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1 Introduction

In these lectures we shall aim to review some of the theoretical background which is
necessary to pursue long period studies in seismology. Seismograms, which represent
ground acceleration as a function of time at a given seismic station, are most readily
understood at relatively low frequencies (periods longer than about 30s, say) because
the influence of aspherical structure is smaller. For example, a travel time anomaly
of several seconds may correspond, for long period data, to an offset in phase of a
small fraction of a cycle. In short period data, on the other hand, such a delay time
anomaly may offset the waveform by many cycles. In the former case there is some hope
of determining adjustments to the Earth model which will bring data and theoretical
seismograms into phase agreement, by means of perturbation theory and inversion of
the data. In the short period case there is little hope of achieving this, since the
corresponding inverse problem is highly nonlinear. Instead, in the short period case,
one is limited to measuring the travel time delay and then seeking to improve the
model so that the delay is more accurately predicted. Thus, there have developed two
basic kinds of tomography which might be termed ‘waveform tomography’ and ‘delay
time tomography’. Within these there are a number of different approaches, making
use of different spectral and temporal domains, different algorithms for the evaluation
of theoretical seismograms, different model parameterizations etc. The information
provided by the two approaches is complementary and, indeed, many of the results
of tomography have been reproduced using very different kinds of data and modelling
techniques.

2 Equations of linear elasticity with gravitation and initial
stress

Seismic waves in the Earth are governed, in the first approximation, by the linear theory
of elasticity; the attenuation or damping of seismic waves is well described in terms of
a linearly viscoelastic rheology, and only in the vicinity of earthquake sources do we
expect major departures from these relatively simple mechanical descriptions. In the
Earth the presence of an initial stress field and self gravitation must also be taken into
account. Here we review some of the basic elements of the theory of elasticity in the
presence of gravitation and and an initial stress distribution. For the case in which the
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initial stress field is simply a radially dependent hydrostatic pressure p0(r), and where
the elastic constitutive law is isotropic, the equations have long been known (see e.g.
Love, 1911, Pekeris and Jarosch, 1958). For the general case, in which there is a non-

hydrostatic initial stress field t
(0)
ij , correct statements of the equations are by Dahlen

and Smith (1975), Woodhouse and Dahlen (1978), Valette (1986). Earlier treatments
(Dahlen, 1972, 1973) give the conceptual basis, using the results of Biot (1965), but
were marred by certain algebraic errors; the treatment by Geller (1988) suffers from
major conceptual errors. The effects of non-hydrostatic initial stress have not been
observed and are invariably neglected; from the theoretical point of view, however, it is
of interest to write down the completely general equations.

We shall use a fixed Cartesian set of axes and express all vectors and tensors in
terms of their components with respect to these axes. Later we shall also make use of
spherical coordinates (r, θ, φ) defined through

x = (r sin θ cosφ, r sin θ sinφ, r cos θ) (2.1)

Consider a material which is initially in equilibrium under self-gravitation. The equa-
tions of mechanical equilibrium and gravitation may be written

t0ij,j = ρ0φ0
,i (2.2)

φ,ii = 4πGρ0 (2.3)

where t0ij is the initial stress field, φ0 is the initial gravitational potential and ρ0 is the
initial density, all of which are functions of position x, and where G is the gravitational
constant; the notation φ,i etc. denotes differentiation with respect to xi and summation
over repeated indices is assumed. Upon deformation, the material particle initially at
any point x moves to the point r = r(x, t), where t is time. The stress tensor and
the gravitational potential will now be functions of space and time coordinates; they
may be regarded either as functions of the current coordinates, ri say, or as functions
of the initial coordinates of the particle currently at ri, which we denote by xi, with
the understanding that xi and ri are related by the deformation r = r(x, t). The
momentum equation and the law of gravitation can be written:

∂tij
∂rj

= ρ
∂φ

∂ri

+ ρr̈i (2.4)

∂

∂ri

∂φ

∂ri

= 4πGρ (2.5)

or

xkjtij,k = ρxkiφ,k + ρr̈i (2.6)

xki(xliφ,l),k = 4πGρ (2.7)

where

xki =
∂xk

∂ri

. (2.8)
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Note that we reserve the notation φ,i etc. for derivatives with respect to xi; ‘.’ denotes
the time derivative at constant x – i.e. the material time derivative. Since mass is
conserved, the mass of a deformed volume element d3r must be equal to that of the
corresponding undeformed element d3x; i.e. ρd3r = ρ0d3x and thus

Jρ = ρ0 (2.9)

where J is the Jacobian

J = J(x) =
∂(r1, r2, r3)

∂(x1, x2, x3)
. (2.10)

Let us now write

ri = xi + ui (2.11)

where ui is small, and define the first order quantities ρ1 and φ1 to be the change in
density and gravitational potential, at a fixed point in space, due to the deformation.
Also we define t1ij to be the change in stress at a material particle. We may write

t1ij = tij(r) − t0(x) (2.12)

ρ1 = ρ(r) − ρ0(r) (2.13)

φ1 = φ(r) − φ0(r) (2.14)

whence

tij = tij(r) = t0ij + t1ij (2.15)

ρ = ρ(r) = ρ0(x + u) + ρ1 = ρ0 + ukρ
0
,k + ρ1 (2.16)

φ = φ(r) = φ0(x + u) + φ1 = φ0 + ukφ
0
,k + φ1 (2.17)

Making use of the first order approximation

J = det(ri,j) = det(δij + ui,j) = 1 + uj,j (2.18)

in (2.9) and (2.16), we also find

ρ0 = (1 + uj,j)(ρ
0 + ukρ

0
,k + ρ1) (2.19)

and thus, from the first order terms:

ρ1 = −ukρ
0
,k − ρ0uk,k = −(ρ0uk),k . (2.20)

In order to complete the system of equations of motion we need to specify the consti-
tutive law giving the incremental stress t1ij in terms of the elastic displacement field ui.
The correct form for this relationship depends upon the hypothesis that there exits an
internal energy density function E(x, e, s) (per unit undeformed volume or, equivalently,
per unit mass), where e is the (exact) strain tensor:

eij = 1
2
(rk,irk,j − δij) (2.21)
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and s is specific entropy. Here we shall be concerned only with isentropic deformations
and shall not consider further any thermodynamic quantities. This is appropriate for
the Earth since thermal fluctuations propagate on time scales vastly greater than the
periods of seismic waves. The implications of the existence of an internal energy density
function have to be worked out to second order in order to obtain the correct incremental
constitutive law; the derivation is somewhat too lengthy to be included here. A very
complete discussion is contained in the monograph by Biot (1965); see also the papers
by Dahlen (1972, 1973), Dahlen and Smith (1975), Woodhouse and Dahlen (1978) and
Valette (1986). The result is that t1ij can be written:

t1ij = cijkluk,l + t0jkui,k + t0ikuj,k − t0ijuk,k (2.22)

where the fourth rank tensor c = c(x) possesses the symmetries:

cijkl = cjikl = cklij . (2.23)

Following Dahlen and Smith (1975) and Woodhouse and Dahlen (1978) we define

Λjilk = cijkl + t0jlδik (2.24)

and write

t1ij = Λjilkuk,l + t0ikuj,k − t0ijuk,k . (2.25)

The first term on the right side of (2.25) is the incremental Piola-Kirchhoff stress tensor
(see e.g. Malvern, 1969).

We now substitute into the exact equations of motion (2.6), (2.7) the first order
approximations (2.15), (2.16), (2.17), together with (2.20) and (2.25) and the first
order relation:

xij = δij − ui,j (2.26)

to obtain the equations satisfied by u and φ1. On simplification we find:

ρ0(üi + φ1
,i + φ0

,ijuj) = (Λjilkul,k),j (2.27)

φ1
,ii = −4πG(ρ0ui),i . (2.28)

The Earth consists of a number of regions – inner core, core, lower mantle, upper
mantle etc. within each of which material properties, it is assumed, are smooth functions
of position. Within each region the equations of motion (2.27), (2.28) must be satisfied;
across the boundaries separating the regions certain conditions, ensuring the continuity
of traction, gravitational potential and its derivatives and, where appropriate, continuity
of displacement are required. Here we shall only state them – see Woodhouse and
Dahlen (1978) for a detailed discussion. We identify three kinds of boundaries: welded,
– e.g. the boundary between the upper mantle and the lower mantle at approximately
670 km depth and the Mohorovicic discontinuity; free slip – the inner core boundary,
the core-mantle boundary and the ocean floor; and free – the ocean surface or, in

4



the absence of an ocean, the outer surface of the solid Earth. Also, the gravitational
potential is required to vanish at infinity. The complete set of boundary conditions is
as follows:

Welded: [ui]
+
− = 0 (2.29)

[ti]
+
− = 0 (2.30)

Free-slip: [niui]
+
− = 0 (2.31)

[ti]
+
− = 0 (2.32)

ti = ninjtj (2.33)

Free: ti = 0 (2.34)

All: [φ1]+− = 0 (2.35)

[φ1
,ini + 4πGρ0uini]

+
− = 0 (2.36)

Infinity: φ1 = 0 (2.37)

in which n is the unit normal to the boundary and

ti = Λjilkul,knj − ni∇1
k(π

0uk) + π0nk∇1
iuk , (2.38)

where

π0 = t0ijninj (2.39)

and where ∇1 is the surface gradient operator

∇1 = ∇ − nn · ∇ . (2.40)

Equations (2.27 – 2.37) are to be regarded as governing the four unknown fields
ui(x, t), φ

(1)(x, t), which represent possible free oscillations of the Earth. All other
quantities: ρ0, t0ij, φ

0, Λjilk are regarded as given parameters of the earth model, sub-
ject to the equilibrium equations (2.2, 2.3) and the requirement that φ0, φ0

,i, t
0
ijnj be

continuous at all boundaries and that φ0 vanishes at infinity.
In order to represent the excitation of the modes we introduce a specified force

distribution F(x, t) on the right hand side of (2.27) and write

ρ0(φ1
,i + φ0

ijuj) − (Λjilkul,k),j = Fi − üi (2.41)

The force distribution F is known as the equivalent body force distribution of the
source. In order to represent an indigenous earthquake or explosion F must have the
form (Backus and Mulcahy, 1976):

Fi = −Γij,j (2.42)

where Γ = Γ(x, t) is the stress glut, which represents the failure of the constitutive law
(2.25) to be satisfied in the source region. Γ has the important property that it vanishes
outside the source region and its time derivative vanishes both before the source origin
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time and after the source has ceased to act. Thus the stress glut rate Γ̇ is nonzero only
in the finite region of space and time corresponding to action of the source.

The equations and boundary conditions governing φ1 can be solved for φ1 in terms
of u. In fact φ1 is the gravitational potential due to the density distribution ρ1 =
−(ρ0uk),k together with mass distributions on spherical boundaries having surface den-
sity −[ρ0ur]

+
−. Thus it is convenient to regard φ1(x, t) as a functional of u(x, t):

φ1 = Φ[u]. (2.43)

The remaining equations, now governing only u can be written, symbolically:

(H + ρ0∂2
t )u = F (2.44)

where H represents the integro-differential operator corresponding to the left side of
(2.41), in which φ1 is replaced by Φ[u], and also thought of as incorporating the bound-
ary conditions (2.29–2.37).

3 Oscillations of a spherically symmetric Earth model

A useful approximate model of the Earth is one which is non-rotating, perfectly spherical
and in equilibrium with a hydrostatic stress field

t0ij = −δijp0(r) (3.1)

where p0(r) is the initial pressure distribution. In this case the above general system
of equations simplify greatly, and are separable in spherical coordinates. Thus they are
amenable to solution by reduction to ordinary differential equations. Deviations from
this model are relatively small in the Earth, and thus perturbation theory can be used
to incorporate the effects of rotation, ellipticity and other asphericity, or more complex
initial stress fields.

Under the assumption of hydrostatic initial stress and spherical symmetry the equi-
librium equations (2.2, 2.3), together with the appropriate boundary conditions (see
above) can be solved to determine φ0, p0 in terms of the given density distribution ρ(r).
We have:

g0(r) = ∂rφ
0(r) =

4πG

r2

∫ r

0
ρ0(r)r2dr (3.2)

φ0(r) = −
∫ ∞

r
g0(r)dr (3.3)

= −GM
a

−
∫ a

r
g0(r)dr (3.4)

p0(r) =
∫ a

r
ρ0(r)g0(r)dr (3.5)

where a is the radius of the Earth and M is the Earth’s total mass:

M = 4π
∫ a

0
r2ρ0(r)dr (3.6)
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When (3.1) is used in (2.22), (2.24), we obtain

t1ij = Cijkluk,l (3.7)

with

Cijkl = cijkl − p0(δjlδik + δilδjk − δijδkl) (3.8)

Λjilk = Cijkl + p0(δilδjk − δijδkl) (3.9)

and on using (3.9) in (2.41) the equation of motion can be written:

ρ0üi + ρ0φ1
,i − (ρ0uj),jφ

0 − (ujp
0
,j),i − (Cijkluk,l),j = Fi (3.10)

Also, because of spherical symmetry Cijkl cannot be arbitrary but must represent
a tensor field invariant under rotations of the model. The most general form for such
a tensor satisfying (2.23) depends upon just five scalar parameters (see e.g. Takeuchi
and Saito, 1972) A(r), C(r), F (r), L(r), N(r). Denoting the spherical components of
C by Crrrr Crrrθ etc. the nonvanishing elements of C can be represented as:

Crrrr = C(r) (3.11)

Crrθθ = Crrφφ = Cθθrr = Cφφrr = F (r) (3.12)

Cθθφφ = Cφφθθ = A(r) − 2N(r) (3.13)

Cθφθφ = Cφθθφ = Cθφφθ = Cφθφθ = N(r) (3.14)

Cφrφr = Crφφr = Cφrrφ = Crθrθ = L(r) (3.15)

Cθθθθ = Cφφφφ = A(r) (3.16)

In the case of isotropy we have:

A = C = λ+ 2µ = κ+ 4
3
µ (3.17)

N = L = µ (3.18)

F = λ = κ− 2
3
µ (3.19)

where λ = λ(r), µ = µ(r) are the Lamé parameters, κ = κ(r) is bulk modulus and µ is
shear modulus. In this case:

Cijkl = µ(δikδjl + δilδjk) + λδijδkl. (3.20)

In fluid regions we have:

N = L = µ = 0 (3.21)

C = A = F = λ = κ. (3.22)
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The boundary conditions on u, φ1 for this spherical model may be stated as follows:

Welded: [ui]
+
− = 0 (3.23)

[Cijklr̂juk,l]
+
− = 0 (3.24)

Fluid-solid: [ur]
+
− = 0 (3.25)

[Cijklr̂juk,l]
+
− = 0 (3.26)

Free: Cijklr̂juk,l = 0 (3.27)

All: [φ1]+− = 0 (3.28)

[∂rφ
1 + 4πGρ0ur]

+
− = 0 (3.29)

Infinity: φ1 = 0 (3.30)

where r̂ is a unit vector in the direction of r increasing and where the square bracket
notation is used to denote the discontinuity of the enclosed quantity across a surface
of discontinuity in the model, the contribution from outside the surface being taken
positive.

As in the general case (2.44) the problem of determining the seismic displacement
in a spherical earth model can be written:

(H + ρ0∂2
t )u = F (3.31)

Taking the Fourier transform in time:

u(x, ω) =
∫ ∞

−∞
u(x, t)e−iωtdt (3.32)

we have

(H− ρ0ω2)u = F (3.33)

and thus, in order to determine u we need to invert the operator represented on the
left hand side. A natural way to proceed is to represent the solution in terms of the
eigenfunctions sk(x) satisfying:

Hsk = ρ0ω2
ksk (k = 1, 2, ...∞) (3.34)

where ω2
k are the eigenvalues. It is clear that the function

u(x, t) = eiωktsk(x) (3.35)

satisifies (3.31) in the case F = 0 and thus sk(x) represents the spatial shape of a
free oscillation of the model having angular frequency ωk. It may be shown that the
operator H is self adjoint in the sense∫

V
s′.Hsd3x =

∫
V

s.Hs′d3x (3.36)

for any differentiable s(x), s′(x) satisfying the boundary conditions (3.23 – 3.27) and
where the volume integration is over the entire earth model. From this it follows
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that the eigenfunctions sk(x) form a complete set and that the eigenvalues ω2
k are real.

Furthermore, if any of the eigenvalues is negative it follows that there exist exponentially
growing solutions of the homogeneous equations (3.31). The existence of such solutions
would indicate that the equilibrium configuration of the earth model was unstable.
Since this would clearly be unrealistic we conclude that all of the ωk are real, provided
that we demand that the model is in stable equilibrium. In addition it is not difficult
to show that eigenfunctions belonging to different eigenvalues are orthogonal or, in the
case of degeneracy, can be orthogonalised, in the sense∫

V
ρ0s∗k′ · skd

3x = 0 (k �= k′) (3.37)

Using these results it is straightforward to obtain a formal solution of the forced equa-
tions of motion (3.31) in terms of a sum of eigenfunctions sk. We write:

u(x, t) =
∑
k

ak(t)sk(x). (3.38)

On substituting into (3.31), multiplying by s∗k′ and integrating, making use of the or-
thogonality relation (3.37), we obtain

äk(t) + ω2
kak(t) = ω2

kFk(t) (3.39)

with

Fk(t) ≡ 1

ω2
k

∫
V s∗k(x) · F(x, t)d3x∫
V ρ0s∗k(x) · sk(x)d3x

. (3.40)

The ordinary differential equations (3.39) for each ak(t) may be solved (e.g. using
the method of variation of parameters, or Green’s functions, or Laplace or Fourier
transformation) to give

ak(t) =
∫ t

−∞
hk(t− t′)Ḟk(t

′)dt′ (3.41)

with

hk(t) = 1 − cosωkt, (3.42)

a result originally due to Gilbert (1971). As pointed out by Gilbert (1971) this re-
sult needs to be modified to account for attenuation by incorporating a decay factor
exp(−αkt) into the cosine term, and thus in place of (3.42) we write:

hk(t) = 1 − e−αkt cosωkt (3.43)

In fact a more careful analysis, similar to that of the excitation of a damped simple
harmonic oscillator, yields a slightly different result, not given here, which is well ap-
proximated by (3.43) in the case of realistically small αk. The decay rate of the free
oscillations is also often quantified by ‘the Q of the mode’ Qk, which is defined in
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such a way that the amplitude decays by a factor exp(−π/Qk) per period (= 2π/ωk).
Consequently Qk and αk are related by:

αk =
ωk

2Qk

. (3.44)

Making use of (3.41) in (3.38) we obtain an explicit expression for the theoretical
seismogram. It is often sufficient to consider the case of a point source by which we shall
mean a source having spatial and temporal extent small compared to the wavelengths
and a periods of interest. In this case it may be shown (Backus and Mulcahy, 1976)
that the expression (3.41) can be approximated by the simpler form:

ak(t) = hk(t− ts)Mije
(k)∗
ij (xs) (3.45)

where (xs, ts) denote the spatial and temporal centroid of the source and where the
symmetric tensor Mij, the source moment tensor, is given by:

Mij =
∫ ∞

−∞

∫
V

Γ̇ijd
3xdt (3.46)

In (3.45) e
(k)
ij denotes the strain in the k-th mode e

(k)
ij = 1

2
(s

(k)
i,j + s

(k)
j,i ). For further

details we refer to the review by Dziewonski and Woodhouse (1983) and to the literature
already cited. Using (3.45) in (3.38) we obtain the following expression for a theoretical
seismogram in a spherically symmetric model:

u(x, t) =
∑
k

[1 − e−αk(t−ts) cosωk(t− ts)]Mije
(k)∗
ij (xs)sk(x). (3.47)

In order to apply this and earlier formulae in this section we need to have calculated
a complete set of eigenfunctions sk(x) together with the corresponding eigenfrequencies
ωk and attenuation constants αk. For this we refer to the literature, only quoting
the most important results. A thorough treatment is given by Takeuchi and Saito
(1972). Woodhouse (1988) describes an algorithm for finding all modes, depending
on an extension of Sturm-Liouville theory. A review of some of the salient points,
together with expressions for the excitation coefficients are given by Dziewonski and
Woodhouse (1983), citing earlier literature. Phinney and Burridge (1973) introduce
a set of generalized spherical harmonics which enable any tensor field to be readily
expanded in spherical harmonics. These greatly facilitate the derivation of the modal
equations, and all other calculations in terms of spherical harmonics, including those
of modal excitation coefficients, matrix elements for modal coupling etc. (see below).
The basic results depend upon the expansion in spherical harmonics of the vector field
sk(x) and the corresponding perturbation in gravitational potential φ1

k. Following a
traditional approach (e.g. Morse and Feshbach, 1953; Pekeris and Jarosch, 1958) we
write:

sr = U(r)Y m
l (θ, φ) (3.48)

sθ = V (r)∂θY
m
l (θ, φ) +W (r)∂φY

m
l (θ, φ) (3.49)

sφ = V (r)cosec θ∂φY
m
l (θ, φ) −W (r)∂θY

m
l (θ, φ) (3.50)

φ1 = P (r)Y m
l (θ, φ) (3.51)
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where Y m
l are the spherical harmonics. Here we adopt the fully normalized complex

harmonics of Edmonds (1960)

Y m
l (θ, φ) = (−1)m

[
(2l + 1)(l −m)!

4π(l +m)!

]1
2

Pm
l (cos θ)eimφ (3.52)

(l = 0, 1, 2, ...; m = −l,−l + 1, ...l)

where Pm
l (x) are the associated Legendre functions:

Pm
l (x) =

(1 − x2)m/2

2ll!

dl+m

dxl+m
(x2 − 1)l. (3.53)

Y m
l satisfy the orthogonality relation:∫ π

−π

∫ π

0
Y m∗

l (θ, φ)Y m′
l′ (θ, φ) sin θdθdφ = δll′δmm′ . (3.54)

When (3.48 – 3.51) are substituted into the eigenvalue equation (3.34) they give ordinary
differential equations for U , V , W , P which are independent of m. These admit two
kinds of solution (i) solutions with U = V = P = 0, termed toroidal modes and (ii)
solutions with W = 0, termed spheroidal or poloidal modes. Collectively U , V , W ,
P are sometimes called the scalar eigenfunctions and those among them which are
not identically zero satisfy linear systems of ordinary differential equations, subject to
homogeneous boundary conditions. These equations have solutions only for particular,
discrete values of ωk which are the eigenfrequencies of the corresponding free oscillations.
By virtue of these results modes may be identified according to mode type q (spheroidal
or toroidal), angular order l, azimuthal order m, and overtone number n, where the
n enumerates the eigenfrequencies, in increasing order, for a given mode type and
angular order. The mode index k used earlier may be thought of as consisting of the
four subindices k = (q, l,m, n). Since the ordinary differential equations governing the
scalar eigenfunctions are independent of m the eigenfrequencies ωk are the same for
all m in the allowed range −l ≤ m ≤ l; i.e. there are 2l + 1 different eigenfunctions
corresponding to the same eigenvalue ωk which are said, therefore, to be constitute a
(2l+1)-fold degenerate multiplet. Individual members of a multiplet are termed singlets.
The normal mode multiplets are conventionally referred to by the notations nSl for
spheroidal modes and nTl for toroidal modes. The spheroidal modes with l = 0 have
eigenfunctions which possess only radial displacements and are spherically symmetric.
These are termed the radial modes.

Having introduced the representation of eigenfunctions in terms of spherical har-
monics, it is convenient to write the fundamental equation (3.47) in the simplified form
(Woodhouse and Girnius, 1982)

u(xr, t) =
∑
k

l∑
m=−l

Sm
k (xs)s

m
k (xr)e

iω̃t (3.55)
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where the real part is understood. In writing (3.47) in this way we have introduced
certain notational changes. First we have redefined the mode index k so that it now
refers to multiplets: k = (q, l, n); individual singlets within a multiplet are labeled
explicitly by the additional index m. Second, we have omitted the the first term in
brackets [ ] in (3.47). This term contributes a time-independent displacement field,
which represents the final configuration of the model after all modes have died away.
By omitting it, therefore, we obtain an expression representing the displacement field
relative to the final, rather than the initial configuration of the model. (In fact the
static offset is not observed seismically owing to noise and instrument characteristics.)
Third, we have defined the complex frequency

ω̃k = ωk(1 + i/2Qk). (3.56)

in order that the exponential in (3.55) includes the decaying exponential in (3.47).
Fourth, we have defined:

Sm
k (xs) = −Mije

(k)∗
ij (xs). (3.57)

Fifth, we have taken the centroid time to be the reference time; hence we set ts = 0.
Finally, the location, x, at which the diplacement is evaluated has been given the sub-
script r to emphasize that in comparing with observations the seismogram is evaluated
at the receiver location.

A particular seismogram is obtained by operating upon (3.55) with the ‘instrument
vector’ v, which is defined to be a unit vector in the direction of motion sensed by the
instrument; v may also incorporate an operator, or, in the frequency domain a function
of frequency, characterizing the instrument response. The seismogram may then be
written in a way which involves the source and receiver rather symmetrically:

v · u =
∑
km

Rm
k (θr, φr)S

m
k (θs, φs)e

iω̃kt (3.58)

where Rm
k (θr, φr), S

m
k (θs, φs) are given by expressions involving spherical harmonics

evaluated at the receiver and source. Explicitly

Rm
k (θr, φr) =

1∑
N=−1

RkNY
Nm
l (θr, φr) (3.59)

Sm
k (θs, φs) =

2∑
N=−2

SkNY
Nm
l (θs, φs) (3.60)

where Y Nm
l are the generalized spherical harmonics of Phinney and Burridge (1973) and

where RkN = RN
k (0, 0), SkN = SN

k (0, 0) are given by expressions involving the scalar
eigenfunctions U , V , W evaluated at the surface and at the source depth, respectively.
The formulae for RkN involve the spherical components of the receiver vector vr, vθ, vφ

and those for SkN involve the moment tensor components Mrr, Mθθ, Mφφ, Mrθ, Mrφ,
Mθφ (see Woodhouse and Girnius, 1982 for explicit formulae).
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4 General characteristics of modal multiplets

Normal mode multiplets can be though of as points in the ω − l plane. Figs 1a.,
1b., taken from Gilbert and Dziewonski (1975), show such dispersion diagrams for the
low frequency toroidal and spheroidal modes. Lines joining the dots define lines of
constant overtone number n. By convention the lowest frequency mode, for a given l, is
designated the fundamental mode and has n = 0. These correspond to the fundamental
mode Love and Rayleigh waves in the toroidal and spheroidal case, respectively. The
solid dots in Fig 1. indicate modes which had been observed up to 1975.

Presently we shall take a tour of the ω−l plane, showing examples of eigenfunctions,
in order to gain some physical insight into the nature of the modes. Before doing
this, however, it is useful to introduce the concept of a differential kernel, which is
a function representing the sensitivity of a modal eigenfrequency to small changes in
the (spherically symmetric) earth model. This brings us into the realm of perturbation
theory. This is of great importance if we whish to make inferences about earth structure
from modal measurements. Suppose that a number of modal frequencies nω

S
l , nω

T
l have

been measured. These will not agree precisely with the predictions of a given earth
model and thus we need to address the question: How can we modify the earth model to
bring it into agreement with the observations?. This is an inverse problem of the type
which will be the subject of a number of the lectures at this school. First, however, we
need to know how to solve the forward problem: If we make a specified small adjustment
to the earth model how will it affect the predictions of the modal eigenfrequencies?. We
do not attempt to cover modal perturbation theory in full detail in these lectures. For
the spherical earth, with which we are here concerned, see Backus and Gilbert (1967),
Woodhouse (1976). Here we approach the topic in a heuristic way, in order to illustrate
some basic principles and to gain insight into the properties of modes and what they
are likely to tell us about the Earth.

Suppose that our Earth model consists of a number of spherical layers and, for a
given mode, imagine that a particular parameter, density ρ0, say, is perturbed by an
amount δρi in the i-th layer, all other layers remaining unchanged. If the perturbation is
small enough, the change in the eigenfrequency of the multiplet will be proportional to
δρi and so we can define a proportionality constant Kρi say, such that the corresponding
change in the eigenfrequency is given by

δω = Kρi
δρi

ρ0
i

∆ri (4.1)

where ∆ri is the layer thickness and ρi is the unperturbed density in the layer. Then
if density is simultaneously perturbed in all layers, and if the perturbations are small
enough, the corresponding change in eigenfrequency will be the sum over all layers:

δω =
∑

i

Kρi
δρi

ρ0
i

∆ri (4.2)
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In the limit that the number of layers is infinite this sum will become an integral over
radius r and we can write:

δω =
∫ a

0
Kρ(r)

δρ(r)

ρ0(r)
dr (4.3)

Kρ(r) represents, therefore, the sensitivity of an eigenfrequency to adjustments in den-
sity at each radius r. Similarly we can defineKµ(r), Kκ(r) to represent the sensitivity to
changes in bulk and shear moduli. Here we shall take ρ, vP and vS as the fundamental
mechanical parameters of the (isotropic) model, and write:

δω =
∫ a

0

(
Kρ(r)

δρ(r)

ρ0(r)
+KP (r)

δvP (r)

v0
P (r)

+KS(r)
δvS(r)

v0
S(r)

)
dr (4.4)

Thus, for each mode, it is possible to define differential kernels KP (r), KS(r), Kρ(r)
which provide the answer to the forward problem through (4.4). In fact, it is possible to
derive exact expressions for such kernels in terms of various quadratic forms involving
the scalar eigenfunctions of the mode. Explicit results are given by Backus and Gilbert
(1967), Woodhouse (1976), Dziewonski and Anderson (1981).

Figs 2a–e show examples of the eigenfunctions and kernels for a representative set of
multiplets. For each multiplet there are two panels, one above the other. The top panel
show the scalar eigenfunctions – ζW (r) (dashed) for toroidal modes and U(r) (solid)
and ζV (r) (dashed) for spheroidal modes, where ζ2 = l(l + 1); the factor ζ is included
so that the ratio of the two scalar eigenfunctions for spheroidal modes U(r)/ζV (r)
correctly reflects the ratio of vertical to horizontal motions. The lower panels for each
mode show the differential kernels KP (r) (solid), KS(r) (dashed) and Kρ(r) (dot-dash).
The period and Q of the mode are given. All calculations are for the model PREM of
Dziewonski and Anderson (1981).

Fig. 2a samples the fundamental toroidal modes. 0T2 represents a differential twist-
ing of one hemisphere relative to the other. By examining the eigenfunction we see
that the amplitude of the motion is about half as large at the the core-mantle boundary
(CMB) as at the surface. In common with all toridal modes, the motion is purely hori-
zontal and does not involve the core. By examining the differential kernels we find that
the frequency is increased if vS is increased anywhere in the mantle, with ρ held fixed,
the maximum effect being produced by a (relative) change in vS close to the 670km
discontinuity. If, on the other hand, density is increased, with vS held fixed, the effect
is to reduce the frequency if the change is made in the upper mantle, and to increase
it if the change is made in the lower mantle. 0T5 has similar properties, except that
its sensitivities are smaller in the lower part of the mantle. Progressing along the fun-
damental mode branch we see that the modal displacements and sensitivities become
concentrated nearer and nearer to the surface, and that sensitivity to density becomes
progressively smaller. This is because at high angular order the toroidal modes corre-
spond to Love waves, which may also be thought of as multiply reflected SH waves,
having, asymptotically for large l, no sensitivity to density. For example 0T80, having
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period 106.7s, has appreciable displacements only in the upper mantle, and has little
sensitivity to vS at depths greater than 300 km.

Fig. 2b shows examples of toridal mode overtones at fixed angular order l = 30.
The general property illustrated is that as overtone number increases the eigenfunctions
become more oscillatory with depth and penetrate more deeply into the mantle. Also
note that for high overtones the density kernel oscillates about zero; although such
modes can be affected by localized density perturbations, the effect of smooth density
perturbations will be small, since positive and negative contributions will tend to cancel
in the integral (4.4). The vS kernel, on the other hand, oscillates about a non-zero value;
it is this slowly varying mean value which will give the main contribution for smooth
changes in vS(r). Again these properties reflect asymptotic properties of the modes,
which may be thought of as standing waves set up by multiply reflecting SH body
waves, which dip more steeply into the mantle with increasing overtone number n.
Thus, for example, 2T30 corresponds to SH having a turning point in the lower mantle,
whereas 20T30 corresponds to SH waves travelling almost vertically, bouncing between
the surface and the CMB (see below).

Fig. 2c samples the fundamental spheroidal modes. 0S2, known as the ‘football
mode’, was one of the first observed (Benioff et al., 1961), following the great Chilean
earthquake. Its displacements are nonvanishing throughout the Earth; its greatest
sensitivity is to perturbations in vS and, to a lesser extent, ρ in the lowermost mantle
and vP in the upper half of the mantle. Progressing along the fundamental mode branch,
displacements and sensitivities become progressively concentrated nearer to the surface,
and sensitivity to density diminishes, as in the case of toroidal modes. At higher values
of l these modes correspond to Rayleigh waves. Note that their greatest sensitivity is to
vS at a depth somewhat below the surface, which makes them useful for probing upper
mantle vS. On the other hand, they have relatively high sensitivity to vP at shallow
depths.

Fig. 2d shows examples of spheroidal mode overtones, at angular order l = 30. These
display behaviour similar to, but more complicated than that observed for toroidal mode
overtones. Note that the spheroidal mode spectrum contains a variety of different
families of modes. For example the (unobserved) mode 3S30 corresponds to a Stoneley
wave propagating at the CMB; this is similar to a Rayleigh wave, but trapped near the
CMB rather than near the Earth’s surface.

Finally, Fig. 2e shows samples of the radial modes nS0, which, at high n, correspond
to vertically travelling PKIKP , having little sensitivity to (smooth) density pertur-
bations, almost vanishing sensitivity to vS, but significant sensitivity to vP throughout
the Earth. Note that they have high Q values (i.e. low attenuation), a property which
makes them relatively easy to observe in long seismic records following great earth-
quakes.
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5 Some asymptotic properties of free oscillations

In the foregoing discussion we have mentioned the correspondence between the free
oscillation multiplets and various kinds of travelling waves – both body waves and
surface waves. The nature of the correspondence between surface waves and modal
multiplets has long been apparent, since the traces from which modal spectra can be
readily obtained, consist of word-circling Rayleigh and Love wave orbits. The modal
peaks appear in the spectrum as a result of the constructive interference which occurs
when the spectra of individual wave packets are superposed. The nature of the corre-
spondence between modal overtones and body waves, first pointed out by Brune (1964,
1966), can be made more precise by examining the asymptotic behaviour of solutions of
the ordinary differential equations for the scalar eigenfunctions, using the JWKB and
related asymptotic techniques (Brodskii, 1975, 1978; Woodhouse, 1978; Kennett and
Woodhouse 1978). Here we shall touch only briefly on the topic, since our aim is to
gain physical insight into the properties of free oscillations, rather than to develop a
complete calculational scheme.

The essential quantitative connection between modes and travelling waves is made
by equating the horizontal wavelength (or wavenumber) of the mode with the corre-
sponding horizontal wavelength (or wavenumber) of a travelling wave. For modes, this
wavelength can be derived from the asymptotic properties of the spherical harmonics
for large l. Let us consider a source at the pole θ = 0. Such a source excites only
the modes having low azimuthal order m. For a point source only the orders having
|m| ≤ 2 are excited (equation 3.60).

For fixed m and large l we have (e.g. Abromowitz and Stegun, 1965):

Y m
l (θ, φ) ∼ 1

π
(sin θ)−

1
2 cos[(l + 1

2
)θ + 1

2
mπ − 1

4
π]eimφ (5.1)

and, since we are considering a source at the pole, θ plays the role of epicentral distance.
Thus we can immediately identify the horizontal wavenumber k (= 2π/wavelength) to
be

k = (l + 1
2
)/a. (5.2)

The angular order l, therefore, is a proxy for wavenumber k and dispersion diagrams
such as those shown in Fig. 1 can be interpreted, for large l, in the same way as are
dispersion relations ω(k) for surface waves. In particular, we can define phase velocity

c(ω) =
ω

k
(5.3)

and group velocity

U(ω) =
dω

dk
(5.4)

In order for these relations to be valid we need to extend the definition of the dispersion
curves to continuous, rather than integer values of l. The mathematical justification
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for doing this is contained in a number of papers on the theory of waves in and around
spheres (Watson, 1918; Gilbert 1976). This defines the relationship between the ω − l
plane and the dispersion properties of Love and Rayleigh waves and their overtones.

In the case of body waves we may, similarly, identify the horizontal wavenumber
in terms of frequency and ray parameter p. From classical ray theory in the spherical
Earth, the horizontal wavenumber at the Earth’s surface for a monochromatic signal
travelling along a ray with given ray parameter p = dT/d∆ is

k =
ωp

a
. (5.5)

Therefore, using (5.2), we write

p =
l + 1

2

ω
(5.6)

Thus a mode of angular order l and angular frequency ω is associated with rays having
the ray parameter given by (5.6). For toroidal modes these are S-rays, and for spheroidal
modes they are both P - and S-rays. It is well known that rays exist only for ranges of
depth for which

r

vP (r)
≥ p for P -waves (5.7)

r

vS(r)
≥ p for S-waves (5.8)

In the diagrams of Fig. 2, the ranges of depth for which these inequalities are sat-
isfied are indicated in two columns on the right side of each panel. The left column
is for P -waves (relevant only for spheroidal multiplets) and the right column for S
waves. Inspecting these figures it will be seen that the sensitivities do have the ap-
proximate behaviour we would expect, namely that sensitivity to vS decays below the
S-turning point and that to vP decays below the P -turning point. In fact there are
further quantitative relationships between the dispersion diagrams and the travel times
of the corresponding rays, which mean that the information contained in the dispersion
diagrams reproduces much of that contained in travel time data.

As an illustration we state the simplest such approximate result (Brune, 1964; Brod-
skii, 1975), for toroidal modes:

ω =
2π(n+ β)

τ(p)
(5.9)

where β is either 0 of 1
4

depending upon whether the S-ray is reflected from the core or
turns in the mantle, and where τ(p) is the ray theoretic intercept time

τ(p) = T (p) − p∆(p) = 2
∫ a

rt(p)

(
1

v2
S

− p2

r2

)1
2

dr. (5.10)
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rt(p) is the turning radius or, in the case that the ray does not have a turning point, the
radius of the CMB. Equation (5.9) predicts that along the line of constant p = (l+ 1

2
)/ω

in Fig. 1a, the modes are equally spaced, and that their spacing in ω is equal to the
ray theoretic quantity 2π/τ(p). This result is only approximate, but it reflects the
important fact that the information contained in the multiplet frequencies is highly
redundant, and duplicates that available from travel times.

6 Oscillations of an aspherical earth model

The calculation of theoretical seismograms in a non-spherical model is difficult and
expensive in terms of computer time. Although there exist formulae which are, at least
in principle, exact, they involve the manipulation of infinite dimensional matrices and
have not been applied in complete form. Similarly, it is conceivable to generate accurate
theoretical seismograms by purely numerical techniques (e.g. finite differences), but this
has not yet been achieved. In fact the problem encountered in seismic tomography is
much greater than that of calculating theoretical seismograms (the forward problem); in
order to obtain useful solutions to the inverse problem it will undoubtedly be necessary
to carry out calculations equivalent to at least many thousands of forward problems. As
a result, several approximate schemes have been developed. Naturally there are intimate
connections between the different schemes, which have been elucidated in a number of
theoretical papers. A number of aspects of this complicated field will be described in
other lectures at this school. Here I shall only describe some of the schemes which have
been applied and indicate some of the connections between them.

Splitting theory. One of the primary effects of asphericity is to remove the degeneracy
of the modal spectrum. Each degenerate multiplet is split into singlets of slightly
different frequency. The theory of modal splitting is similar to that governing the
splitting of the degenerate energy levels of a spherically symmetric atom subjected
to some aspherical perturbing influence, such as a magnetic field. In seismology the
theory of splitting has been developed in a series of papers beginning in 1961, when the
splitting effect of rotation on the mode 0S2 was observed and explained (Backus and
Gilbert, 1961; Pekeris et al., 1961; Dahlen, 1968, 1969, 1974; Woodhouse and Dahlen,
1978); see Dahlen (1980) for a review. The way in which asphericity affects a multiplet
can be shown to be approximately independent of other multiplets, provided that the
multiplet is isolated in the spectrum – i.e. not overlapping in frequency with other
multiplets. This form of the theory is known as degenerate splitting theory. If there
are two or more overlapping multiplets which are, nonetheless, an isolated group, a
modified version of splitting theory known as quasi-degenerate splitting theory can be
developed (Dahlen, 1968; Luh, 1973, 1974; Woodhouse 1980; Park, 1987, 1990; Um and
Dahlen, 1992), although this form if the theory has not yet been applied to the inverse
problem. If all modes are considered to be one group, this theory is essentially exact
(Woodhouse, 1983), but it is much too cumbersome to be applied in practice. Thus
applications of splitting theory seek to apply a complete theory to a restricted set of
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multiplets, judiciously selected to include the effects of interest in a particular class of
seismic data (see, for example, Um and Dahlen, 1992).

Consider an isolated multiplet k having, in the spherical Earth, degenerate eigen-
functions sm

k (x), (m = −l,−l + 1, ..., l) and (complex) eigenfrequency ω̃k. Then it
possible to define a (2l + 1) × (2l + 1) matrix H(k), known as the splitting matrix of

the multiplet, and having elements H
(k)
mm′ which are known linear functionals of the as-

pherical (and spherical) model perturbations and also include terms due to the rotation
and ellipticity of the Earth (for explicit formulae see Woodhouse and Dahlen, 1978).
Let U(k) be the matrix whose columns are the eigenvectors of H(k) and let Ω(k) be
the corresponding diagonal matrix, whose diagonal elements Ω

(k)
ii (i = 1, 2, ..., 2l + 1)

are the corresponding eigenvalues. Then the result of degenerate splitting is that the
eigenfunctions of the aspherical model are given by

u
(k)
j (x) =

∑
m

U
(k)
mj s

m
k (x) (j = 1, 2, ..., 2l + 1) (6.1)

with corresponding eigenfrequencies ωk + Ω
(k)
jj .

To obtain the perturbed seismogram, it is necessary to expand the equivalent body
force density F (x, t) in terms of u

(k)
j (x). This can be done by making use of the known

expansion in terms of sm
k (x). It can be shown (Woodhouse and Girnius, 1982) that

when this is done one obtains an expression for the perturbed seismogram of the form
(c.f. 3.58)

v · u =
∑
km

Rm
k (θr, φr)A

m
k (t)eiω̃t (6.2)

where Am
k (t) is the solutions of the initial value problem

Am
k (0) = Sm

k (θs, φs) (6.3)

d

dt
Am

k (t) = i
∑
m′
H

(k)
mm′Am′

k (t) (6.4)

Thus at time 0 equations (3.58), for the spherical earth, and (6.2) for the aspherical
earth reduce to the same expression, but with increasing time the apparent modal
excitations evolve according to (6.4). It is this additional, slow time variation that
leads to the split spectrum in the frequency domain. Equation (6.2) leads naturally to

an inverse problem for the splitting matrix elements H
(k)
mm′ for the multipet, by seeking

to determine the values which enable the spectrum of (6.2) to match observed spectra
for the multiplet. This inverse problem can be simplified by noting that the splitting
matrix may be represented in terms of rather fewer unknowns cst, which represent the
spherical harmonic expansion coefficients of a certain function η(k)(θ, φ) which is termed
the splitting function of the multiplet. We have:

Hmm′ = Ωβδmm′ + ωk

∑
s=0,2,..,2l

s∑
t=−s

γmm′t
ls cst (6.5)

η(k)(θ, φ) =
∑

s=0,2,..,2l

s∑
t=−s

cstY
t
s (θ, φ) (6.6)
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where the first term is the (known) contribution due to the action of Coriolis forces
(Dahlen, 1968) and γmm′t

ls are known numerical coefficients. For further details we refer
to Giardini et al., (1987, 1988), Ritzwoller et al., (1988).

The important point is that knowledge of the splitting matrix is equivalent to knowl-
edge of a certain function on the sphere. This function has a finite spherical harmonic
expansion, containing only even spherical harmonic degrees. Furthermore the splitting
coefficients cst are related to the internal heterogeneity of the Earth of degree s and
order t by means of differential kernels, in much the same way as was discussed above
for the case of spherically symmetric perturbations. Examples of these kernels and
the retrieved splitting functions for certain modes, taken from Giardini et al. (1988),
are shown in Figs. 5 and 6. The kernels depend upon s, but not on t. In fact their
dependence on s is small except in the case of very low l modes. In the case that the
dependence on s can be neglected, the splitting function η(k)(θ, φ) is simply a depth
average of the local structure beneath the point (θ, φ), with averaging kernels such as
those depicted in Figs. 5,6.

This result reflects the long known fact that within degenerate splitting theory the-
oretical seismograms have no dependence on odd-degree structure. Since even degree
harmonics have even parity under point reflection through the centre of the earth, and
odd degree harmonics have odd parity, this means that the predicted waveforms are
sensitive only to the average properties at antipodal points, and have no sensitivity to
the difference in structure between antipodal points. Clearly this is not the case for
travelling waves, and thus it represents a shortcoming of degenerate splitting theory.
Nevertheless it is true for many kinds of data, that the sensitivity to even degree struc-
ture is much greater than that for odd degree structure, and consequently that even
degree structure is better constrained in tomographic models. Such insensitivity to odd
degrees was first pointed out by Backus (1964), in connection with the interpretation
of mean phase velocities measured for great circle paths.

Figs. 3, 4, taken from Giardini et al.(1988) show examples of spectral segments
which have been used in the inverse problem for cst. Solid lines show observed spectra
(amplitude and phase) for narrow intervals in frequency centred on the multiplet of
interest. Dashed lines in Figs. 3, 4 show the predictions of splitting theory; in Fig
3 only splitting due to rotation and ellipticity are taken into account, and in Fig.
4 splitting predicted by the retrieved splitting functions has been included. Vertical
bars at the bottom of each panel show the distribution of singlets and their relative
excitations. These figures illustrate the fact that it is not usually possible to resolve
the individual singlet frequencies within the multiplets; this is because of the effects of
attenuation and finite record length, which introduce ‘smearing’ in the spectral domain.
The underlying singlets contribute to the spectrum, according to their excitations, but it
is only their combined effect which can be observed. It is also clear that the observations
and the model predictions are very discrepant in Fig. 3, which does not include the
effects of heterogeneity, but that models of heterogeneity can be found which enable the
observations and the theory to be brought into close agreement (Fig. 4). Naturally, it
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is necessary to use many spectra for the same multiplet in order to retrieve the splitting
function of the multiplet. Each observed spectrum yields a different sample of the
underlying singlet distribution, counteracting the difficulty of not being able to retrieve
the singlet distribution directly.

The strength of this approach is that it enables us to extract information from very
long period data which cannot be interpreted in terms of rays and travel times. Since
the wavelengths involved are comparable to the Earth’s radius, such data average over
large volumes of the Earth, enabling us to constrain the very low wavenumbers of the
spectrum of heterogeneity. When applied to modes sampling the the Earth’s inner core
the method confirmed the existence of a strong zonal effect (Masters and Gilbert, 1981;
Ritzwoller et al., 1986) and led to its interpretation in terms of inner core anisotropy
(Woodhouse et al., 1986; Morelli et al., 1986; Giardini et al., 1987). As illustrated
in Fig. 5., there are a number of modes which are ideally suited to estimating mean
lower mantle S-heterogeneity (of low degree), and others (Fig. 6) possessing significant
sensitivity to mantle vP . Such information was used by Li et al., to estimate the mean
lower mantle ratio of S to P heterogeneity, obtaining a value of d ln vS/d ln vP much
higher than had been anticipated. Some more recent measurements of modal splitting
are by Widmer et al., (1992).

The short time approximation. For sufficiently small times, t, equation (6.4) has
the solution

Am
k (t) = Sm

k (θs, φs) + it
∑
m′
H

(k)
mm′Am′

k (t). (6.7)

Since H
(k)
mm′ is linear in the model perturbations, this leads to a linearized relationship

between heterogeneity and the seismogram; that is to say it yields the partial derivative
of the seismogram with respect to aspherical model perturbations. Using (6.7) in (6.2)
we obtain the short time approximation

v · u =
∑
km

Rm
k (θr, φr)S

m
k (θs, φs)(1 + iλkt) e

iω̃kt (6.8)

where

λk =

∑
mm′ Rm

k (θr, φr)H
(k)
mm′Sm′

k (θs, φs)∑
mR

m
k (θr, φr)Sm

k (θs, φs)
. (6.9)

Equation (6.8) can also be written, to the same formal precision,

v · u =
∑
km

Rm
k (θr, φr)S

m
k (θs, φs) exp{i(ω̃k + λk)t}. (6.10)

This form of the equation shows that the effect of heterogeneity is to modify the ap-
parent frequency the mode by the amount λk which, importantly, depends upon upon
the source and receiver locations.

Early observations of the effects of heterogeneity on the measured frequencies of the
fundamental mode identified this effect (Buland et al., 1979). Within the modal picture
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it is, at first, puzzling, since one thinks of the eigenfrequencies as purely functions of
Earth structure, and not of the path. However, within the travelling wave picture, it is
clear that measured phase delays will characterize the path along which surface wave
packets propagate between source and receiver. Equations (6.10) provides one of the
connections between the mode and ray pictures of the oscillations. The way in which it
comes about that the measurement of the location of a spectral peak is affected by the
path is illustrated in Fig. 4. For example, Fig. 4d, for the fundamental mode 0S7 the
peak is moved to the left, since the excitation of the higher frequency singlets is very
small, reflecting the fact that the source-receiver great circle path, in this case, samples
regions of low phase velocity.

It is of interest to investigate this effect further, and to determine the way in which
the location parameter λk depends upon the geographical distribution of heterogeneity,
as represented by of the splitting function η(k)(θ, φ). We find

λk =
∫ π

−π

∫ π

0
K(k)(θ, φ)η(k)(θ, φ) sin θdθdφ. (6.11)

Explicit expressions for the sampling kernel K(k)(θ, φ) are given by Woodhouse and
Girnius (1982). Figs. 7a,b, taken from their paper, show examples of the these. The
figures show a rectangular (linear) projection of the globe and the shape of the kernel
is illustrated for a source on the ‘equator’ at the ‘eastmost’ (left) end of the plot. The
receiver is also on the ‘equator’, 108◦ to the ‘west’. The kernels are shown (for an
explosive source and a vertical instrument) for the fundamental modes 0S12 and 0S45.
For both modes the systematic peak along the great circle path is apparent, becoming
more clearly defined as angular order increases. In the limit of large l, λk represents
just the great-circle average of η(k), which, again for large l is equal to the change in
eigenfrequency corresponding to the local radial structure at each point of the globe.
Thus we have:

λk =
1

2π

∫
great circle

δωlocal(θ, φ)dσ (6.12)

where dσ represents angular distance along the great circle path, a result derived by
Jordan (1978) by an asymptotic analysis of the equations governing degenerate split-
ting. This result is most easily understood in terms of the ray picture of surface wave
propagation, where it represents the fact that the phase delay of a surface wave is an
integral of local phase slowness along the path (see below). The location parameter λk,
representing the spectral peak shift, arises from demanding constructive interference of
globe-circling wave packets.

The short time approximation (6.7) has been extended to include interactions be-
tween all multiplets by Woodhouse (1983) (also Tanimoto, 1984). The resulting formu-
lae can be regarded as giving exact expressions for the partial derivative of a seismogram
with respect to perturbations in earth structure from an initial, spherically symmetric,
model. Thus, to the extent that seismograms depend linearly on structural pertur-
bations this is all that is needed. Unfortunately, such dependence is far from linear
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whenever the perturbations result in travel time shifts more that a fraction of the pe-
riod. The situation can be alleviated somewhat by incorporating the secular terms (i.e.
those proportional to t) into frequency adjustments such as was done in passing from
(6.7) to (6.10). The resulting expression for the seismogram can be written

v · u =
∑
k

Ak exp {iωkt} . (6.13)

with (neglecting density perturbations which introduce additional terms)

ω2
k = ω2

k +

∑
mm′ Rm

k H
kk
mm′Sm′

k∑
mR

m
k S

m
k

(6.14)

Ak =
∑
m

Rm
k S

m
k +

∑
k �=k′

1

ω2
k − ω2

k′

{∑
mm′

Rm
k H

kk′
mm′Sm′

k′ +
∑
mm′

Rm′
k′ Hk′k

m′mS
m
k

}
. (6.15)

Where the matrix elements Hkk′
mm′ are defined in a similar way to the splitting matrix

elements H
(k)
mm′ introduced above, but which now are defined for all pairs of multiplets.

The self coupling terms are (again neglecting density perturbations) Hkk
mm′ = 2ωkH

(k)
mm′ .

Certain alternative exact and asymptotic approximations to these expressions have
been derived, which enable further connections to be made between the mode and
ray pictures (Romanowicz and Roult, 1986, 1988; Romanowicz, 1987; Snieder and Ro-
manowicz, 1988; Romanowicz and Snieder, 1988) and which also elucidate the connec-
tion with the Born approximation and incorporate the effects of anisotropy. First order
scattering theory, which leads to the Born approximation, is an alternative way of cal-
culating the linearized effect of heterogeneity, which must, of course, coincide with the
theory outlined here. In addition, the connections between the mode and ray pictures
point towards the shortcomings of ray theory and enable the ‘width’ of a ray to be
quantified, in much the same way as it was shown above that the location parameter
λk is characterized by a distributed averaging kernel over the globe, rather than by a
simple line average around the great circle. Li and Tanimoto (1993) derive a practicable
algorithm for calculating the differential kernels of long period body waves by limiting
the summations in (6.15) to multiplets in the group velocity window close to a∆/T (∆),
where ∆ and T (∆) are the distance and travel time of the phase of interest. Li and
Romanowicz, (1994) apply this method to the inversion of three dimensional mantle
structure and compare the results with those obtained using a less sophisticated theory.
Certain higher order scattering approximations have also been developed (e.g. Pollitz,
1994). A number of such developments will be discussed in other lectures at this school.

These developments are adding to our understanding of the way in which hetero-
geneity affects seismic observations; it must be borne in mind, however, that results
of this kind depend upon the short time approximation, and while they enable the
connections between the ray and mode pictures to be clarified, they do not supersede
ray theory itself. Ray theory is an asymptotic theory which depends upon the assump-
tion that the scale lengths characterizing heterogeneity are large compared with the
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wavelengths of interest. It is not a short-time theory, and is not a perturbation theory,
in that it can deal with arbitrarily large structural variations, provided that they are
sufficiently smooth on the scale of a wavelength. Thus the domains of applicability
of ray theory and scattering theory are different. Naturally, where their domains of
applicability intersect, they give similar results, and the linearized predicitions of ray
theory must agree, in the case of sufficiently smooth perturbations, with the predictions
of first order scattering theory.

Surface wave ray theory The fundamental idea of ray theory is that locally any kind
of wave, of fixed frequency ω, is approximated by plane wave of the form

u = A exp(iωt− ikx) (6.16)

Since we are here considering surface waves, x is a measure of distance in some direction
(the direction of propagation) in the surface, and u is some component of displacement.
Since the surface may be curved, and since the properties of the medium vary laterally
we need to allow the horizontal wavenumber k and the amplitude A to vary laterally
on the scale of variation of the medium. A general way of doing this (Bretherton, 1968;
Gjevik, 1973; Woodhouse, 1974; Woodhouse and Wong, 1986) is to replace (6.16) by
the expression

u(x, r, t) = A(x, r, t) exp(−iψ(x, t)) (6.17)

and to define the local wavenumber and frequency of the wave to be

kσ =
∂ψ

∂xσ
, ω = −∂ψ

∂t
(6.18)

Here x denotes a pair of coordinates in the surface, which we denote individually by
xσ (σ = 1, 2), x1 = θ, x2 = φ, say. We then demand (in a mathematically well defined
way) that the amplitude A and the wavenumber k (and possibly the frequency ω) vary
slowly – on the same scale as the lateral variations in structure. It can then be shown
that A(x, r, t), as a function of r at constant xσ, t, must be an eigenfunction of the
local eigenvalue problem corresponding to the frequency and wavenumber ω, kσ – i.e.
its dependence on r must be the same as in a laterally homogeneous medium having
everywhere the properties which exist at the point (xσ, t). Of course, although it is
allowed by the theory we shall only need to consider the case in which the structure is
independent of t. As a consequence, frequency and wavenumber must be related by the
local dispersion relation, ω = ω(kσ, xσ) i.e.

∂ψ

∂t
+ ω

(
∂ψ

∂xσ

, xσ

)
= 0. (6.19)

This is a partial differential equation for the phase ψ, and it is in the form of the
Hamilton-Jacobi equation which occurs in classical mechanics. The dispersion relation
ω(kσ, xσ) plays exactly the role that is played by the Hamiltonian H(pσ, qσ), where
pσ, qσ are the canonical momenta and coordinates of a mechanical system (see e.g.
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Goldstein, 1959). The solution of this system is obtained by applying the method of
characteristics which yield Hamilton’s canonical equations,

ẋσ =
∂ω

∂kσ

(6.20)

k̇σ = − ∂ω

∂xσ

(6.21)

where ‘˙’ denotes the time derivative along the characteristic curve. The phase function
ψ is to be obtained by integrating along the characteristic:

ψ =
∫

(ω − kσẋ
σ) dt (summation assumed) (6.22)

Since the Hamiltonian ω(kσ, x
σ) has no explicit dependence on t it is a ‘constant of

the motion’; that is to say, solutions of (6.20) will be such that ω(kσ, x
σ) is constant.

Consequently we have

ψ = ωt−
∫

(kσẋ
σ) dt (6.23)

The canonical equations constitute the ray tracing equations for surface waves of a given
constant frequency. The equations depend upon frequency, and so the ray trajectories
will depend upon the frequency. Notice that, in general, the wave vector kσ is not
necessarily parallel to the ray, although it will be in the case that the dispersion relation
is transversely isotropic. The ray represents the transport of energy at the group velocity

|ẋ| = U =

(
gσν

∂ω

∂kσ

∂ω

∂kν

)1
2

(6.24)

where gσν is the covariant metric tensor in the surface. In the case of a sphere of radius
a

g11 = a2, g22 = a2sin2θ, g12 = g21 = 0. (6.25)

The usual spherical components or the wave vector are

kθ = k1/a, kφ = cosec θk2/a (6.26)

and those of the ray tangent ν, say, are

νθ = aθ̇/U ; νφ = a sin θφ̇/U. (6.27)

As in the ray theory for body waves, it can be shown that there is an inverse
relationship between between the square of the wave amplitude and the spreading of
neighbouring rays, by virtue of the fact that, in the absence of attenuation, energy is
conserved within the ray tube. This relationship takes the form

U(ω, xσ)
∫ a

0
ρ|A(x, r, t)|2dr × (ray tube width) = constant along the ray (6.28)
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and since all other attributes of A(x, r, t) are determined by the fact that it is a local
eigenfunction, this equation determines the variation of wave amplitude along the ray.

While the foregoing theory is general, we shall now specialize to the case that the
dispersion relation is isotropic. The case of azimuthal anisotropy will be discussed
further in other lectures at this school. We write

ω = ω(k, xσ) (6.29)

where

k = (gσνkσkν)
1
2 = (k2

θ + k2
φ)

1
2 (6.30)

The ray tracing equations can, in this case be recast in terms of the phase velocity, at
constant frequency ω as a function of position: c(ω, xσ) = ω/k. Taking φ to be the
independent variable and γ = cot θ to be the dependent variable, the ray trajectory
γ(φ) satisfies the second order ordinary differential equation (Woodhouse and Wong,
1986):

d2γ

dφr
+ γ =

⎧⎨⎩sin2θ

(
dγ

dφ

)2

+ 1

⎫⎬⎭
(
∂θ +

dγ

dφ
∂φ

)
ln c(ω, θ, φ). (6.31)

Ray tracing equations equivalent to this were derived by Jobert and Jobert (1983).
This is an exact ray tracing equation, but it is particularly useful for investigating the
behaviour of rays in the case of slight heterogeneity, in which case the right side is
a first order quantity, and first order approximations to the ray trajectory and other
ray properties can be easily obtained by substituting the unperturbed ray trajectory,
namely the great circle

γ(φ) = (const.) × sin(φ− φ0) (6.32)

into the the right hand side, and making use of the well known solutions, in terms of
integrals, of the inhomogeneous simple harmonic equation. This can made particularly
simple if the coordinate system is chosen in such a way that the unperturbed ray
lies along the ‘equator’, in which case the equation of the unperturbed ray is simply
γ(φ) = 0.

Using this approach Woodhouse and Wong (1986) have derived approximate for-
mulae for the phase, amplitude and off-azimuth arrival direction. For high orbits such
linearized results from ray theory are often poor approximations to the results of exact
ray calculations (for realistic low order models of heterogeneity); however they lend
some insight into the magnitude and character of the effect of heterogeneity on sur-
face waves. In particular, they allow us to write down simple formulae for the phase
and amplitude anomalies to be found in successive orbits observed at the same station.
These can be written in terms of the orbit number n of odd (R1, R3 ..., G1, G3, etc.)
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and even (R2, R4 ..., G2, G4, etc.) orbits of surface waves. For phase anomaly δψ and
amplitude anomaly δ lnA these results can be written:

δψ = − ωa

c(ω)
[I1 + 1

2
(n− 1)I2] (n odd) (6.33)

δψ = − ωa

c(ω)
[−I1 + 1

2
nI2] (n even) (6.34)

δ lnA = 1
2
cosec ∆[J1 + 1

2
(n− 1)J2] (n odd) (6.35)

δ lnA = 1
2
cosec ∆[J1 − 1

2
nJ2] (n even) (6.36)

where I1, I2 (and similarly J1, J2) are certain integrals taken over the minor arc and
great circle path respectively. These integrals are:

I =
∫
δ(ln c)dφ (6.37)

J =
∫

sin(∆ − φ)[sinφ∂2
θ − cosφ∂φ]δ(ln c)dφ (6.38)

assuming that the coordinates are such that the receiver on the ‘equator’ at (θ, φ) =
(π/2, 0) and the receiver is at (π/2,∆). Equations (6.35), (6.36) neglect the effect due
to the fact that the surface amplitude of the normalized eigenfunction (i.e. normalized
to unit energy surface density) depends upon local structure. The results (6.33), (6.34)
are simply a representation of Fermat’s principle – that the phase perturbation, to
first order in the heterogeneity, is the integral of the perturbation in phase slowness
(δ[1/c]) with respect to distance travelled along the unperturbed ray. The formulae
(6.33),(6.34) illustrate the well known fact that, assuming Fermat’s principle to hold,
multiply orbiting mantle waves accumulate the the same phase anomaly for each great
circle passage. The corresponding prediction for amplitude anomalies is that orbits
of one sense are amplified by the same factor for each great circle passage, and that
orbits of the oposite sense are deamplified by the same factor, a phenomenon frequently
observed in the data, demonstrating the importance of the focusing effect.

Examples of measured amplitude anomalies, together with exact and linearized (ray
theoretic) model calculations are shown in Figs. 8,9, taken from Woodhouse and Wong
(1986). The ray paths traced using exact ray theory are also shown, in a projection
for which the source is on the ‘equator’ at zero ‘longitude’ and the great circle path
lies along the ‘equator’. Fig 8. shows an example for which the paths are not greatly
deviated from the great circle, and for which the observations and the two theoretical
results show some measure of agreement. Fig. 9 shows an example where the paths
deviate by large amounts from the great circle and for which the data are in better
agreement with the exact ray theoretic results, which deviate greatly from linearized
ray theory. These results show that there are very large amplitude effects, both observed
and predicted, due to focusing and defocusing of the ray bundle. These significantly
complicate the problem of estimating the attenuation of mantle waves.

Wong (1989) addressed the nonlinear inverse problem of using both phase and am-
plitude of mantle waves to determine phase velocity distributions for Love and Rayleigh
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waves in the period range 150–350s, up to spherical harmonic degree and order 12. This
involves iteratively updating the model and the ray paths until convergence is achieved.
While excellent results were obtained for phase (more than 70% variance reduction for
all but the longest periods), the variance reduction in amplitudes was only of order
20%. This probably indicates that degrees higher than 12 have an important influence
on amplitudes.

The connection of the results of ray theory, e.g. (6.33)–(6.36), with those derived
from the modal approach can be made by recognizing that

δωlocal
ω

=
U

c

δc

c
(6.39)

This form arises from the fact the δωlocal is defined as the local perturbation in eigen-
frequency at constant k (or constant l), whereas δc is the phase velocity perturbation
at constant ω. Using these relationships (or from first principles) it can be shown
(Woodhouse and Dziewonski, 1984) that the phase perturbations (6.33), (6.34), at the
orbital group arrival times, can be mimicked by a calculating the contribution to the
seismogram as in a spherical model, but with an adjustment δθ (which is different for
different multiplets) to the arc distance, together with an adjustment to the modal

eigenfrequency δ̂ω. We find

δψ = akδθ − δ̂ωt (n odd) (6.40)

δψ = −akδθ − δ̂ωt (n even) (6.41)

where t is the group arrival time of the given orbit

t = a(∆ + (n− 1)π)/U (n odd) (6.42)

t = a(−∆ + nπ)/U (n even) (6.43)

(6.44)

and where

δθ =
∆

kU
(δ̂ω − δ̃ω) (6.45)

The quantities δ̂ω, δ̃ω are defined to be the great circle average and the minor arc
average, respectively, of δωlocal. This provides an alternative derivation of the formula
(6.12) for the observed frequency shift for a given path. Additionally, it gives a simple
way of calculating seismograms which incorporate the effects of phase delays along
incomplete arcs. It has been shown by Romanowicz (1987) that the this result, together
with the amplitude effects predicted by (6.35), (6.36) can be obtained by an asymptotic
analysis of the scattering approximation (6.13), when coupling between neighbouring
modes along the same branch is taken into account. This simplified version of ray
theory, which incorporates only an approximation to the ray theoretic prediction of the
phase, is a very useful one for waveform inversion, and has been applied, in many studies
(e.g. Woodhouse and Dziewonski, 1984, 1986, 1989; Tanimoto, 1987, 1988, 1990; Su
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and Dziewonski, 1991; Su et al.1994) to both surface wave and long period body wave
data. Its shortcoming is that it is not very accurate for direct body wave phases, since
it predicts that the observed seismogram depends only upon the horizontally averaged
structure, which is clearly not a good approximation in many cases. It is a good
approximation (within the the limitations of ray theory) for the fundamental mode and
the low overtones, which constitute a major part of the long period body wave signal.
Its limitations have recently been investigated by Li and Romanowicz (1994).

In the spectral domain, the measurement of frequency shifts in individual spectra for
the fundamental modes, has been extensively applied to constrain even degree mantle
structure (e.g. Masters et al.1982; Smith and Masters, 1989); the related and traditional
technique of measuring phase and group delays over numerous paths was also among
the earliest to elucidate clear patterns of heterogeneity in the mantle (e.g. Nakanishi
and Anderson, 1982, 1983, 1984; Nataf et al.1984, 1986).

7 Postscript

In these lectures we have reviewed some of the techniques of long period seismology.
Several different kinds of approximation have been introduced since, on the one hand,
they lend physical insight into the phenomena of wave propagation and, on the other,
have proved useful in formulating practicable tomographic inversion schemes. Future
progress will undoubtedly require that these approximations be superseded by improved
ones as, indeed, is currently taking place (e.g. Li and Tanimoto, 1993; Li and Romanow-
icz, 1994). As touched on in Section 6, the complete elastic response of the Earth is
described by the theory of modal coupling, in which the wave field is described in terms
of the modes of a spherical model, coupled together by the effects of heterogeneity
(Dahlen, 1968; Luh, 1973, 1974; Woodhouse 1980, 1983; Park, 1987, 1990; Um and
Dahlen, 1992). It is by investigating the properties of this theory, for earth models
derived using less a less complete formulation, that progress is likely to be made in
refining images of earth structure.

29



References

Abromowitz, M. and I. A. Stegun, Handbook of Mathematical Functions,
Dover Publications, New York, 1965.

Backus, G. E., Geographical interpretation of measurements of average
phase velocities of surface waves over great circular and great semi-
circular paths, Bull. Seism. Soc. Am., 54, 571-610, 1964.

Backus, G. E. and J. F. Gilbert, The rotational splitting of the free oscilla-
tions of the Earth, Proc. Nat. Acad. Sci., 47, 362-371, 1961.

Backus, G. E. and F. Gilbert, Numerical applications of a formalism for
geophysical inverse problems, Geophys. J. R. Astron. Soc., 13, 247-276,
1967.

Backus, G. E. and M. Mulcahy, Moment tensors and other phenomenological
descriptions of seismic sources, I. Continuous displacements, Geophys. J.
R. Astron. Soc., 46, 341-362, 1976.

Benioff, H., F. Press and S. W. Smith, Excitation of the free oscillations of
the Earth by earthquakes, J. Geophys. Res., 66, 605-619, 1961.

Biot, M. A., Mechanics of Incremental Deformations, John Wiley, New
York, 504pp, 1965.

Bretherton, F. P., Propagation in slowly varying waveguides, Proc. R. Soc.
Lond., A302, 555, 1968.

Brodskii, M. A., On an application of asymptotic methods for the inverse
problem of toroidal oscillations, Comput. Seismol., 8, 162-174 (in Rus-
sian), 1975.

Brodskii, M. A., An asymptotic method of investigation of rays and inversion
fro spheroidal oscillations of an elastic sphere, Comput. Seismol., 10,
150-168 (in Russian), 1978.

Brune, J. N., Travel times, body waves and normal modes of the Earth,
Bull. Seism. Soc. Am., 54, 2099-2128, 1964.

Brune, J. N., P and S wave travel times and spheroidal normal modes of a
homogeneous sphere, J. Geophys. Res., 71, 2959-2965, 1966.

Buland, R., J. Berger and F. Gilbert, Observations from the IDA network
of attenuation and splitting during a recent earthquake, Nature, 277,
358-362, 1979.

Dahlen, F. A., The normal modes of a rotating, elliptical earth, Geophys J.
R. Astron. Soc., 16, 329-367, 1968.

30



Dahlen, F. A., The normal modes of a rotating, elliptical earth, II, Near
resonant multiplet coupling, Geophys. J. R. Astron. Soc., 18, 397-436,
1969.

Dahlen, F. A., Elastic dislocation theory for a self-gravitating elastic con-
figuration with an initial static stress field, Geophys. J. R. astr. Soc.,
28, 357-383, 1972.

Dahlen, F. A., Elastic dislocation theory for a self-gravitating elastic con-
figuration with an initial static stress field. II. Energy release, Geophys.
J. R. astr. Soc., 31, 469-484, 1973.

Dahlen, F. A., Inference of the lateral heterogeneity of the Earth from eigen-
frequency spectrum: a linear inverse problem, Geophys. J. R. Astron.
Soc., 38, 143-167, 1974.

Dahlen, F. A., Splitting of the free oscillations of the Earth, in: Physics
of the Earth’s Interior (A. M. Dziewonski and E. Bosci, eds.), Proc.
“Enrico Fermi” Int. Sch. Phys., 78, 82-126, 1980.

Dahlen, F. A. and M. L. Smith, The influence of rotation on the free oscilla-
tions of the Earth, Philos. Trans. R. Soc. Lond., Ser. A, 279, 583-629,
1975.

Dziewonski, A. M. and D. L. Anderson, Preliminary Reference Earth Model,
Phys. Earth Planet. Int., 25, 297-356, 1981.

Dziewonski, A. M. and J. H. Woodhouse, Studies of the seismic source using
normal mode theory, Proc. Enrico Fermi Sch. Phys., 85 (H. Kanamori
and E. Boschi, eds.), 45-137, 1983.

Dziewonski, A. M. and D. L. Anderson, Preliminary Reference Earth Model,
Phys. Earth Planet. Int., 25, 297-356, 1981.

Edmonds, A. R., Angular Momentum and Quantum Mechanics, Princeton
University Press, Princeton, NJ, 1960.

Geller, R. J., Elastodynamics in a laterally heterogeneous, self-gravitating
body, Geophys. J. R. astr. Soc., 94, 271-283, 1988.

Giardini, D., X. Li and J. H. Woodhouse, Three dimensional structure of
the Earth from splitting in free oscillation spectra, Nature, 325, 405-411,
1987.

Giardini, D., X.-D. Li and J. H. Woodhouse, Splitting functions of long
period normal modes of the Earth, J. Geophys. Res., 93, 13716-13742,
1988.

Gilbert, F., Excitation of normal modes of the Earth by earthquake sources,
Geophys. J. R. Astron. Soc., 22, 223-226, 1971.

31



Gilbert, F., The representation of seismic displacements in terms of travel-
ling waves, Geophys. J. R. Astron. Soc., 44, 275-280, 1976.

Gilbert, F. and A. M. Dziewonski, An application of normal mode theory
to the retrieval of structural parameters and source mechanisms from
seismic spectra, Philos. Trans. R. Soc. Lond. A, 278, 187-269, 1975.

Gjevik, B., A variational method for Love waves in nonhorizontally layered
structures, Bull. Seism. Soc. Am., 63, 1013, 1973.

Goldstein, H. Classical Mechanics, Addison-Wesley, 399pp., 1959.

Jobert, N. and G. Jobert, An application of ray theory to the propagation of
waves along a laterally heterogeneous spherical surface, Geophys. Res.
Lett., 10, 1148-1151, 1983.

Jordan, T. H., A procedure for estimating lateral variations from low-
frequency eigenspectra data, Geophys. J. R. Astron. Soc., 52, 441-455,
1978.

Kennett, B. L. N. and J. H. Woodhouse, On high-frequency spheroidal
modes and the structure of the upper mantle, Geophys. J. R. Astron.
Soc., 55, 333-350, 1978.

Li, X.-D. and T. Tanimoto, Waveforms of long-period body waves in a
slightly aspherical earth model, Geophys. J. Int., 112, 92-102, 1993.

Li, X.-D. and B. Romanowicz, Comparison of global waveform inversion
with and without considering cross-branch model coupling, Geophys. J.
Int., 121, 695, 1995.

Li, X.-D., D. Giardini and J. H. Woodhouse, Large scale three dimensional
even degree structure of the Earth from splitting of long period normal
modes, J. Geophys. Res., 96, 551-577, 1991a.

Li, X.-D., D. Giardini and J. H. Woodhouse, The relative amplitudes of
mantle heterogeneity in P-velocity, S-velocity and density from free os-
cillation data, Geophys. J. Int., 105, 649-657, 1991b.

Love, A. E. H., Some Problems in Geodynamics, Cambridge University
Press, 1911.

Luh, P. C., Free oscillations of the laterally inhomogeneous Earth: Quasi-
degenerate multiplet coupling, Geophys. J. R. Astron. Soc., 32, 187-202,
1973.

Luh, P. C., Normal modes of a rotating, self gravitating inhomogeneous
Earth, Geophys. J. R. Astron. Soc., 38, 187-224, 1974.

Malvern, L. E., Introduction to the mechanics of a continuous medium,
Prentice-Hall, Englewood Cliffs, New Jersey, 1969.

32



Masters, G. and F. Gilbert, Structure of the inner core inferred from obser-
vations of its spheroidal shear modes, Geophys. Res. Lett., 8, 569-571,
1981.

Masters, G., T. H. Jordan, P. G. Silver and F. Gilbert, Aspherical earth
structure from fundamental spheroidal mode data, Nature, 298, 609-
613, 1982.

Morelli, A., A. M. Dziewonski and J. H. Woodhouse, Anisotropy of the
inner core inferred from PKIKP travel times, Geophys. Res. Lett., 13,
1545-1548, 1986.

Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, McGraw
Hill, 1953.

Nakanishi, I. and D. L. Anderson, Worldwide distribution of group velocity
of mantle Rayleigh waves as determined by spherical harmonic inversion,
Bull. Seism. Soc. Am., 72, 1185-1194, 1982.

Nakanishi, I. and D. L. Anderson, Measurement of mantle wave velocities
and inversion for lateral heterogeneity and anisotropy, I. Analysis of great
circle phase velocities, J. Geophys. Res., 88, 10267-10283, 1983.

Nakanishi, I. and D. L. Anderson, Measurement of mantle wave velocities
and inversion for lateral heterogeneity and anisotropy, II. Analysis by
the single station method, Geophys. J. R. Astron. Soc., 78, 573-618,
1984.

Nataf, H.-C., I. Nakanishi and D. L. Anderson, Anisotropy and shear ve-
locity heterogeneities in the upper mantle, Geophys. Res. Lett., 11,
109-112, 1984.

Nataf, H.-C., I. Nakanishi and D. L. Anderson, Measurement of mantle
wave velocities and inversion for lateral heterogeneity and anisotropy,
III. Inversion, J. Geophys. Res., 91, 7261-7307, 1986.

Park, J., Asymptotic coupled-mode expressions for multiplet amplitude
anomalies and frequency shifts on an aspherical Earth, Geophys. J.
R. Astron. Soc., 90, 129-169, 1987.

Park, J., Free oscillation coupling theory, in: Mathematical Geophysics (N.
J. Vlaar, G. Nolet, M. J. R. Wortel and S. A. P. L. Cloetingh, eds.), D.
Reidel, 31-52, 1988.

Park, J., The subspace projection method for constructing coupled-mode
synthetic seismograms, Geophys. J. Int., 101, 111-123, 1990.

Pekeris, C. L. and H. Jarosch, The free oscillations of the Earth, Contribu-
tions in Geophysics in Honor of Beno Gutenberg, pp171-192, Pergamon,
New York, 1958.

33



Pekeris, C. L., A. Alterman and H. Jarosch, Rotational multiplets in the
spectrum of the Earth, Phys. Rev., 122, 1692-1700, 1961.

Phinney, R. A. and R. Burridge, Representation of the elastic-gravitational
excitation of a spherical earth model by generalized spherical harmonics,
Geophys. J. R. Astron. Soc., 34, 451-487, 1973.

Pollitz, F. F, Surface wave scattering from sharp lateral discontinuities J.
Geophys. Res., 99, 21891, 1994.

Ritzwoller, M., G. Masters and F. Gilbert, Observations of anomalous split-
ting and their interpretation in terms of aspherical structure, J. Geophys.
Res., 91, 10203-10228, 1986.

Ritzwoller, M., G. Masters and F. Gilbert, Constraining aspherical structure
with low frequency interaction coefficients: Application to uncoupled
multiplets, J. Geophys. Res., 93, 6369-6396, 1988.

Romanowicz, B., Multiplet-multiplet coupling due to lateral heterogeneity:
asymptotic effects on the amplitude and frequency of the Earth’s normal
modes, Geophys. J. R. Astron. Soc., 90, 75-100, 1987.

Romanowicz, B. and G. Roult, First-order asymptotics for the eigenfrequen-
cies of the Earth and application to the retrieval of large-scale lateral
variations of structure, Geophys. J. R. Astron. Soc., 87, 209-239, 1986.

Romanowicz, B. and G. Roult, Asymptotic approximations for normal modes
and surface waves in the vicinity of the antipode: Constraints on global
earth models, J. Geophys. Res., 93, 7885-7896, 1988.

Romanowicz, B. and R. Snieder, A new formalism for the effect of lateral het-
erogeneity on normal modes and surface waves, II: General anisotropic
perturbations, Geophys. J. R. Astron. Soc., 93, 91-99, 1988.

Smith, M. F. and G. Masters, Aspherical structure constraints from free
oscillation frequency and attenuation measurements, J. Geophys. Res.,
94, 1953-1976, 1989.

Snieder, R., On the connection between ray theory and scattering theory
for surface waves, in: Mathematical Geophysics (N. J. Vlaar, G. Nolet,
M. J. R. Wortel and S. A. P. L. Cloetingh, eds.), D. Reidel, 77-84, 1988.

Su, W.-J. and A. M. Dziewonski, Predominance of long wavelength hetero-
geneity in the mantle, Nature, 352, 121-126, 1991.

Su, W.-J., R. L. Woodward and A. M. Dziewonski, Degree 12 model of shear
velocity heterogeneity in the mantle, J. Geophys. Res., 99, 6945-6980,
1994.

Takeuchi, H. and M. Saito, Seismic surface waves, in: Methods Comput.
Phys., Academic Press, New York, 11, 217-295, 1972.

34



Tanimoto, T., A simple derivation of the formula to calculate synthetic long
period seismograms in a heterogeneous earth by normal mode summa-
tion, Geophys. J. R. Astron. Soc., 77, 275-278, 1984.

Tanimoto, T., The three dimensional shear wave structure in the mantle by
overtone waveform inversion – I. Radial seismogram inversion, Geophys.
J. R. Astron. Soc., 89, 713-740, 1987.

Tanimoto, T., The three dimensional shear wave structure in the mantle by
overtone waveform inversion – II. Inversion of X waves, R waves and G
waves, Geophys. J. R. Astron. Soc., 93, 321-333, 1988.

Tanimoto, T., Long wavelength S-velocity structure throughout the mantle,
Geophys. J. Int., 100, 327-336, 1990.

Um, J., and F. A. Dahlen, Normal mode multiplet coupling on an aspherical,
anelastic Earth, Geophys. J. Int., 111, 11-31, 1992.

Valette, B., About the influence of pre-stress upon adiabatic perturbations
of the Earth, Geophys. J. R. astr. Soc., 85, 179-208, 1986.

Watson, G. N., The diffraction of electric waves by the Earth, Proc. R. Soc.
Lond., A95, 83, 1918.

Widmer, R., G. Masters and F. Gilbert, Observably split multiplets – data
analysis and interpretation in terms of large scale structure, Geophys. J.
Int., 111, 559-576, 1992.

Wong, Y. K., Upper mantle heterogeneity from phase and amplitude data of
mantle waves, Ph.D. Thesis, Harvard Univ., Cambridge, Massachusetts,
1989.

Woodhouse, J. H., Surface waves in a laterally varying layered structure,
Geophys. J. R. Astron. Soc., 37, 461-490, 1974.

Woodhouse, J. H., On Rayleigh’s principle, Geophys. J. R. Astron. Soc.,
46, 11-22, 1976.

Woodhouse, J. H., Asymptotic results for elastodynamic propagator matri-
ces in plane stratified and spherically stratified Earth-models, Geophys.
J. R. Astron. Soc., 54, 263-280, 1978.

Woodhouse, J. H., The coupling and attenuation of nearly resonant mul-
tiplets in the earth’s free oscillation spectrum, Geophys. J. R. Astron.
Soc., 61, 261-283, 1980.

Woodhouse, J. H., The joint inversion of seismic waveforms for lateral vari-
ations in Earth structure and earthquake source parameters, Proc. “En-
rico Fermi” Int. Sch. Phys. LXXXV (H. Kanamori and E. Boschi, eds.),
366-397, 1983.

35



Woodhouse, J. H., The calculation of the eigenfrequencies and eigenfunc-
tions of the free oscillations of the Earth and the Sun, in: Seismological
Algorithms (D. J. Doornbos, ed.), 321-370, 1988.

Woodhouse, J. H. and F. A. Dahlen, The effect of a general aspherical
perturbation on the free oscillations of the Earth, Geophys. J. R. astr.
Soc., 53, 335-354, 1978.

Woodhouse, J. H. and A. M. Dziewonski, Mapping the upper mantle: Three
dimensional modelling of Earth structure by inversion of seismic wave-
forms, J. Geophys. Res., 89, 5953-5986, 1984.

Woodhouse, J. H. and A. M. Dziewonski, Three dimensional mantle models
based on mantle wave and long period body wave data, EOS, Trans.
Am. Geophys. Un., 67, 307, 1986.

Woodhouse, J. H. and A. M. Dziewonski, Seismic modelling of the Earth’s
large-scale three dimensional structure, Philos. Trans. R. Soc. Lond.
A, 328, 291-308, 1989.

Woodhouse, J. H. and T. P. Girnius, Surface waves and free oscillations in
a regionalized Earth model, Geophys. J. R. Astron. Soc., 68, 653-673,
1982.

Woodhouse, J. H. and Y. K. Wong, Amplitude, phase and path anomalies
of mantle waves, Geophys. J. R. Astron. Soc., 87, 753-773, 1986.

Woodhouse, J. H., D. Giardini and X. D. Li, Evidence for inner core anisotropy
from free oscillations, Geophys. Res. Lett., 13, 1549-1552, 1986.

36



Figure 1a: Toroidal mode dispersion diagram (Gilbert and Dziewonski, 1975)
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Figure 1b: Spheroidal mode dispersion diagram (Gilbert and Dziewonski, 1975)
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Figure 2a: Toroidal fundamental modes, eigenfunctions and sensitivities
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Figure 2a: cont.
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Figure 2b: Toroidal higher modes, eigenfunctions and sensitivities
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Figure 2b: cont.
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Figure 2c: Spheroidal fundamental modes, eigenfunctions and sensitivities
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Figure 2c: cont.

44



Figure 2d: Spheroidal higher modes, eigenfunctions and sensitivities
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Figure 2d: cont.
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Figure 2e: Radial modes, eigenfunctions and sensitivities

47



Figure 2e: cont.
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Figure 3: Examples of spectral data (solid) and synthetic (dashed) spectra. Horizontal
axes are frequency in milliihertz. The top panel of each figure shows phase in the range
(−π, π]. The middle panels show amplitude. The vertical bars in the lower panels
indicate the frequencies and relative amplitudes of the singlets contributing to the
theoretical spectra. In this figure the theoretical spectra incorporate only the effects
of rotation and ellipticity, and provide a poor match to the observed spectra. From
Giardini at al, 1988.

49



Figure 4: The same data are shown as in Fig 3, but here the theoretical spectra are
calculated after inversion for the splitting function of each mode. These are found using
all available data for a given mode, however the figure show only a single example for
each mode. From Giardini at al, 1988.
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Figure 5: Differential kernels and splitting functions for some modes having sensitivity
mainly to lower mantle vS (Giardini et al 1988)
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Figure 6: Differential kernels and splitting functions for some modes having sensitivity
mainly to lower mantle vP (Giardini et al 1988)

52



Figure 7b: Representations of the global sensitivity of the modes 0S10 and 0S45 (Wood-
house and Girnius, 1982)
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Figure 8: Amplitude measurements for a series of Rayleigh wave orbits and the corre-
sponding ray paths for the model M84C (Woodhouse and Wong, 1986)
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Figure 9: Amplitude measurements for a series of Rayleigh wave orbits and the corre-
sponding ray paths for the model M84C (Woodhouse and Wong, 1986)
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