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Forward problems are those in which we are given the cause and required to find the
effect. For example, given the Earth structure, find the expected arrival times of different
seismic phases. Or, given the details of the earthquake rupture process, find the seismograms
at different stations.

Inverse problems are those in which we are given the effect and required to find the
cause. For example, given the times of arrivals of P-waves at different stations from an
earthquake, find the hypocentral location. Or, given the travel time curves, find the Earth
structure.

In seismology, as in all branches of geophysics, it is inverse problems that we are most
interested in.

Forward problems Inverse problems
Serve to elucidate underlying Say, given some gravity anomaly, find shape
physical principles & density of anomalous body.

Solutions are Solutions are NON-UNIQUE i.e. more than one
UNIQUE. density distribution can give same anomaly.

Definition of some common terms used in inverse theory

STABILITY is defined as the property that a solution is insensitive to small random
errors in the data.

NON-UNIQUENESS is the property that more than one solution (almost) equally
well-fitting the data exists.

ROBUSTNESS is the property that a solution is insensitive w.r.t. a small number of
large errors (“outliers”) in the data.

The inverse problem of earthquake source mechanics consists of determining the
spatial and temporal distribution of slip (or slip rate) over the fault area, using teleseismic
as well as near-field waves.

Since the early 1980’s, several attempts have been undertaken to solve this inverse
problem. for the source of particular earthquakes, that is, to determine the spatial and
temporal distribution of slip (or slip rate) over the fault area, using teleseismic as well as
near-field waves. In addition, much work has been done on determining the source time
function for specific earthquakes and the result interpreted in terms of spatial moment
release using a constant rupture velocity as well as on inversion considering the source as a
line source. Finally, the inverse problem for the static case, namely, the determination of
the final slip distribution on the fault using geodetic data, has been studied.

The solution of all these problems are far from trivial. It is well known that this inverse
problem is unstable, even in the imaginary case of a continuous distribution of seismic
stations over the surface of Earth and its stability and uniqueness properties have been
discussed extensively by Kostrov and Das [1988]. From the computational point of view,
this instability is equivalent to nonuniqueness of the solution. The real situation is even
worse because the number of stations with appropriate records is very limited (about 10-20
global stations, at present). Consequently, to obtain a definite solution of such a problem,
one needs some physical constraints on the source process, in addition to the requirement of
fitting the observed seismograms. In principle, these constraints should be inferred from the
physics of faulting during the earthquakes, that is, from fracture and frictional mechanics.
Unfortunately, our knowledge of the physics of the earthquake process is still rather limited
and the only comparatively well-established constraint is the limitation on the fracture
propagation speed. This is a weak constraint because the duration of the earthquake process
is greater than the seismic wave propagation time across the fault whereas the limiting

3



fracture speed is comparable to the seismic wave velocities. To implement this constraint
numerically, one requires very fine spatial gridding on the fault. A less physically founded
constraint would be the requirement that the slip rate vector be directed in accordance
with the average stress drop direction (inferred from the fault plane solution), that is, the
projection of the slip rate vector in the stress drop direction must be positive. While, in
principle, slip in the opposite direction is possible due to interference of waves on the fault,
it does not seem likely and experience from three-dimensional forward modelling shows that
the slip direction almost coincides with that of the stress drop [Das, 1981]. This suggests
that with sufficient practical accuracy, one may assume the slip direction to be constant
over the fault during the process and coincide with the stress drop direction and the only
component of the slip rate vector to be nonnegative. In what follows, we shall refer to
this constraint as the “no backslip” constraint. As we shall see later in the paper, other
possible constraints may be considered. For example, one may require the solution to be in
agreement with the seismic moment obtained from the centroid moment tensor solution or
from geodetic measurements. Or one may require the maximum slip rate on the fault to be
limited by some considerations from fracture mechanics. For example, Hartzell and Heaton

[1983] minimized the seismic moment, which is another possible constraint on the solution.
To invert for the three-dimensional slip rate distribution (two spatial dimensions on the

fault and time) is a computationally difficult task. With sufficiently fine gridding of the
fault, it is almost impracticable in a regular way, even on existing supercomputers. Not
surprisingly, simplified methods of solving the problem have been used. Basically, such
simplifications are always a version of trial and error fitting. In any case, the method of the
solution imposes some implicit constraints. Then, when one obtains a unique solution, it
is not clear if it is unique due to the explicitly formulated constraints or as a result of the
method used in the inversion. As an example, the generalized inverse (or pseudoinverse)
leads to a unique solution which minimizes the root mean square residual even without
additional constraints. In that case the implicit constraint consists of the requirement that
the solution has the minimum norm. Or, in the method of Kikuchi and Fukao [1985] the no
backslip constraint was explicitly imposed, but the method consisted of successive reduction
of the root mean square residual by fitting a series of essentially instantaneous point sources.
This again imposes an implicit requirement that the solution must be concentrated in as
small a number of discrete patches on the fault, as possible. The interpretation of the
solution obtained in this manner in terms of the asperity model is only natural, but this
interpretation as being the only and unique interpretation is not supported by the data
because it was implicitly imposed by the method, and the question whether there exists
another, more smoothly distributed solution, equally well fitting the data for all practical
purposes and satisfying the no backslip constraint, remains open.

In order for a particular slip distribution to be an acceptable solution to the inverse
problem it must satisfy the following three conditions.
1. The solution must explain the data.
2. The solution must be physically reasonable (consistent with independent constraints).
3. If more than one solution fits the data equally well, additional information must be
supplied to uniquely define which solution is being obtained.

The third condition above means that the physical constraints may be insufficient to
specify an unique solution of the problem. Such constraints should be explicitly stated
and not hidden in the method of inversion. It is be desiarble to use constraints which are
physically based rather than non-physical ones. A commonly used example of the latter is
the requirement that the solution has minimum norm.

A more reasonable approach to this difficulty would be to describe the whole set of
equally acceptable solutions by obtaining some extreme representatives of this set, say.
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Olson and Apsel [1982] performed one of the first full inversions of this problem. They
used a form of the no-backslip constraints as well as limiting of the rupture propagation
speed. Additionally, they required slipping to be confined to grids intersecting the rupture
front and limited the number of times each grid could slip. Effectively, their model included
two preassigned fronts, the rupture front and the healing one between which the whole slip
process was confined. This last assumption permitted drastic reduction of the number of
unknowns in the model. Numerical solutions of the forward problem show, however, that
with an inhomogeneous strength and friction on the fault, the rupture front can become very
distinct from a single line and subsequent slip behind the main rupture front is frequently
obtained [Das and Aki, 1977; Mikumo and Miyatake, 1979]. Such reslipping of previously
slipped regions on the fault has been found. Consequently, this assumption can be consid-
ered only as another example of the above mentioned simplification of the problem. Since
this simplification decreases the size of the problem, it is often used. For a proper inversion,
however, it is necessary not to confine the slippage to a region near the rupture front, nor
to a priori assign the number of times each grid can slip but to determine the entire slip
time history at every spatial grid on the fault.

The discretization of the problem can itself imply unwanted constraints on the solution.
Namely, with a coarse grid the number of unknowns can be reduced so much as to make
the corresponding numerical problem stable, that is, well conditioned, without additional
physical constraints, the extreme cases being point source fitting, and fitting the source to
a rectangular dislocation with constant slip and constant slip rate.

In these notes, we shall describe a method for determining the complete slip time history
on a fault during an earthquake and to examine the stability of such a solution by examining
not only a “best fitting” solution but also solutions close to it in data space.

FORMULATION OF THE DISCRETE PROBLEM

We briefly summarize the formulation of the discrete problem under study for com-
pleteness and clarity, particularly of the notations. Using the representation theorem (e.g.,
equation (3.2.18) of Kostrov and Das [1988]) the displacement record at a station located
at a point x, on the earth’s surface can be expressed in terms of the slip distribution over
a fault Σ as

uk(x1, t1) =

∫ t1

0
dt

∫∫
Σ
Kik(x1,x, t1, t)ai(x, t)dS (1)

where i, k = 1, 2, 3, uk(x1, t1) are the components of the displacement vector, ai(x, t) are the
components of the slip and Kik(x1,x, t1, t) are the components of the impulse response of the
medium at (x1, t1), due to a dislocation point source at (x, t). The observed seismograms do
not represent the displacement vector u itself but are filtered by the instrument. Convolving
both sides of (1) with the instrument response for a given station and assuming the slip
direction to be constant, we obtain, after some transformations:

Sj(t1) =

∫ t1

0
dt

∫∫
Σ

Wj(ξ, t1 − t)ȧ(ξ, t)dS (2)

where j identifies the station and components of the seismogram S(t1), Wj(ξ, t) is the
impulse response at ( ξ, t) corresponding to a fixed slip direction and convolved with the
instrument response, ȧ(ξ, t) is the slip rate, the two-dimensional vector ξ gives the position
on the fault relative to some reference point (for example, the earthquake hypocenter)
and t is the time measured from the origin time of the earthquake. With a continuous
distribution of stations, equation (2) would represent an integral equation of the first kind.
Such equations are known to be unstable.

We shall consider the effect of the following additional constraints:

ȧ(ξ, t) ≥ 0 for all (ξ, t) (3a)
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ȧ(ξ, t) = 0 for t < T ( ξ) (3b)

where, t = T (ξ ) gives the boundary of the area where slip is permitted (due to a causality
condition) at time t,

∫
∞

0
dt

∫∫
Σ

µ(ξ)ȧ(ξ, t)dS = M0 (3c)

where M0 is the seismic moment and µ is the modulus of rigidity of the medium, together
with other constraints to be discussed later in the paper. The constraint (3a) is the “no-
backslip constraint,” the constraint (3b) is the “causality constraint” and the constraint
(3c) is the “seismic moment constraint.” Note that T ( ξ) as defined above is not the usual
rupture front, but in what follows we shall refer to this boundary as the “rupture front” to
distinguish it from the usual definition.

The functions Wj can then be easily calculated using the ray approximation and the
Thomson-Haskell technique to account for the layered structure at the source and the station
when using teleseismic waves, and by other methods such as multimodal summation or ray
theory for regional or strong-motion data.

For the numerical solution, this equation has to be be discretized. We divide the rectan-
gular area on the fault plane into rectangular cells by equally spaced straight lines parallel
to the strike and dip of the fault, one cell centre coincident with the hypocentre. Denote
the dimensions of the cells ∆x and ∆h in strike and dip direction, respectively. For each cell
the synthetic seismograms are computed for all stations with unit slip rate uniform within
the cell and a time step ∆τ , which is taken as the sampling interval of the slip history. Let
the number of cells in strike direction be Nx, those in dip direction be Nh and the number
of time steps in slip history be Nτ . The synthetics are sampled with the same sampling
interval as the records used for inversion (∆t). Denote the synthetics S(kx, kh, js, jt.∆t),
kx, kh being the cell numbers along strike and dip, jt the number of the corresponding
seismogram sample at the station js. Let s(kx, kh, kτ ) be the (unknown) slip rate at the cell
(kx, kh) at the time ∆τkτ . Then the seismograms will be modelled as

Nx∑
kx=1

Nh∑
kh=1

Nτ∑
kτ=1

S(kx, kh, js, jt.∆t − ∆τkτ ).s(kx, kh, kτ )

and the problem consists of finding such s(kx, kh, kτ ) as to approximate with this expression
the real records at stations, say u(js, jt). In this paper we use a weak causality condition
requiring that the first signal recorded at any station must be radiated from the hypocentral
cell. This condition excludes some of s(kx, kh, kτ ). We renumber the remaining slip rate
values sequentially from 1 to n1, n1 < Nx.Nh.Nτ . Let G(kx, kh, kτ ) be an integer valued
array, containing zeros for the slip rate values excluded due to causality condition and
the sequential numbers of remaining s(kx, kh, kτ ). Denote so renumbered slip rate values
xi, i = 1, ...n1. Similarly, we renumber the record samples u(js, jt) sequentially from 1
to m1 and denote them uj , j = 1, ...,m1. Let the correspondingly numbered values of
S(kx, kh, js, jt∆t) be denoted aji, aji comprising an (m1 × n1) matrix A. Then the integral
equation to be solved is discretized and leads to the approximation problem which takes
the form:

Ax ≈ u

The constraints

The need for additional constraints was discussed in a previous paper (Das and Kostrov,
1990). The two constraints used in that paper are included here from the very beginning,
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namely the condition (C1) of no back slip

xi ≥ 0

and the requirement (C2) that total seismic moment equals to the CMT value M0, say:

n1∑
i=1

cixi = M0

where ci is the medium rigidity at the corresponding cell multiplied by the cell area times
∆τ . A third constraint (C3) is also included. Namely, we assume that the slip rate is zero
at any cell and time step which would produce a signal before the first arrival at any station
from the hypocentral cell. This is a weak causality-like constraint. No strong causility
constraint, such as slip rates being zero outside some chosen rupture front, are included in
this study. In Das and Kostrov (1990) and in Paper I, both constraint C3 and the strong
causality constraint were used.

The linear programming problem

We follow the procedure described by Das and Kostrov (1990). Denote u − Ax by r.
We will minimize the absolute misfit

f =
m1∑
j=1

|rj|

If we represent r as r+ − r−, where r+
j ≥ 0, r−j ≥ 0, the function f will be linear

f =
m1∑
j=1

(r+
j + r−j )

and we obtain the following linear programming (LP) problem:
Minimize

f =
m1∑
j=1

(r+
j + r−j )

under the constraints
u− Ax− r+ + r− = 0

M0 −
n1∑
i=1

cixi = 0

xi ≥ 0, r+
j ≥ 0, r−j ≥ 0

First step of solving such a problem consist of finding a feasible solution, i.e. a set of positive
unknowns satisfying the constraints. For our problem it can be done analytically. First,
the moment equation can be solved for one of xi’s, x1 say, to give

x1 = M0/c1 −
n1∑
i=2

(ci/c1)xi

Substitution into the first set of equations gives

uj − aj1M0/c1 −
n1∑
i=2

(aji − aj1ci/c1)xi − r+
j + r−j = 0
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Let
σj = sgn(uj − aj1M0/c1)

and

r
σj

j =

{
r+
j σj = 1

r−j σj = −1

r
−σj

j =

{
r−j σj = 1

r+
j σj = −1

Now, the equations can be solved for r
σj

j to obtain

r
σj

j = σj(uj − aj1M0/c1) −
n1∑
i=2

σj(aji − aj1ci/c1)xi + r
−σj

j

x1 = M0/c1 −
n1∑
i=2

(ci/c1)xi

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4)

All constant terms in the right-hand side are positive, so making all unknowns in the right
hand side equal to zero we obtain a feasible solution of the set of constraints. Moreover,
it is a basic feasible solution, and the problem is represented in the restricted normal form
(Press et al, 1986). Substituting r

σj

j into the expression of f , we obtain

f =
m1∑
j=1

σj(uj − aj1M0/c1) −
n1∑
i=2

(
m1∑
j=1

σj(aji − aj1ci/c1))xi +
m1∑
j=1

2r
−σj

j (5)

The simplex tableau

At this point it is worth changing notations. First, let us expand the vector x to include
all unknown quantities, i.e. λi, r

−σj

j , r
σj

j , denoting

xi = λi−n1
for i = n1 + 1, ..., n1 + Ns

xi = r
−σi−n1−Ns

i−n1−Ns
for i = n1 + Ns + 1, ..., n1 + Ns + m1

xi = r
σi−n1−Ns−m1

i−n1−Ns−m1
for i = n1 + Ns + m1 + 1, ..., n1 + Ns + 2m1

(6)

Let B be the list of indexes of unknowns xi appearing in the left-hand side of equations (4),
namely,

B = {n1 + Ns + m1 + 1, ...., n1 + Ns + 2m1, 1} (7)

and N be the list of indexes of unknowns in the right-hand side, namely,

N = {2, ..., n1 + Ns + m1} (8)

Denote the size of B by m2 and that of N by n2 i.e. set m2 = m1 +1, n2 = n1 +Ns +m1−1.
Next, let

tj0 = σB(j)(uB(j) − aB(j),1M0/c1), j = 1, ...,m1

tm20 = M0/c1

tji = −σB(j)(aB(j),N(i) − aB(j),1cN(j)/c1) for j = 1, ..,m1; i = 1, .., n1 − 1

tji = αN(i)vB(j),N(i)σB(j) for j = 1, ...,m1; i = n1, .., n1 + Ns − 1

tji = δn1+Ns+j,i for j = 1, ..,m1; i = n1 + Ns, ..., n2,
where δ is the Kronecker delta

tm2i = −cN(i)/c1 for i = 1, .., n1 − 1

tm2i = 0 for i = n1, .., n2

(9)
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and

f0 =
m1∑
j=1

tj0, fi =
m1∑
j=1

tji, for i = 1, ..., n1 + Ns − 1 (10)

fi = 2 for i = n1 + Ns, ..., n2 (11)

Then the equations (4) and (5) take the form

xB(j) = tj0 +
n2∑
i=1

tjixN(i)

f = f0 +
n2∑
i=1

fixN(i),

} j = 1, ..,m2

This system of equations has the form of the tableau of the simplex method in restricted
normal form and can be represented graphically as shown in Tableau 1.

Our starting solution is

xB(j) = tj0, j = 1, ..,m2

xN(i) = 0, i = 1, ..n2

It is feasible, because tj0 ≥ 0 and corresponds to the misfit value of f equal to f0. These
xi with i ∈ B are called basic variables, whereas those with i ∈ N are called non-basic
ones. Now the simplex algorithm can be applied to the tableau to minimise f . In our case
the minimum exist, since f is the sum of non-negative values r+ and r− and cannot be
minimised below zero.

The accumulation of rounding errors during optimization using the simplex method may
lead to a completely wrong solution. When the number of constraints and the number of
variables were of the order of 103 and the number of optimization steps was up to several tens
of thousands this misbehaviour of the algorithm was observed when using the unprotected
subroutines from Numerical Recipes (Press et al., 1986). The details are discussed in the
Appendix and the protective measures needed to overcome the problem are developed. It
was found that with these modifications the simplex algorithm was quite stable and the
problem of accumulation of rounding errors was eliminated.

Secondary optimization : most uniform moment rate distribution

The kernel S of the integral equation is smoothed due to attenuation effects. Obviously,
the smoother the kernel, the rougher a solution satisfying the equations is possible. The
scarceness of the data also has the same effect. The inherent instability of the problem is
enhanced by this. If we consider the extreme limit of the very low frequaency solution (say,
the CMT solution), or we have data from only one station, then a point source solution sat-
isfies the equations. If we want to search for solutions which are more uniformly distributed
or smoothed, then this produces additional constraints and we now proceed to formulate
these constraints explicitly.

As the first example of searching for other solutions with desired properties, we consider
the following problem: obtain a solution with the most uniform distribution of moment rate
in space and time corresponding to a misfit not greater than (1 + θ) times the minimum
misfit f0. For this purpose consider the moment equation

n1∑
i=1

cixi = M0
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Each term of the sum is equal to the moment rate within corresponding cell and time
interval times the source time step ∆τ . Let Mi = cixi. Then

n1∑
i=1

Mi = M0

All terms here are positive and their sum is fixed. Obviously, minimization of the greatest
of Mi’s with no other constraint will make all terms equal, i.e. give an uniform distribution
of the moment rate. With the other constraints present we will obtain the most uniform
distribution compatible with these constraints. Let the maximum of Mi be denoted Mmax.
Then

Mmax ≥ cixi, i = 1, ..., n1

Introducing n1 new variables zi ≥ 0 we rewrite these inequalities in the form of equations:

Mmax = cixi + zi, i = 1, .., n1

We will start with the solution obtained by the misfit minimization. The accuracy constraint
is

f = f0 +
n2∑
i=1

fixN(i) ≤ (1 + θ)f0

or

δ = θf0 −
n2∑
i=1

fixN(i), δ ≥ 0 (12)

Now we expand again the vector of unknowns x, putting

xm2+n2+1 = δ
xm2+n2+2 = Mmax

xm2+n2+i+2 = zi, i = 1, .., n1

We expand the list B of basic variables to include all additional variables except xm2+n2+imax+2

and the list N of non-basic variables to include xm2+n2+imax+2. Denote the size of the new
B as m3 and that of new N as n3,

m3 = m2 + n1 + 1, n3 = n2 + 1

Next, we expand the tableau (obtained at the end of first minimization) as follows:
For j = m2 + 1 we let

tm2+1,0 = θf0

tm2+1,i = −fi, i = 1, .., n2

tm2+1,n3
= 0

The (m2 + 2)th row we obtain from Mmax equation written for imax:

Mmax = cimaxximax + zimax

Let jmax be the row number corresponding to ximax , i.e. B(jmax) = imax. We have

ximax = tjmax0 +
n2∑
i=1

tjmaxixN(i)

and

Mmax = xB(m2+2) = cimaxtjmax0 +
n2∑
i=1

cimaxtjmaxixN(i) + xN(n3)
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Now we let
tm2+2,0 = cimaxtjmax,0

tm2+2,i = cimaxtjmax,i, i = 1, .., n2

tm2+2,n3
= 1

The rest of Mmax equations we rewrite as follows:

zk = Mmax − ckxk, 1 ≤ k ≤ n1, k �= imax

What follows depends on whether xi is a basic or non-basic variable. For a non-basic one,
let ikbe its corresponding column number, i.e. N(ik) = k. Then

zk = cimaxtjmax,0 +
n2∑
i=1

(cimaxtjmax,i − ckδiki) xN(i) + xN(n3)

and we let
tj0 = cimaxtjmax,0

tji = cimaxtjmax,i + ckδiki, i = 1, .., n2

tjn3
= 1

For xk in the basis, let jk be the corresponding row number. Then

zk = (cimaxtjmax,0 − cktjk0) +
n2∑
i=1

(cimaxtjmaxi − cktjki)xN(i) + xm2+n2+imax+1

and, consequently,
tj0 = cimaxtjmax,0 − cktjk0

tji = cimaxtjmaxi − cktjki, i = 1, ..., n2

tjn3
= 1

where j = m2 + 2+ k for k < imax and j = m2 + 1+ k for k > imax, i.e. B(j) = m2 + 1+ k.
Because our objective is to minimize Mmax, the criterion row will coincide with (m2 + 2)th
row. The new tableau is shown in Tableau 2.

Application of the simplex method to this linear programming problem gives the solution
in which all subsources (i.e. cells in single time step) have as equal intensities to each other
as is compatible with the misfit tolerance. We shall refer to this as a “smeared-out” solution.

Another possibility is making the solution uniform only in space letting the subsource
intensities vary with the time step number. It was shown above that the “source time
function” i.e. total moment release at a single time step vs. time step number is quite stable.
Dividing the source time function value at a time step obtained during misfit optimization
by the number of cells permitted to be active at this time step by condition (C3), we
obtain the average moment release per a cell at this time step. To each xi, i = 1, .., n1

corresponds such an average moment value M̄i, say. To obtain the required most-uniform-
in-space solution we minimize the maximum of wi = cixi/M̄i. Construction of the tableau
for this case is exactly the same as that for the previous case except that instead of ci we
must use ci/M̄i.

Secondary optimization : smoothest solution

The most uniform solution obtained above still looks like a collection of independent
concentrated subsources. Basically, the reason for this, as was mentioned earlier, is that the
kernel of the underlying integral equation (for example, Das and Kostrov, 1990; equation
(2)) is smooth and permits approximation of the integral with a relatively small number of
the integrated samples, this number being smaller the higher the noise in the records.
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From the mechanical point of view, the slip rate can not be discontinuous except at the
rupture front and at some wave fronts. Elsewhere it must be a smooth function of time and
space variables. If the rupture process is not perfectly brittle but involves some critical slip
or slip-rate weakening, the slip rate will be continuous everywhere on the fault (Andrews,
1976a,b, 1985; Burridge, Conn and Freund, 1979; Kostrov and Das, 1988). Consequently,
it is of importance to find the smoothest solution compatible with other constraints within
essentially the same level of misfit. We consider the problem of finding the solution which
is smoothest in strike direction. For this purpose we minimize the sum of moduli of second
difference of slip rate,

∆2
kx

= s(kx − 1, kh, kt) + s(kx + 1, kh, kt) − 2s(kx, kh, kt)

for those kx, kh, kt for which none of the terms in this expression is rejected by condition
(C3). Let

i = G(kx, kh, kt)
i− = G(kx − 1, kh, kt)
i+ = G(kx + 1, kh, kt)

and I be the set of indexes i for which i, i+ and i− are not equal to zero. We define

di = xi− + xi+ − 2xi, i ∈ I

We substitute the expressions for those unknowns in the right-hand side which are in the
basis at the end of misfit minimization to obtain

di = d0
i +

n2∑
k=1

DikxN(k),

denoting by Dik the resulting coefficient matrix. Analogously to the misfit vector, the di’s
are split into positive and negative parts:

di = d+
i − d−i

Let σd
i be the sign function of d0

i

d′i =

{
d+

i for σd
i = 1

d−i for σd
i = −1

d′′i =

{
d−i for σd

i = 1
d+

i for σd
i = −1

Then

d′i = |d0
i | +

n2∑
k=1

σd
i DikxN(k) + d′′i , i ∈ I

As in the previous case we add the accuracy constraint as (m2 + 1)th row and nI rows
corresponding to d′i, nI being the number of indexes in I. The number of columns is increased
by nI as well to contain zeros everywhere except at intersections of that additional rows
and columns. The lists B and N are expanded to contain indexes of the new unknowns,
i.e. d′i,d

′′

i , renumbered sequentially so that d′′ corresponds to components of expanded x
from (m2 + n2 + 2) to (m2 + n2 + nI), and d′ corresponds to those from (m2 + n2 + 2 + nI)
to (m2 + n2 + 2 + 2nI). The new criterion row is obtained by summing columnwise the last
nI columns of the expanded tableau.

Third level of optimization: Concentrating the moment release
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The solution obtained by misfit optimization with (or without) total moment constraint
tends to spread along the fault beyond the area delimited by aftershocks. To decide whether
this is a real feature or just an artefact we performed yet another set of optimizations mini-
mizing either the moment released outside a given domain in time and space, or maximizing
the moment released within such a domain. The optimization has been performed at the
third level after obtaining the most uniform or the smoothest solution. The construction
of the tableau in this case is very simple. We again introduce a tolerance for the value of
previous object function and construct the required additional row of the tableau from the
previous criterion row similarly to equation (10). The new object function is constructed
as the sum of moment rates cixi for those variables which correspond to the domain. The
criterion row is obtained by substituting the expressions for basic variables involved, into
the sum.

Multiobjective optimization

The second and third level optimizations produced solutions which are optimal in two
or three respects, i.e. best fitting and smoothest, say. Broadly implemented approach to
such ‘multiobjective optimization’ consist in combining the two or three object function
into one by assigning them with some positive weights (Franklin, 1980, p. 104-111). The
weights determine the relative importance of the aims, to say, how much of the misfit is
traded for a unit decrease of the second derivative. We prefer the successive optimization
as described above, where it is decided beforehand, how much of the previous optimal value
(misfit measure, say) can be sacrificed to obtain a more desirable solution.

Appendix: Computational considerations

The accumulation of rounding errors during optimization using the simplex method may
lead to a completely wrong solution. Let m denote the number of rows and n the number
of columns of the matrix A i.e. the number of basic and non-basic variables, respectively.
In our case, when m and n were of the order of 103 and the number of optimization steps
was up to several tens of thousands this misbehaviour of the algorithm was observed when
using the unprotected subroutines from Numerical Recipes (Press et al., 1986). To explain
the causes of the algorithm misbehaviour and the protective measures to be taken, let us
describe in short the simplex method. The problem in restricted normal form is as follows:

F = fTxN + f0

xB = t0 + TxN

where xB consists of m components of the unknown vector x, xN consists of the remaining
n components and the object function F expressed in terms of components xN with the
coefficient vector fT . The step of the simplex algorithm consist of selection of most negative
component of f which determines the pivot column of the matrix T. Then within this column
the element is selected which permits maximum increase of the pivot unknown keeping
xB ≥ 0. Let iP be the pivot column number. Then the pivot row number is determined by

jP = min
j

{−tj0/tjiP ; tjiP < 0}

Next the unknowns xN(jP ) and xB(iP ) are swapped and the system is solved for new xB.
Let us consider first the pivoting of rows. If due to rounding errors some tjiP becomes

negative while actually being zero it will be selected as the pivot element with catastrophic
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consequences. Remember that in all our cases the object function is non-negative by def-
inition and cannot be reduced below zero. It follows then that if any tjiP = 0, the cor-
responding fiP must be zero, for otherwise the object function would be unlimited from
below. It means then that the pivot column was selected mistakenly fiP being negative
due to rounding errors. To protect from this situation we select some ε > 0 of the order
of uncertainty in the elements of the matrix A (i.e. of the synthetic seismograms). Let us
assume that this uncertainty is about one percent of the maximum amplitude, say. The
columns of matrix A are scaled by the maximum absolute value of elements of its columns.
The row selection rule is replaced by

jP = min
j

{−tj0/tjiP ; tjiP < −ε}

If all tjiP ≥ −ε, the column pivoting is discarded and iP th column is marked not to be
selected at subsequent steps. When the starting tableau is constructed the coefficients fi

are obtained by summation of misfit rows. We select the maximum by absolute value of fi,
fmax, say, and consider εfmax as the uncertainty measure for fi’s in all subsequent steps of
the algorithm. Then the column selection rule is replaced by

iP = min
i
{fi; fi < −εfmax}

If all fi ≥ −εfmax we consider the solution to be the optimal one. Strictly speaking, this
is not yet optimum for the problems under consideration, but it is the optimum for some
other problem with the matrix A∗ different from A within the uncertainty ε. The role of ε
in the row pivoting and that in the column pivoting is different. When pivoting a row the
large enough ε protects from division by small numbers and consequently, from inverting a
badly conditioned matrix, but with column pivoting the large ε leads only to a premature
stopping of optimization. The two ε are chosen different, to obtain a solution more close to
the exact optimal one. We denote this latter ε by ε1 in Table I and in the main text.

Finally, some components of t0 may be made negative due to rounding errors. If unpro-
tected, these components grow to large negative values and the object function increases
instead of decreasing. To protect from this, the t0 is inspected at the end of each step and
all negative components are zeroed out.

It was found that with these modifications the simplex algorithm is quite stable.
These modifications do not eliminate the problem of accumulation of rounding errors.

Because of large number of steps and the fact that in the simplex algorithm pivoting selects
not the best element of tableau matrix with respect to rounding error, the problem gets
distorted in the course of optimization. To reduce this error accumulation, we refresh the
tableau after every few thousand steps of the simplex algorithm. The refreshing is done
as follows. Let B0 and N0 be lists of basic and non-basic variables, respectively, at the
beginning of optimization, whereas B and N are these lists when refreshing. We construct
the list ENTER containing the variables indexes present in B and not present in B0 and the
list LEAVE for those present in B0 but not in B. First we construct the original tableau
as at the beginning of optimization. Then we use the same algorithm of swapping variables
from ENTER and LEAVE as in the simplex method but with different pivoting. Namely,
for each variable to leave the basis, jP -th, say, we select the index from ENTER, iP , such
that

iP = max
i

(|tjP i|, i ∈ ENTER)

This is equivalent to matrix inversion with partial row-wise pivoting. The number of swap-
ping steps is equal to the size of ENTER list and is much less than the number of steps
involved in the optimization. Both better pivoting and reducing the number of loops give
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rise to lesser error accumulation. To check the accuracy of the solution we calculated the
sum of absolute values of misfits by direct substitution of x into r = u − Ax and com-
pared this value with the final value of the object function obtained by the misfit (primary)
optimization. The value coincided to more than 10 decimal digits.

For the numerical solution, the integrals in (2) must be discretized. This can be done in
several ways. The commonest way is to divide the fault area Σ into a number of rectangular
cells and to approximate ȧ within each cell by linear functions in time and along strike and
by a constant along dip. Wj is then integrated over each cell analytically, and the integrals
over the fault are replaced by sums. The time at the source is discretized by taking a fixed
time step, ∆t say, and assuming that the slip rate ȧ during the time step varies linearly
with time. Since we use only long-period body wave records, we may use comparatively
large ∆t, this being desirable to reduce the number of unknowns. Strictly speaking, both
the fault area and the total source duration should be determined as part of the inversion
process. Due to the non-uniqueness of the solution, however, we shall assume a finite fault
size, obtained from aome independent means such as the aftershock area, and a finite source
duration which cannot be longer than the longest record used and cannot be much shorter
than that obtained from the centroid moment tensor solution. The seismograms Sj are
sampled with a time step ∆t1, say. For long period data, usually Deltat1 = 1s. This value
might seem redundant, but it is worth keeping to obtain better control of noise, if of course
the computer power allows it. Let us renumber the observations in a one-dimensional way,
ordering them by component, station number and time. Denote the value of Sj(t1) by bk,
say, k being the index in the ordering adopted. Similarly, let us renumber the values of
ȧ by cell number and time, denoting the vector by xi, say. In addition, to allow for the
possibility of weighting the different stations and components differently in the inversion,
let us include this weighting into equation (2). Then equation (2) takes the form

Ax ≈ b (13)

where A is the matrix obtained by integration of Wj , each column of A being a set of
synthetic seismograms for all stations corresponding to different cells and time instants of
the source duration, ordered in the same way as the observed seismograms and A and b
are appropriately weighted. The condition (3a) then becomes:

x ≥ 0 (5a)

the inequality meaning that every component of x is nonnegative. The condition (3b) can
be replaced by

xi = 0 (5b)

for those i corresponding to cells and time samples outside the “rupture front” and the
condition (3c) becomes:

Σcixi ≈ M0 (5c)

where ci is time-independent and for each cell is equal to the product of the average rigidity
times the area of the cell. So, the inverse problem has been reduced to the solution of the
linear system (4) under one or more of the constraints (5). In the system (4), the number
of equations m is equal to the total number of samples taken from all the records involved
and the number of unknowns n is equal to the number of cells times the number of time
steps at the source. We shall take m greater than n to reduce the influence of the noise
contained in the observations b on the solution. Then, the system (4) is overdetermined
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and we can only obtain a solution x which provides a best fit to the observations, under
constraints (5).

It is well known that the matrix A is ill conditioned for the problem under consideration,
which implies that the system (4) admits more than one solution, equally well fitting the
observations. The constraints (5) are introduced just for the purpose of reducing the set
of permissible (feasible) solutions. It is to be investigated if these conditions are sufficient
to make the solution unique. If not, then we have to obtain some description of the set
of permissible solutions of the problem. In any case, even if an unique solution does ex-
ist, there may be many other solutions that almost satisfy the equations. Since the data
used in geophysical applications often contains experimental noise and the models used are
themselves approximations to reality, solutions almost satisfying the data are also of great
interest.

The system of equations (4) together with the constraints (5) do not yet comprise a
complete mathematical problem. It remains to formulate in exact form what the “best
fit” to observations means. In the next section, we only include constraint (5a) in the
mathematical formulation for the sake of simplicity, the inclusion (5b) being trivial and the
inclusion of (5c) will be discussed later. We have to minimize the vector of residuals:

r = b− Ax (6)

For this purpose, some norm of the vector r must be adopted. Usually in such problems one
may choose to minimize the l1, the l2 or the l∞ norm [Noble and Daniel, 1977; Tarantola,
1987], all three being equivalent in the sense that they tend to zero simultaneously. In this
paper we shall use the linear programming method to solve the system (4) and minimize
the l1 norm subject to the condition (5a), but we shall also evaluate the other two norms
of the solution to investigate how they behave.

LINEAR MINIMIZATION PROBLEM

Investigation of Positiveness Constraint on Slip Rate

To express the l1 minimization problem in the standard form of linear programming, we
represent the residual vector r as the difference of two vectors with nonnegative components:

r = y+ − y−

Then
Σ|r| ≤ Σ(y+ + y−)

Obviously
minΣ|r| = minΣ(y+ + y−)

Introducing additional unknowns as

xn+i = y+
i

xn+m+i = y−i

}
for i = 1, 2, ...,m

the problem can be rewritten as follows:

minimize f = (1/m)
n+2m∑
i=n+1

xi (7)

subject to the constraints:

n∑
j=1

aijxj − xn+i + xn+m+i = bi, i = 1, 2, ...,m (8)
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xi ≥ 0, i = 1, 2, ..., n + 2m (9)

In equation (7), f is the mean absolute residual.
The constraints (8) and (9) define a convex polytope in (n+2m) dimensions, each point

of which represents a feasible solution. In general, the feasible set is a continuum containing
an infinite number of feasible solutions. It is well known [Franklin, 1980] that the feasible
solution which gives the minimum (7) corresponds to a vertex of the polytope. We use the
simplex method of solving the linear programming problem [Press et al., 1986].
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