

Workshop on

ROLE OF PARTITIONING AND TRANSMUTATION IN THE MITIGATION OF THE POTENTIAL ENVIRONMENTAL IMPACTS OF NUCLEAR FUEL CYCLE

20 - 24 November 2006

ICTP - Trieste, Italy

1774/9

Introduction to the Workshop

H. P. Nawada IAEA Vienna

Outline	
 Background 	
 Objectives of the Workshop 	
■Nuclear energy	
Partitioning and Transmutation	
 Fuel cycles options 	
 Partitioning methods, Aqueous and non-aqueous 	
 Proliferation resistance 	
 Advanced fuels 	
 Transmutation concepts, Gen-IV 	
 Environmental impact, HLLW, Repository 	
20-24 Nov 2006, ICTP	2

								_
Radionuclide	T _{1/2} (y)	Sv	Radionuclide	T _{1/2} (y)	Sv	Radionuclide	T _{1/2} (y)	Sv
Hydrogen-3	12.3	7.99E+01	Antimony-125	2.77	1.06E+03	Uranium-236	2.34E+07	2.43E+02
Carbon-14	5.73E+03	1.42E+01	Tin-126	1.00E+05	7.83E+01	Uranium-238	4.47E+09	2.33E+02
Chlorine-36	3.01E+05	1.89E-01	lodine-129	1.57E+07	7.33E+01	Neptunium-237	2.14E+06	9.77E+02
Iron-55	2.7	4.15E+01	Cesium-134	2.06	3.09E+04	Plutonium-238	87.7	1.62E+0
Cobalt-60	5.27	2.77E+04	Cesium-135	2.30E+06	2.00E+01	Plutonium-239	2.41E+04	1.67E+0
Nickel-59	7.50E+04	3.03E+00	Cesium-137	30	1.64E+07	Plutonium-240	6.54E+03	2.59E+0
Nickel-63	96	1.05E+03	Promethium-147	2.62	1.25E+03	Plutonium-241	14.4	4.26E+0
		-	Samarium-151	90	6.89E+02	Plutonium-242	3.76E+05	8.88E+0
Selenium-79	6.50E4	2.47E+01	Europium-154	8.8	7.10E+04	Americium-241	432	1.18E+0
Strontium-90	29.1	2.38E+07	Europium-155	4.96	1.30E+04	Americium-242m	152	7.73E+04
Zirconium-93	1.53E+06	4.88E+01	Actinium-227	21.8	2.97E-01	Americium-243	7.38E+03	1.04E+0
Niobium-93m	13.6	3.60E+00	Thorium-230	7.70E+04	1.09E+00	Curium-242	0.447	4.04E+03
Niobium-94	2.03E+04	3.77E+01	Protactinium-231	3.27E+04	4.20E-01	Curium-243	28.5	5.38E+04
Technetium-99	2.13E+05	1.73E+02	Uranium-232	72	2.56E+02	Curium-244	18.1	4.00E+06
Ruthenium-106	1.01	8.55E+00	Uranium-233	1.58E+05	5.85E-02	Curium-245	8.50E+03	1.63E+0
Palladium-107	6.50E+06	9.04E-02	Uranium-234	2.44E+05	1.18E+03	Curium-246	4.73E+03	3.65E+02
Cadmium-113m	13.6	9.36E+03	Uranium-235	7.04E+08	1.39E+01			

			14			
Sociator Folizina	l egialativa Ténit	Picisting License Completion	Holonslad Likaatose Qampielikat	Coellaving Toxel Hnangy Generation	Dentilsving Markøt Skare Generation	Shewing Markat Sher Generation
Comelative Spani Feal In 2100 (VIIIHIA)	350,538	85,300	118,000	240,000	800,903	1,809,036
			Number of Re-	acalterica Neci	lead	
Sunant Narragom ont Appresen		2	2	4	18	20
19 % Not Efficiency representant		2	2	4	9	18
Capeno Repeationy Sape city		1	2	3	â	13
Efficiency Improvementa - • Capacity Improvementa		1	~1	~2	~5	11
Separation of Hu, minor actinidual Longon ccolling		1	1	1	2	-4
Separation of Pa, million actividue. Cal pressor		1	1	1	1	1

COUNTRY	FACILITY	OPERATION (Year)	CAPACITY (Fuel Type)
France	Marcoule (UP1) La Hague (UP2/3)	1958 -1985 1967/1990~	400 (GCR):decom 1600 (LWR)
Germany	WAK	1971 -1990	30 (LWR);decom
Japan	Tokai-Mura Rokkasho-Mura	1977 ~ 2006 ~	<u>90 (LWR)</u> 800 (LWR)
Russia	Chelyabinsk Krasnoyarsk	1971 ~ 2020 ~	400 (VVER-440) 1500 (VVER-1000)
UK	B205 THORP	1967~ 1994 ~	<u>1500 (GCR)</u> 900 (LWR)
USA	NFS West Valley	1966 -1972	194(LWR):decom
EURATOM	Mol	1966 -1975	105 (GCR+LWR):decom
India	Tarapur / Kalpakkam	1977~	~200 (PHWR)

Cycle	Total Nuclear Security Measure
Once-Through PWR Cyc	le 0.657
LWR MOX w/ PUREX	0.641
LWR MOX w/ UREX	0.644
Inert Matrix Fuel w/ URE	X 0.746
UREX with Np Doping	0.664
UREX with Np and Am Do	ping 0.665

Г

Congruency in different	partitioning methods
Aqueous method	Pyro-chemical method
Very high throughputs	Short-cooled fuels with with large MAs-content
Industrial maturity	Compact and integrated processing facility with reactor
	Less criticality concerns
	Intrinisic proliferation-resistant attributes
	Very small volumes of the wastes
	Minimum TRU-losses.
Required for large volumes of spent fuel from LWRs	Meets the needs of TRU-Burner & ADS
	20– 24 Nov 2006, ICTP 30

	Metal Electro- refining	Oxide Electro- winning	Chloride / fluoride volatility	Nitride electro- refining	Pyro for HLLW	Novel and auxiliary methods
1. Fuel form	Zr-based actinide alloys	Mixed actinide oxides	ADS targets & TRISO fuel	Actinide nitride	Link from aqueous methods	Plasma process Li reduction
2. MA loading	Single step Fuel fabrication	Different steps		High MA Ioading		
3. Scale	Semi-plant	Semi plant	Laboratory	Laboratory	Laboratory	Laboratory
4. Some of the interested Member States	USA, Japan, EU, Korea, India	Russia, Japan, EU	USA, EU	Japan	USA, Russia, Japan, EU	USA, Russia, Japan, EU

Isotope	Therma	Thermal neutron spectrum (PWR) Epithermal neutron spectrum (PWR - MOX) Fast neutron spectrum (FNR)							ectrum
	σf	σc	$\alpha = \sigma_{c} / \sigma_{f}$	σf	σc	α = σ _{c /} σ _f	σf	σc	$\alpha = \sigma_{C/C}$
²³⁵ U	38.8	8.7	0.22	12.6	4.2	0.3	1.98	0.57	0.29
²³⁸ U	0.103	0.86	8.3	0.124	0.8	6.5	0.04	0.30	7.5
²³⁷ Np	<u>0.52</u>	<u>33</u>	63	<u>0.6</u>	18	30	0.32	1.7	5.3
²⁴¹ Am	<u>1.1</u>	<u>110</u>	100	08	35.6	44.5	0.27	2.0	7.4
²⁴³ Am	<u>0.44</u>	<u>49</u>	(11)	<u>0.5</u>	<u>31.7</u>	63.4	<u>0.21</u>	<u>1.8</u>	8.6
²⁴³ Cm	88	14	0.16	43.4	7.32	0.2	7.2	1.0	0.14
²⁴⁴ Cm	1.0	16	(16)	1	13.1	(13.1)	0.42	0.6	1.4
²⁴⁵ Cm	116	17	0.15	33.9	5.4	0.2	5.1	0.9	0.18

vanced Nuclear Fuels	for Power Reactors
Conventional Fuels	Advanced/Alternative Fuels
LEU (U ²³⁵ ≤ 5%) as UO₂	LEU (U ²³⁵ 5-10%) Mixed Uranium Plutonium Oxide (≤ 10% PuO₂)
Zircaloy 2 (BWR) Zircaloy 4 (PWR) Zr-1% Nb (VVER)	Zr-Sn-Nb-Fe & Zr-Nb-O alloys
20,000-30,000 MWD/t	High : upto 60,000 MWD/t Ultra High: upto 90,000 MWD/t
Natural IIO-	REIL SELL in the form of LIO-
	(Th,Pu)O ₂ & (Th,U ²³³)O ₂ , containing upto 2% fissile material
Zircaloy 4	Zircaloy 4
6,700 MWD/t	15,000-20,000 MWD/t
HEU in the form of UO₂ & (U,Pu)O₂ (≤ 25% Pu)	(U,Pu)C, (U,Pu)N & U-Pu-Zr, (≤ 25% Pu) with/without minor actinides
Stainless Steel D-9	S.S. (HT-9 or Oxide dispersed)
100,000 MWD/t	Upto 200,000 MWD/t
< 1.2 [−]	Upto 1.5
Multi-Tayer (pyrolytical carbon & SiC-coated) Uranium Oxide fuel particles (BIS or TRISO) embedded in graphite	Multi-layer (pyrolytical carbon & ZrC coated) Uranium Oxide, Mixed Uranium Plutonium Oxide, Mixed Uranium Thorium Dicarbide, etc., embedded in graphite
	Conventional Fuels Conventional Fuels LEU (U ²³⁵ ≤ 5%) as UO₂ Zircaloy 2 (BWR) Zircaloy 4 (PWR) Zr-1% Nb (VVER) 20,000-30,000 MWD/t Natural UO₂ Zircaloy 4 6,700 MWD/t HEU in the form of UO₂ & (U,Pu)O₂ (< 25% Pu)

Fuel type	PV	VR		FR		ADS
Fuel cycle management	MOX as reference	Pu+MA recycling	Pu-only recycling	Pu+MA recycling	MA target subass.	MA recyling
		At	fabrication ste	р		
Decay heat (W g ⁻¹ H.M.)	1	x 3	0,5	x 2,5	x 80	x 90
Neutron sources (n s ⁻¹ g ⁻¹ H.M.)	1	x 8 000	1	x 150	x 5 000 / x 10 000	x 20 000

FUELS AND	TARGETS F	ABRICATED AT ITU (Ref:	IAEA-TRS	6-435)	
	_	· · · · · · · · · · · · · · · · · · ·		,	
Programme	Reactor	Fuel/Target	Method	Status	
FACT	FR2(1981)	(U _{0.5} Am _{0.5})O ₂	sol-gel	PIE complete	
MTE2	KNK II	$NpO_2; (U_0 \leq Am_0 \leq O_2)$	sol-gel	PIE complete	
	(1984-85)	$(U_{0.73}Pu_{0.25}Np_{0.02}) O_2$	sol-gel	PIE complete	
		$(U_{0.73}Pu_{0.25}Am_{0.02}) O_2$	sol-gel	PIE complete	
SUPERFACT1	Phenix	$(U_{0.74}Pu_{0.24}Np_{0.02})O_2$	sol-gel	PIE complete	
	(1986-88)	$(U_{0.74}Pu_{0.24}Am_{0.02})O_2$	sol-gel	PIE complete	
		$(U_{0.55}Np_{0.45})O_2$	sol-gel	PIE complete	
		$(U_{0.6}Am_{0.2}Np_{0.2})O_2$	sol-gel	PIE complete	
POMPEI	HFR	Tc metal	casting	PIE in progress	
	(1993-94)	Tc-50% Ru metal	casting	PIE in progress	
		Tc-80% Ru metal	casting	PIE in progress	
TRABANT1	HFR	$(U_{0.55}Pu_{0.40}Np_{0.05})O_2$	sol-gel	PIE in progress	
	(1995-96)	(Pu _{0.47} Ce _{0.53})O _{2-x} [two O/M]	sol-gel	PIE in progress	
EFTTRA-T1	HFR (94- 95)	Tc metal [three pins]	casting	PIE complete	
EFTTRA-T4	HFR (96- 97)	MgAl ₂ O ₄ -12% Am	INRAM (pellets)	PIE complete	
EFTTRA-T4bis	HFR (97- 99)	MgAl ₂ O ₄ -12% Am	INRAM (pellets)	PIE in progress	
TRABANT2	HFR	$(U_{0.55}Pu_{0.45})O_2$	sol-gel	Irrad. to b started	
		(U _{0.6} Pu _{0.4})O ₂ [two pins]	mech.mi x.	Irrad. to b started	
ANTICORP	Phenix	Te metal	casting	Irrad. to b started	
METAPHIX	Phenix	U,Pu,Zr	casting	Irrad. to b started	
		UPuZrMA2%RE2%	casting	Irrad. to b started	
		UpuZrMA5%RE5%	casting	Irrad. to b started	
		UpuZrMA5%	casting	Irrad. to b started	
	a Prot Half Conner	20– 24 Nov 2006, IC	TP	44	

Waste categories						
Category	HLW (deep geological disposal)	LILW-LL (geological disposal)	LILW-SL (surface or geological disposal)			
Main characteristic	Highly radioactive waste, containing mainly fission products, as well as some acti- nides, separated during repro- cessing of irradiated fuel. Spent fuel, if it is declared a waste.	Waste which, because of its radionuclide content requires shielding but needs little or no provision for heat dissipation during its handling and transportation.	Waste, which, because of its low radionuclide content, does not require shielding during normal handling and transportatio			
Heat generation	Any other waste with radio- activity levels intense enough to generate heat more than 2 kW/m ³ by the radioactive decay process.	< 2 kW/m ³	< 2 kW/m ³			
Half-life		> 30 y	< 30 y			
Other characteristic			Activity content < 400 Bq of long lived alpha emitter			
	Advanced Fuel Cy	20-24 Nov 2006, ICTP cles and Radioactive Waste Management, Oi	49 ECD / NEA, (2006)			

Environmental impact measure			
Measure for repository performance	Significance of geosphere	Effect of reducing toxicity by transmutation	
Exposure dose rate of a human living in a certain location from the repository	Natural barrier to the radionuclides migration	Little sensitive	
Environmental impact as the sum of toxicity indices existing in the far field	Part of the environment	Sensitive	
Groundwater Repository Far field ~ Environment			
Schematic view of repository and environment.			
	20- 24 Nov 2006, IC	TP 52	

Reference-page2

•	Report to Congress On Advanced Fuel Cycle Initiative: The Future Path for Advanced Spent Fuel Treatment and Transmutation Research , US-DOE,2003
•	Fabrication of CERamic-CERamic Composites Pellets for the Transmutation of Actinides, Fernandez, A.; Konings, R.J.M.; Somers, J.; Haas, D., Journal of Materials Science Letters 22 No. 2 (2003) 119-121
•	A comparative physics study of alternative longterm strategies for closure of the nuclear fuel cycle, M. Comettoa,, P. Wydlerc, R. Chawlaa, Annals of Nuclear Energy 31 (2004) 413–429
•	Accelerator-driven Systems (ADS) and Fast Reactors (FR) in Advanced Nuclear Fuel Cycles, A Comparative Study, (2002), OECD/NEA
•	Transmutation: issues, innovative options and perspectives, M. Salvatores, Progress in Nuclear Energy, 40, 3-4, 375-402 (2002)
•	Recent achievements in the development of partitioning processes of minor actinides from nuclear wastes obtained in the frame of the
•	NEWPART European programme (1996-1999), Madic C.; Hudson M.J.; Liljenzin JO.; Glatz JP.; Nannicini R.; Facchini A.; Kolarik Z.; Odoj R., Progress in Nuclear Energy, Volume 40, Number 3, April 2002, pp. 523-526(4)
•	Decision-making of nuclear energy policy: application of environmental management tool to nuclear fuel cycle, Young Eal Lee and Kyoo-Kun Koh, Energy Policy, Volume 30, Issue 13, October 2002, Pages 1151-1161
•	"Advanced Fuel Cycles for Accelerator-Driven Systems: Fuel Fabrication and Reprocessing, EUR 19928 EN, ITU (2001); EC
•	P&T as a Waste Management Option in a Future Nuclear Era, L.H. Baestslé, in Proc. Workshop on Hybrid Nuclear Systems for Energy Production, Utilisation of Actinides & Transmutation of Long-lived Radioactive Waste, IAEA, Sep 3-7, 2001, ICTP, Trieste, Italy, and IAEA, Vienna, Austria, 2001, IAEA/SMR/1326-3
•	A EU roadmap for developing accelerator driven systems (ADS) for nuclear waste incineration, Technical report, The European Technical Working Group on ADS, ENEA, 2001.
•	Operation and development of the new spallation neutron source SINQ at the Paul Scherrer, Bauer, S.G., Institute, Nuclear Instruments and Methods in Physics Research Section B, Volume 139, Issue 1-4, p. 65-71, 1999
•	Koch, L., Glatz, JP., Konings, R.J. M., Magill, J., Partitioning and Transmutation, Studies at ITU, ITU Annual Report 1999, EUR 19054, 34.
•	IAEA Technology Advances in Fast Reactors and Accelerator Driven Systems (http://www.iaea.org/inis/aws/fnss/)
(8)	
00	20-24 Nov 2006, ICTP 5/