

Workshop on

ROLE OF PARTITIONING AND TRANSMUTATION IN THE MITIGATION OF THE POTENTIAL ENVIRONMENTAL IMPACTS OF NUCLEAR FUEL CYCLE

20 - 24 November 2006

ICTP - Trieste, Italy

1774/13

Conventional and Advance Fuels for Nuclear Power Reactors

C. Ganguly IAEA Vienna

ICTP Workshop

ROLE OF PARTITIONING AND TRANSMUTATION IN THE MITIGATION OF THE POTENTIAL ENVIRONMENTAL IMPACTS OF NUCLEAR FUEL CYCLE

Trieste, 20 - 24 November , 2006

Conventional and Advance Fuels for Nuclear Power Reactors

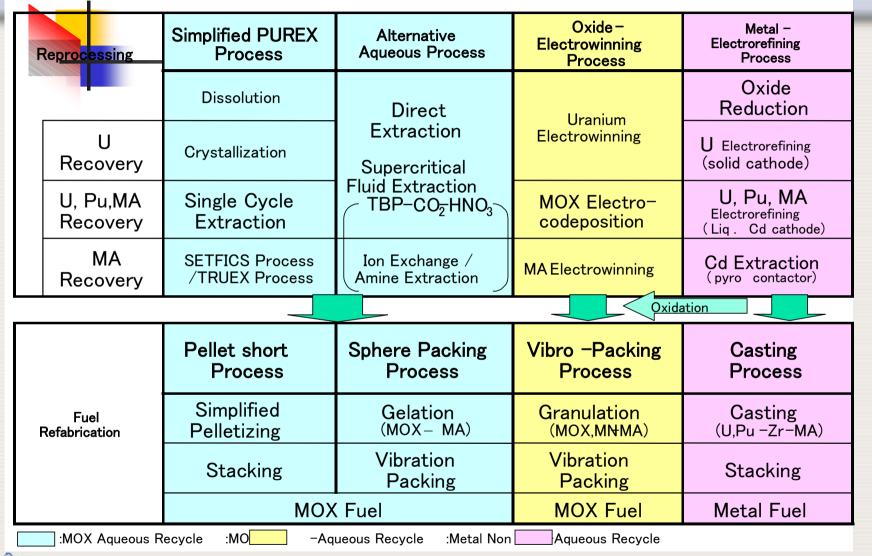
Chaitanyamoy GANGULY Head, Nuclear Fuel Cycle & Materials Section

Conventional & Advanced Fuels For Nuclear Power Reactors

Reactors	Conventional Fuels	Advanced/Alternative Fuels
Light Water Reactor (LWR): BWR, PWR & VVER		
Fuel (pellets)	LEU(U-235 ≤ 5%) as UO2	LEU (U-235 5-10%) Mixed Uranium Plutonium Oxide (≤10% PuO2) [LEU+Minor Actinide (MA)] oxide for large grain size and controlled porosity 'Proliferation Resistant' spent fuel PuO2 in Inert Matrix for burning 'Pu'
Cladding	Zircaloy 2 (BWR) Zircaloy 4 (PWR) Zr-1% Nb (VVER)	Zr-Sn-Nb-Fe & Zr-Nb-O alloys
Burning up	20 000-30 000 MWD/t	High : up to 60 000 MWD/t Ultra High : up to 80 000 MWD/t
Pressurized Heavy Water Reactor (PHWR)		
Fuel (pellets)	Natural UO2	REU, SEU in the form of UO2, (U,Pu)O2 (Th,Pu)O2 & (Th,U233)O2, containing up to 2% fissile material. Large grain size and controlled porosity PuO2 in Inert Matrix for burning 'Pu'
Cladding	Zircaloy 4	Zircaloy 4
Burnup	6 700 MWD/t	15 000 – 20 000 MWD/t

Conventional & Advanced Fuels For Nuclear Power Reactors

Liquid Metal-cooled Fast Breeder Reactor (LMFBR)		
Fuel (pellets/particles/pins)	HEU in the form of UO2 & (U,Pu)O2 (≤25% Pu) He-bonded pins	Na-bonded (U,Pu)C, (U,Pu)N & U-Pu-Zr, (≤25% Pu) fuel with/without MA He-bonding also for carbide/nitride (PuO2+ThO2) for burning 'Pu' He-bonded vibratory compacted oxide, carbide and nitride fuel pins 'Pu and (Pu,MA) in inert matrix for burning (U/Th+MA) in blanket for 'Proliferation Resistance" in irradiated blanket
Cladding	Stainless Steel D-9	Stainless steel (type ferritic HT-9 or Oxide dispersed ODS)
Burnup	100 000 MVVD/t	Up to 200 000 MVVD/t >1.00 up to 1.5
Breeding ratio	1.0-1.2	1.2–1.6
High Temperature Gas Cooled Reactors (HTR) (coated microspheres)	Multi-layer (pyrolytical carbon & SiC-coated) Uranium Oxide fuel particles (BISO or TRISO) embedded in graphite	Mutti-layer (pyrolytical carbon& ZrC coated) Uranium Oxide, Mixed Uranium Plutonium Oxide, Mixed Uranium Thorium Dicarbide, embedded in graphite


Fast Reactors in the world and their driver fuels ←

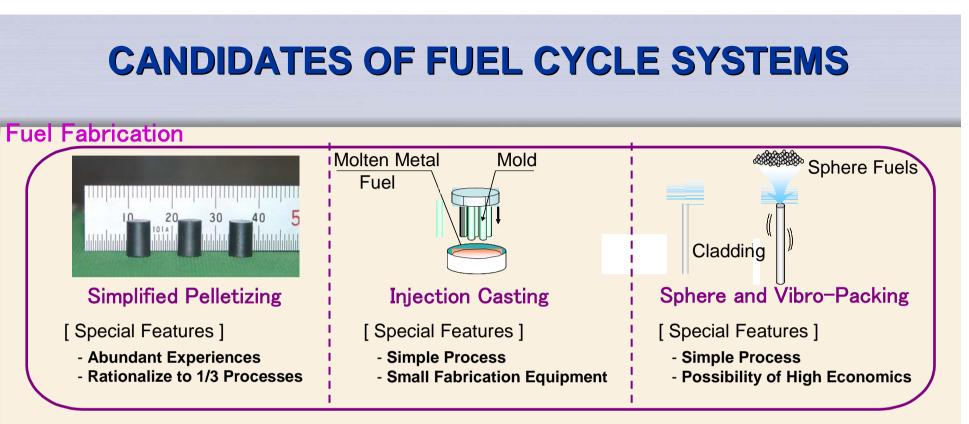
Country	Name₽	Туре₽	Power	Driver Fuel@
United	DFR+'	Experimental₽	Ŧ	U-Mo(HEU)+
Kingdom₽	PFR₽	Prototype 🕫	250 <u>MWe</u> ₽	(U, Pu)O2+2
Germany₽	KNK-II₽	Experimental+	Ŧ	(U, Pu)O₂ (HEU) ↓
	SNR-300+	Prototype +	300 <u>MWe</u> ₽	(U, Pu)O2+
		(not operated)₽		
India₽	FBTR+′	Experimental₽	40 <u>MW</u> t+	(Pu _{0.7} , U _{0.3})C+
	PFBR₽	Prototype₽	500 <u>MWe</u> ₽	(U, Py) O2+
China₽	CEFR₽	CEFR +	e.	(U, Pu)O₂ (HEU)₽
		(under construction)+		
Korea	KALIMER#	Demonstration +	e.	(U, Pu)O₂(HEU)₽
(Republic of)€		(under construction)₽		
Russia₽	BR-5/BR-10+	Experimental+	5/10 MWt+	PuO2/UC/UN+
e.	BOR-60+	Experimental +	60 <u>MWt</u> +	UO2 (HEU) +
	BN-600₽	Commercial₽	600 <u>MWe</u> +	UO_2 (HEU) \downarrow
	BN-350 (Kazakhstan)+	Prototype +	350 <u>MWe</u> ↓	UO2 (HEU) +
	BN-800#	Planned₽	800 <u>MWe</u> ₽	UO2/(U.Pu)O2+
USA₽	EBR-1, EBR-II, 🛩	Experimental+	+	U-Fs & U- <u>Pu-Zr</u> ∔
	FFTF₽	Experimental+	<i>₽</i>	(U, Pu)O2+
France	Rapsodie+ ^j	Experimental+	Ŧ	(U, Pu)O₂ (HEU) ↓
	Phenix+	Prototype≁	250 <u>MWe</u> ↓	(U, Pu)O _{2↓}
	SuperPhenix-I₽	Commercial	1200 <u>MWe</u> ₽	(U, Py)O2+
		(shutdown)₽		
Japan₽	JOYO₽	Experimental+	÷	(U, Pu)O₂ (HEU) ↓
	Monju₽	Prototype 🕫	230 MWe₽	(U.Pu)O2+

FUTURE CHALLENGES – FUEL MATERIALS

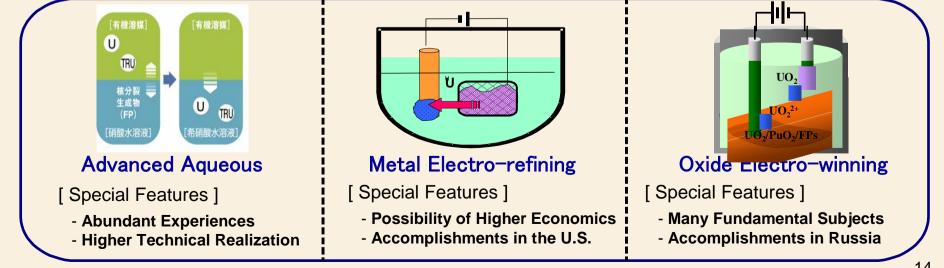
Properties	(U _{0.8} Pu _{0.2})O ₂	(U _{0.8} Pu _{0.2})C	(U _{0.8} Pu _{0.2})N	U-19Pu-10Zr
Theoretical Density g/cc	11.04	13.58	14.32	15.73
Melting point ^o K	3083	2750	3070	1400
Thermal conductivity				
(W/m ºK) 1000 K	2.6	18.8	15.8	40
2000 K	2.4	21.2	20.1	
Crystal structure	Fluorite	NaCl	NaCl	γ
Breeding ratio	1.1 - 1.15	1.2 – 1.25	1.2 - 1.25	1.35 - 1.4
Swelling	Moderate	High	High (?)	High
Handling	Easy	pyrophoric	Inert atmos	Inert atmos
Compatibility - clad	average	Carburisation	good	eutectics
coolant	average	good	good	good
Dissolution & reprocessing	Good	Demonstrated	risk of C ¹⁴	Pyro- reprocessing
amenability				. 5
Fabrication/Irradiation	Large	limited	very little	limited
experience	Good			

Innovative Back-end Technology of Fuel Cycle – Developments in Japan

SUMMARY OF IAEA CONSULTANCY MEETING (Dec. 2004) ON LIQUID METAL-COOLED FAST REACTOR (LMFR) FUEL CYCLE

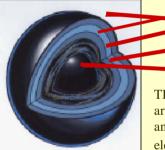

Russian Federation PYROCHEMICAL REPROCESSING

Basic research of the molten salt systems allowed for the development of technological processes for production of granulated uranium and plutonium oxides and mixed uranium and plutonium oxides. A distinctive feature of the pyrochemical technology is a possibility to perform all deposit production operations in one facility – a chlorinator-electrolyzer


PROCESS STEPS

- Dissolution of initial products or spent nuclear fuel in molten salts
- Recovery of crystal plutonium dioxide or electrolytic plutonium and uranium dioxides from the melt
- Processing of the cathode deposit and production of granulated fuel

Reprocessing



FUEL FORMS B: Coated Fuel Particles

1. Coated fuel particles for HTGR

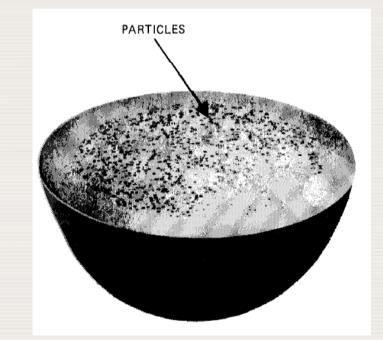
Prismatic block

US, Japan, Russia and France

Pyrolytic Carbon Silicon Carbide Porous Carbon Buffer UCO Kernel TRISO Coated fuel particles (left) are formed into fuel rods (center) and inserted into graphite fuel elements (right)

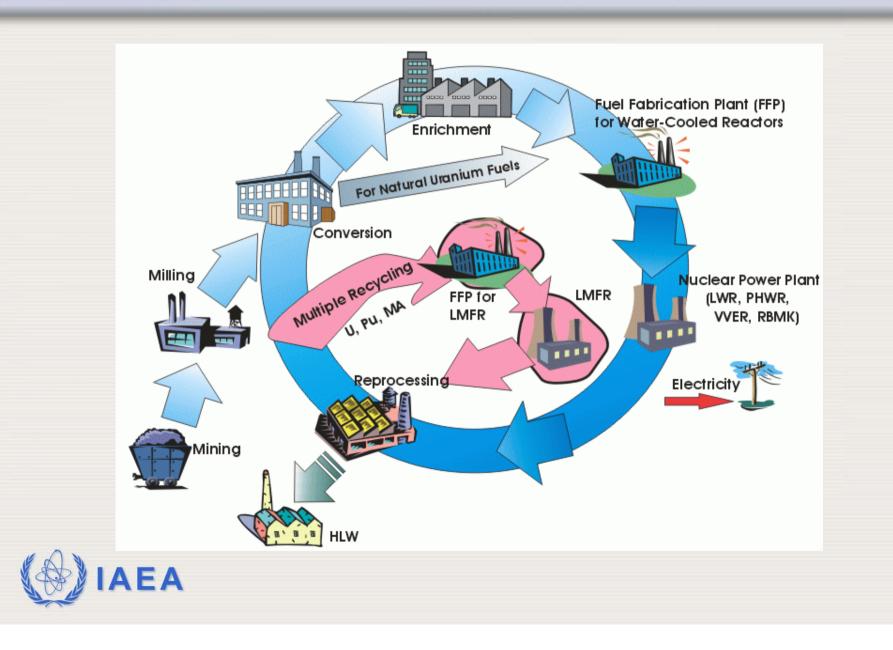
COATED RTICLES

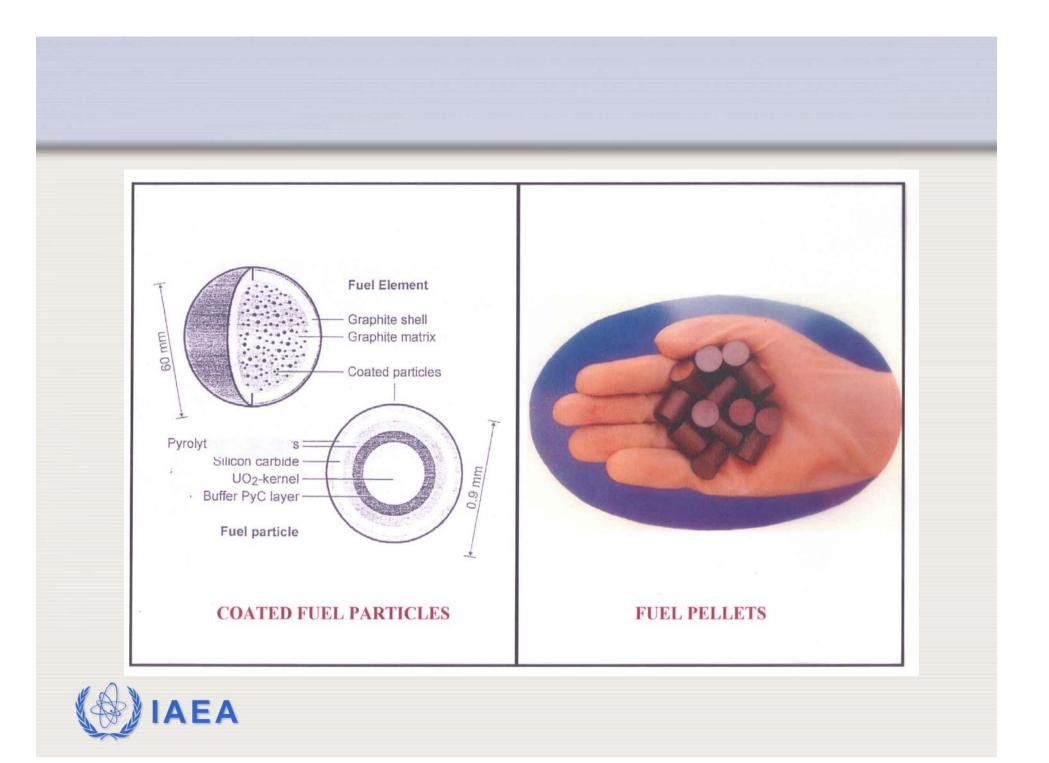
- FUEL ELEMENTS
- 2. Fuel particles (dry or wet route) for vibratory compacted fuel pins


Pebble Bed coated particle fuels embedded in spherical shape Germany, South Africa, China

Pebble fuel element Pebble has diameter of 60 mm

> Triso coated particle


In helium cooled "pebble bed reactors", fuel particles are contained in graphite pebbles (d= 6 cm)



- ~ 15000 coated fuel particles / pebble
- ~ 800,000 pebbles / core (~ 1/3 without fuel) for a 165 MWe reactor
- on-line re-fueling

Liquid Metal-cooled Fast Reactor Fuel Cycle with multiple recycling of U, Pu and Minor Actinides

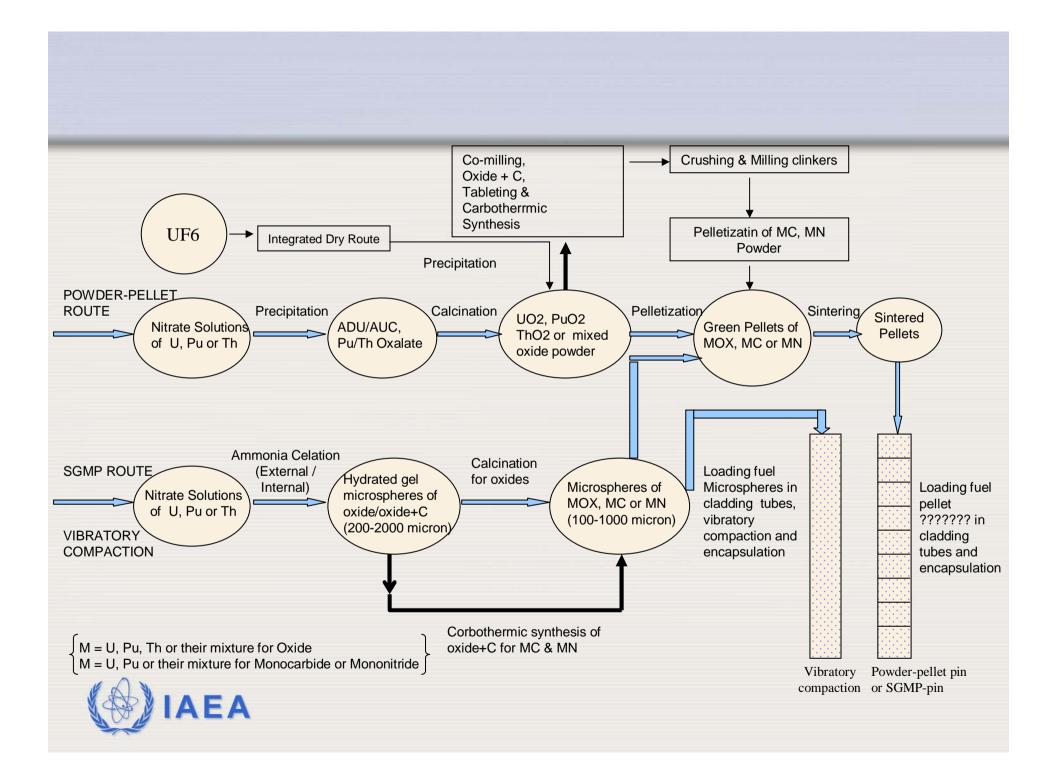
COMMERCIAL SPENT URANIUM OXIDE FUEL REPROCESSING PLANTS IN OPERATION AND UNDER CONSTRUCTION IN THE WORLD

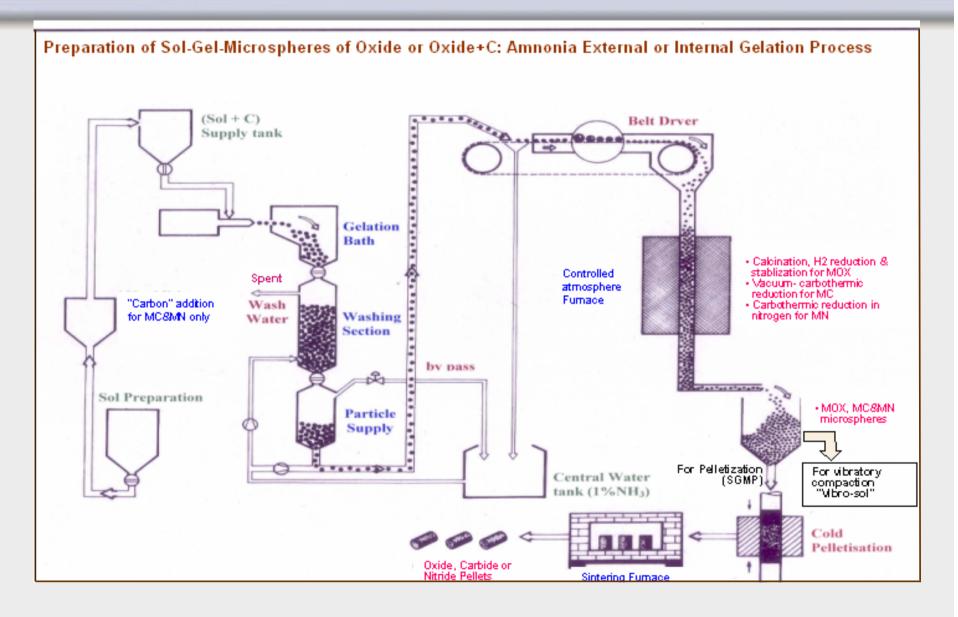
Country / Company	Facility / Location	Fuel Type	Capacity (tHM/year)
France, COGEMA	UP2 and UP3, La Hague	LWR	1700
UK, BNFL	Thorp, Sellafield	LWR, AGR	1200
UK, BNFL	B205 Magnox	Magnox GCR	1500
Russian Federation, Minatom	RT-1 / Tcheliabinsk-65 Mayak 400	VVER	400
Japan, JNC	Tokai-Mura	LWR, ATR	90
Japan, JNFL	Rokkasho-Mura (under construction)	LWR	800
India, BARC	PREFRE-1, Tarapur PREFRE-2, Kalpakkam	PHWR PHWR	100 100
China, CNNC	Diowopu (Ganzu)	LWR	25-50

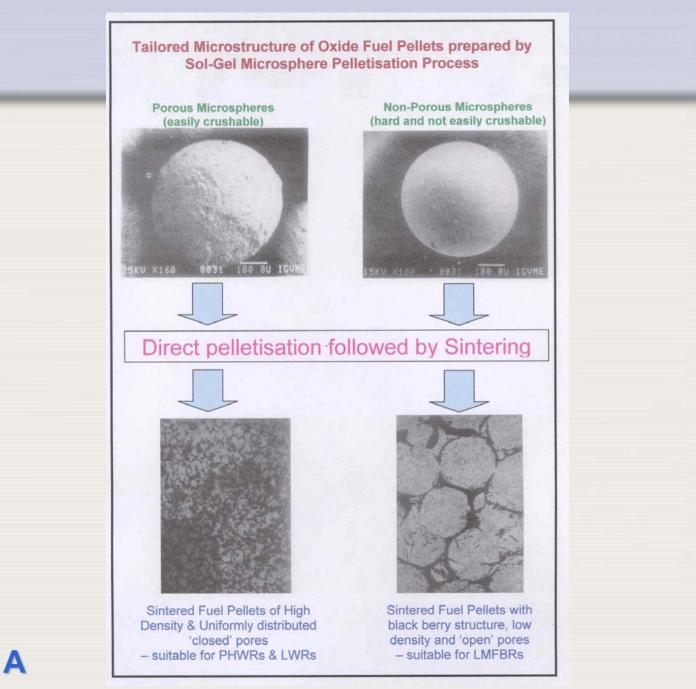
MIXED URANIUM PLUTONIUM OXIDE (MOX) FUEL FABRICATION FACILITIES

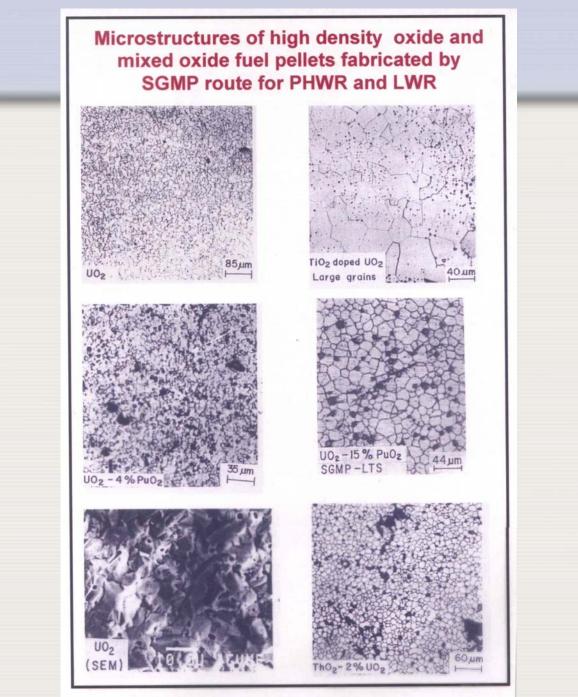
			Capacity
Country / Company	Facility / Location	Fuel Type	(tHM/year)
France, COGEMA	Cadarache	LWR, FBR	40
France, COGEMA	Marcoule-Melox	LWR	100
Belgium, Belgonucleaire	Dessel	LWR	40
UK, BNFL	Sellafield SMP	LWR	120
UK	Sellafied MDF	LWR	8
Russian Federation, Minatom	Chelyabinsk	FBR	60
Japan, JNC	Tokai-Mura	ATR	10
Japan, JNFL	Rokkasho	LWR	130
India, AFFF, BARC	Tarapur	LWR, PHWR & FBR	

R&D on Advanced LMFR Fuels and Advanced Methods of Fuel Fabrication


- Ceramic Nuclear Fuels
 Conventional: (U, Pu)O₂
 Advanced: (U, Pu)C & (U, Pu)N with/without Minor Actinides
- Advanced methods of fabrication of ceramic fuels: Dust-free advanced fabrication processes like vibratory compaction, vibro-sol & sol-gel microsphere pelletization
- Metallic Fuels:
 U-Pu-Zr, Th-U-Pu-Zr & U-Pu (for high breeding)
- Fuel Cladding, Hexcans & Other Fuel Assembly components: Ferritic stainless steel HT9 & Oxide dispersed stainless steel with minimum radiation damage and void swelling
- Advanced fabrication processes should be amenable to secured automated fabrication, real-time accounting of special nuclear material and proliferation resistance

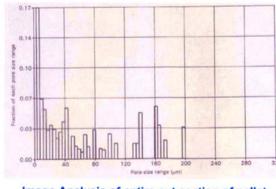

Objectives of advanced methods of fabrication of ceramic nuclear fuel pellets


Safety	Economics	Performance
• Avoid generation and handling of powder of fuels	Minimise process steps	Tailor make fuel microstructure for higher burn up
for minimising :	Reduce fuel synthesis & sintering temperatures	- High density (≥96% T.D.), closed
 radiotoxic dust hazard fire hazard (for carbide & 	Reduce gas cost during synthesis and sintering	"porosity" and large (>25µ) grain size for LWR & PHWR
nitride fuels)	- gas purification and recirculation	- Low density (<85% T.D.) "open" porosity and small (<5µ) grain size
• Fabrication flow sheet should be amenable to automation & remotisation	- alternative less expensive gas	for LMFBR - Excellent micro-homogenity of
- for minimising personnel	Reduce process losses and rejects	fissile material in fuel
exposure to radiation		 avoid fine pores (<1µ) for minimising in-pile densification



"Sol-Gel-Microsphere Pelletization (SGMP)" and "Vibro-Sol" Processes for Manufacturing Mixed Uranium Plutonium Oxide (MOX), Monocarbide (MC) and Mononitride (MN) Fuels for LMFR

Microstructure & Image Analysis of ThO₂-2%UO₂ prepared by Sol-Gel Microsphere Pelletisation (SGMP) Process


25 kV 120× 0031 100.0 μm Porous Microsphere (SEM Picture)


As-Polished Microstructure

OBJECTIVES OF INERT MATRIX FUEL

- Minimizing "proliferation risk" of plutonium (~ 200 tons of weapon-grade and ~ 1000 tons civilian grade) by using them in nuclear power reactors in operation
- Minimizing "Minor Actinides" (MA: Np, Am & Cm) and in turn radiotoxicity in waste
- In some cases minimizing 'proliferation risk' of weapon-grade (> 90 % ²³⁵U) uranium (though conventional process is down-blending)

Inert Matrix

- Neutron (very low capture and absorption cross-sections)
- Chemical compatibility with
 - \rightarrow Fuel
 - \rightarrow Cladding
 - \rightarrow Coolant
- Consideration of direct disposal after use

Fuel

- 'Plutonium form' alloys and compounds
- Utilization of Minor Actinides together with plutonium
- Weapon-grade HEU (²³⁵U > 90 %) –alloys or compounds

EXAMPLES OF INERT MATRIX

Inert Matrix type Element **Inter-metallics** Alloy Carbide **Nitrides Binary oxide Ternary oxide Oxide solid solution**

Inert Matrix formula C, Mg, AI, Si, Cr,V, Zr, Mo, W AlSi, AlZr, ZrSi Stainless steel, zirconium alloys SiC, TiC, ZrC AIN, TiN, ZrN, CeN, MgO, Y₂O₃, ZrO₂, CeO₂ MgAl₂O₄, Y₃Al₅O₁₂, ZrSiO₄ $Y_{v}Zr_{1-v}O_{2-v/2}, Mg_{(1-x)}Al_{(2+x)}O_{(4-x)}$

Conventional and Advanced Methods of Spent Fuel Reprocessing

AQUEOUS PROCESS :

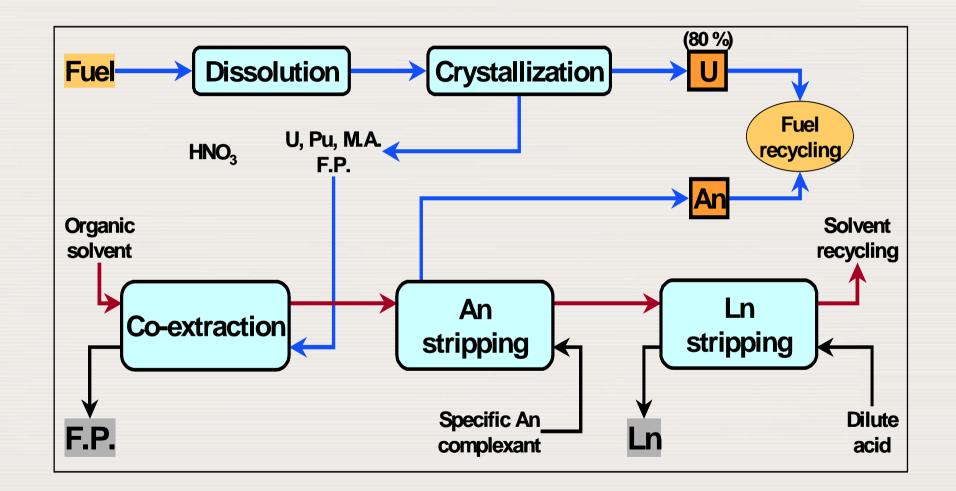
Dissolution of spent fuel in Nitric acid followed by purification by solvent extraction by adapting the PUREX process, using TriButyl Phosphate (TBP) as solvent, is being used on an industrial scale for reprocessing of spent UO2 and MOX fuels. The PUREX process is not suitable for mixed carbide fuel but could be utilized for reprocessing mixed nitride and metallic fuels.

Modifications are being incorporated in PUREX process to make it proliferation resistant and economic.

PYROPROCESSING:

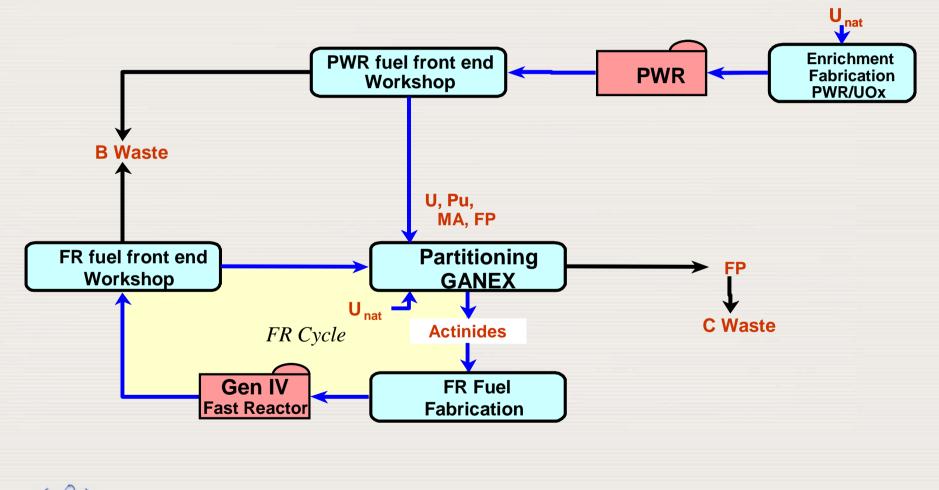
- Pyroprocessing involving electrolytic reduction

This route has been initially developed on a pilot plant scale for reprocessing of spent metallic fuels (U-Zr & U-Pu-Zr) in USA and was successfully extended on a laboratory scale for reprocessing of carbide and nitride fuels. The pyroprocessing route is yet to be adapted on an industrial scale.

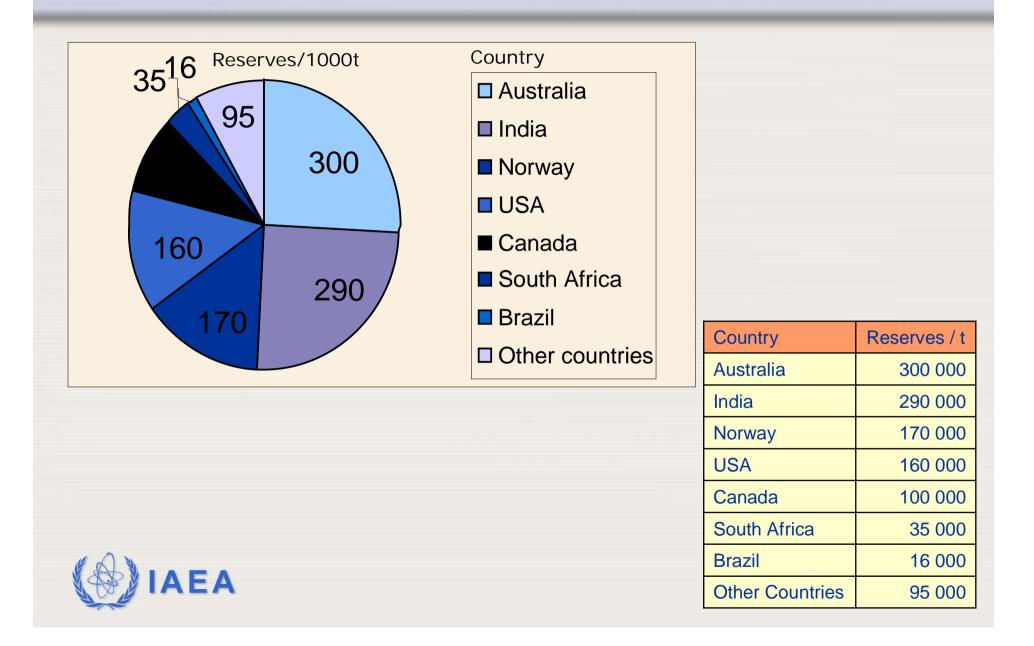

In recent years, the Russian Federation has successfully demonstrated the pyroprocessing route for reprocessing of spent oxide fuels on a pilot plant scale.

- Pryoprocessing involving fluoride volatilization

The process includes fluorination followed by distillation. The method has so far been demonstrated on a laboratory scale only.



The GANEX concept : <u>Group ActiNides EXtraction</u>



Modular CEA design of a next generation spent fuel treatment Grouped actinides extraction (GANEX) (M. Delpech et al., CEA)

World Thorium Resources - economically extractable

