu	$2 \cdot 10^{6}$ $2 \cdot 10^{4}$ $6 \cdot 10^{3}$	2.5 1.5 3.1	
²⁴² Pu ²⁴³ Am ²⁴⁵ Cm	$4 \cdot 10^5$ 152 $8 \cdot 10^3$	3.4 1.2 1.5	


Institute for Transuranium Elements, Nuclear Chemistry, 07/00, L. Koch, como6.ppt All advanced reactor concepts foresee a separation of long living radiotoxic waste. The group separation of all actinides must be preferred because of proliferation risk (will be explained later)



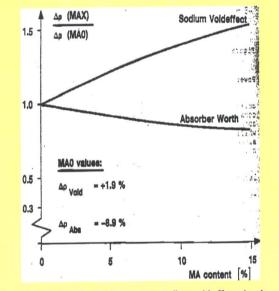

(a) CRIEPI Process: LiCl-KCl, T=450°C

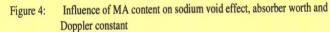
(b) Dovita Process: NaCl-KCl, T=650°C

Institute for Transuranium Elements, Nuclear Chemistry, L. Koch, 10/00, sns.ppt

Fuel Types

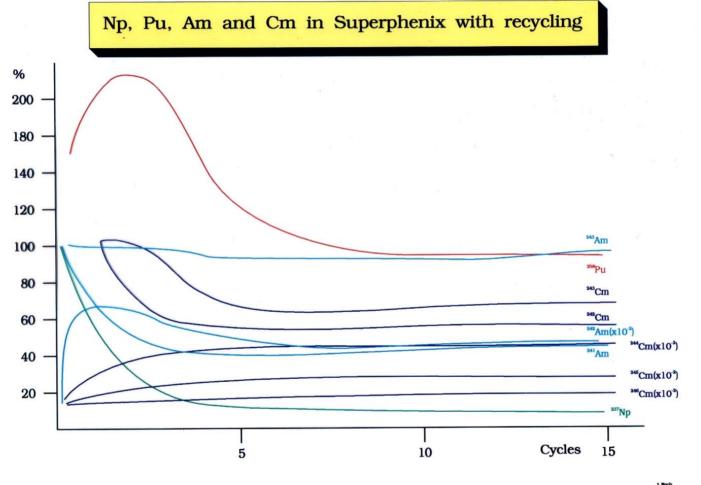
- Oxides Pellets (He bonded)
 Vibro-packed
 Coated particles
- Zr or Mo based alloys
- Nitrides Pellets
- Inert Matrices Pellets
 Oxides of Mg, Be, Al
 Spinel type


no reprocessing intended


no reprocessing intended

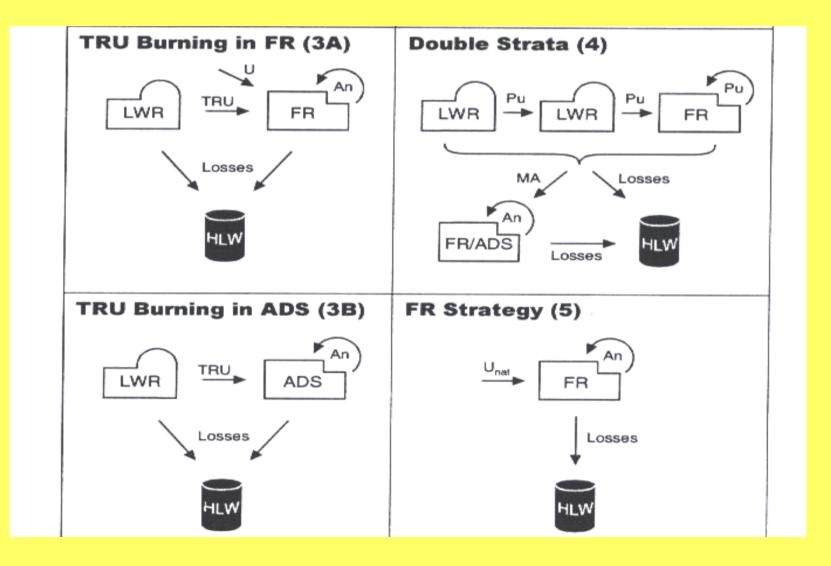
• Cermets

Up to 2.5% MA can be loaded to present FR design; even for flattened cores 5% seems the maximum


- **TPu decrease delayed** neutron fraction
- Due to spectrum hardening void effect increases for MA containing fuels
- If U-238 is substituted by MA, Doppler effect drops

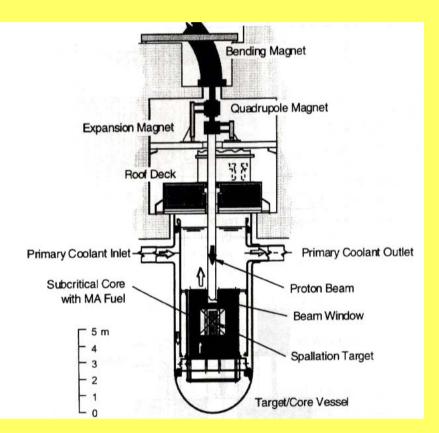
From: W. Balz, L. Koch, W. Löhr, U.K. Wehmann, Core Design and safety aspects of large LMFBRs with minor actinide recycling, Proceed. Int. Fast Reactor Safety Meeting (1990).

> European Institute for Transuranium Elements, Nuclear Chemistry, L. Koch, 10/00, sns2.ppt


L.Boch

$(U_{0.8} Pu_{0.186} Am_{0.007} Cm_{0.006} Np_{0.001}) O_{2-x}$

Fuel composition	(U _{0,74} Pu _{0,24} Np _{0,02})O ₂	(U _{0,74} Pu _{0,24} Am _{0,02})O ₂	(U0,55 Np0,45)O2	(U _{0,6} Np _{0,2} Am _{0,2})O ₂
Percent transmutation				
²³⁷ Np theor./exp. ²⁴¹ Am theor./exp.	24,0/29,0	22,6/24,8	25,4/27,0	27,0/32,0 25,4/27,0
burn-up atom %	6,8	6,8	4,8	4,3
Cladding (PIE)				
$\Delta r/r[\%]$	0.58	0.55	0.84	0.55
Fuel (PIE)				
$\Delta r/r[\%]$	4.1	5.9	4.9	4.3
Fuel restructuring (PIE)				
Zone 1:				
outer ring $[r/r_0]$ Zone 2:	1-0.66	1-0.66	1-0.58	1-0.67
equiaxial grain growth Zone 3:	0.66-0.50	0.55-0.26	0.58-0.22	0.67-0.48
columnar or elongated grain growth Zone 4:	0.50-0.11	0.26-0.00	0.22-0.00	0.48-0.11
central void	0.11-0.00			0.11-0.00


Fuel composition	(U _{0,74} Pu _{0,24} Np _{0,02})O ₂	(U0,74 Pu0,24 Am0,02)O2	(U _{0,55} Np _{0,45})O ₂	(U0,6 Np0,2 Am0,2)O2
Fabrication	400°C/2 h argon	400°C/2 h argon	400°C/1 h argon	400°C/1 h argon
drying of kemels	400°C/2 h air	400°C/2 h air	400°C/4 h air	400°C/4 h air
calcination	850°C/2 h air	900°C/4 h air	865°C/3 h air	900°C/h air
	850°C/2 h Ar 5% H ₂	1050°C/2 h Ar 5% H ₂	865°C/4 h Ar 5% H ₂	900°C/3 h Ar 5% H ₂
pellet pressing	$5,1 - 6,4 \text{ t/cm}^2$	$4,4 - 5,6 t/cm^2$	$6,1 \text{ t/cm}^2$	$6,1 \text{ t/cm}^2$
green density	58,6 % TD	58,0 % TD	55,6 % TD	56,4 % TD
sintering	1620°C/6h Ar 5% H ₂	1620°C/6h Ar 5% H ₂	1620°C/6h Ar 5% H ₂	1620°C/6h Ar 5% H ₂
Fuel				
diameter of pellet	$5,363 \pm 0,052 \text{ mm}$	$5,417 \pm 0,029 \text{ mm}$	5,418 ± 0,037 mm	$5,434 \pm 0,013 \text{ mm}$
height of pellet	7,119 mm	7,392 mm	7,102 mm	7,372 mm
density of pellet	$97.5 \pm 0.8 \% d^{th}$	$96.8 \pm 0.7 \% d^{th}$	$95.1 \pm 0.6 \% d^{th}$	$95.9 \pm 10 \% d^{th}$
O/M-ratio	1,973	1,957	1,996	1.926
crystal parameters	5,4578 ± 5 Å	5,4570 ± 5 Å	5,4545 ± 5 Å	5,4737 ± 5 Å
Doserate fresh fuel				
γ doserate meas.	$7 \cdot 10^{-3}$ mSv/h	0,04 mSv/h	< 0,01 mSv/h	0,26 mSv/h
Y doserate pred.	8-10 ⁻³ mSv/h	0,06 mSv/h	$2 \cdot 10^{-4} \text{ mSv/h}$	0,26 mSv/h
n doserate pred.	$2 \cdot 10^{-4} \text{ mSv/h}$	$2 \cdot 10^{-4} \text{ mSv/h}$	10^{-7} mSv/h	3.10^{-4} mSv/h
Doserate spent fuel				
(cooling 5a)				
Y doserate meas.	270 mSv/h	250 mSv/h	150 mSv/h	150 mSv/h
γ doserate pred.	300 mSv/h	300 mSv/h	100 mSv/h	100 mSv/h
n doserate meas.	0.04 mSv/h	0,04 mSv/h	0,04 mSv/h	0,09 mSv/h
n doserate pred.	0.02 mSv/h	0,02 mSv/h	0,03 mSv/h	0,06 mSv/h
Pin: length, diameter,	1793 mm	6.55 mm		
fuel stack			400 mm	

In some advanced reactor strategies the Accelerator Driven Systems, ADS are foreseen

Scheme of an accelerator driven reactor for transmutation of radiotoxic nuclear waste

- A proton-accelerated up to GeV- produces about 30 neutrons in a Tb-Bi target
- The spallation neutrons start a subcritical reactor
- No limitation on MA loading like in FR
- Some strategies foresee only TPu transmutation
- U free fuel to avoid Tu built-up

