

H4.SMR/1775-16

"8th Workshop on Three-Dimensional Modelling of Seismic Waves Generation, Propagation and their Inversion"

25 September - 7 October 2006

Surface Waves and Upper Mantle Anisotropy - II

Jean-Paul Montagner

Dept. Sismologie I.P.G. Paris France

Structure of the Earth

Plate tectonics

Mantle Convection

Tomographic Technique

- Forward Problem: Theory d=g(p)
 d data space, p parameter space
 Reference Earth model p₀:
 d₀ = g(p₀)
- Kernels ∂g/∂p
- Cd function (or matrix) of covariance of data
- Inverse Problem: $p-p_0 = \underline{g}^{-1} (d-d_0)$
- C_{p0} a priori Covariance function of parameters
- C_{pf} a posteriori Covariance function of parameters
- R Resolution

INSTITUT DE PHYSIQUE DU GLOBE DE PARIS Departement de Sismologie

Receivers

Seismic sources

GEOSCOPE stations and FDSN stations

Importance of seismic anisotropy

ANISOTROPY is the Rule not the Exception

Seismic Anisotropy is present at all scales

(Montagner and Guillot, 2001)

L.P.O. Lattice Preferred Orientation

From Christensen and Lundquist, 1982

Cracks, fluid inclusions

Crust

Inner core

(Babuska and Cara, 1991)

(Singh et al., 2001)

Importance of seismic anisotropy ANISOTROPY is the Rule not the Exception

Anisotropy is present at all scales

-From microscopic scale up to macroscopic scale -Efficient mechanisms of alignment (L.P.O.: lattice preferred orientation S.P.O.: shape preferred orientation; fine layering)

$\Delta \alpha$: Anisotropy Effect

∆T:Temperature Effect

$\Delta \alpha \approx \Delta T$

Olivine (60%) +Opx (40%)

Montagner & Guillot, 2002

Importance of seismic anisotropy ANISOTROPY is the Rule not the Exception

Anisotropy is present at all scales

from microscopic scale to macroscopic scale
Efficient mechanisms of alignment
(L.P.O.: lattice preferred orientation
S.P.O.: shape preferred orientation; fine layering)

Anisotropy is observed on different kinds of seismic waves -Body waves (Pn: S-wave splitting) -Surface waves (Rayleigh-Love discrepancy, azimuthal anisotropy)

Pn- velocities

Shear Wave Splitting (Birefringence)

Animation courtesy of Ed Garnero

SKS- Splitting

T R

Vinnik et al., 1989

Compilation of S-wave splitting measurements

Anisotropy is present at all scales

from microscopic scale to macroscopic scale
Efficient mechanisms of alignment
(L.P.O.: lattice preferred orientation
S.P.O.: shape preferred orientation; fine layering)

Anisotropy is observed on different kinds of seismic waves -Body waves (Pn; S-wave splitting) -Surface waves (Rayleigh-Love discrepancy, azimuthal anisotropy)

ANISOTROPY REFLECTS AN INNER ORGANIZATION

ANISOTROPY IS NOT A SECOND ORDER EFFECT

Effect of anisotropy on surface waves

Effect on eigenfrequency for multiplet k={n,l,m}

$$\frac{\delta \omega_{k}}{\omega_{k}} = \frac{\int_{\Omega} \varepsilon_{ij}^{*} \delta C_{ijkl} \varepsilon_{kl} d\Omega}{\int_{\Omega} \rho_{0}^{*} u_{r}^{*} u_{r} d\Omega} = \frac{\delta V}{V} \Big|_{k}$$

 ϵ strain tensor, u displacement, δC_{iikl} elastic tensor perturbation

Phase velocity pertubation V(T, θ , ϕ , Ψ) at point r (θ , ϕ) (Smith&Dahlen, 1973)

 $\frac{\delta V(T,\theta,\phi,\Psi)}{V} = \alpha_0(T,\theta,\phi) + \alpha_1(T,\theta,\phi)\cos 2\Psi + \alpha_2(T,\theta,\phi)\sin 2\Psi + \alpha_3(T,\theta,\phi)\cos 4\Psi + \alpha_4(T,\theta,\phi)\sin 4\Psi$

 Ψ Azimuth (angle between North and wave vector)

The first order perturbation in Love wave phase velocity $\delta C_L(k, \Psi)$ can be expressed as:

$$\delta C_L(k,\Psi) = \frac{1}{.2C_{0L}(k)} [L_1(k) + L_2(k)\cos 2\Psi + L_3(k)\sin 2\Psi + L_4(k)\cos 4\Psi + L_5(k)\sin 4\Psi$$

where

$$L_{0}(k) = \int_{0}^{\infty} \rho W^{2} dz$$

$$\downarrow - L_{1}(k) = \frac{1}{L_{0}} \int_{0}^{\infty} (W^{2} dN + \frac{W^{2}}{k^{2}} dL) dz$$

$$\downarrow - \begin{cases} L_{2}(k) = \frac{1}{L_{0}} \int_{0}^{\infty} -G_{c}(\frac{W^{2}}{k^{2}}) dz \\ L_{3}(k) = \frac{1}{L_{0}} \int_{0}^{\infty} -G_{s}(\frac{W^{2}}{k^{2}}) dz \end{cases}$$

$$\downarrow - \begin{cases} L_{4}(k) = \frac{1}{L_{0}} \int_{0}^{\infty} -E_{c} W^{2} dz \\ L_{5}(k) = \frac{1}{L_{0}} \int_{0}^{\infty} -E_{s} W^{2} dz \end{cases}$$

The same procedure holds for Rayleigh waves, starting from the displacement given previously.

$$\delta C_R(k,\Psi) = \frac{1}{2C_{0R}(k)} [R_1(k) + R_2(k)\cos 2\Psi + R_3(k)\sin 2\Psi + R_4(k)\cos 4\Psi + R_5(k)\sin 4\Psi + R_$$

where

$$\begin{aligned} R_0(k) &= \int_0^\infty \rho (U^2 + V^2) dz \\ R_1(k) &= \frac{1}{R_0} \int_0^\infty [V^2 dA + \frac{U'^2}{k^2} dC + \frac{2U'V}{k} dF + (\frac{V'}{k} - U)^2 dL] dz \\ R_2(k) &= \frac{1}{R_0} \int_0^\infty [V^2 . B_c + \frac{2U'V}{k} . H_c + (\frac{V'}{k} - U)^2 G_c] dz \\ R_3(k) &= \frac{1}{R_0} \int_0^\infty [V^2 . B_s + \frac{2U'V}{k} . H_s + (\frac{V'}{k} - U)^2 G_s] dz \\ R_4(k) &= \frac{1}{R_0} \int_0^\infty E_c . V^2 dz \\ R_5(k) &= \frac{1}{R_0} \int_0^\infty E_s . V^2 dz \end{aligned}$$

The 13 depth-functions $A, C, F, L, N, B_c, B_s, H_c, H_s, G_c, G_s, E_c, E_s$ are linear combinations of the elastic coefficients C_{ij} and are explicitly given as follows:

$\alpha = cos \Psi; \ \beta = sin \Psi$				
n	ij	$c_{ij}\epsilon_i\epsilon_j$		
1	11	$c_{11}lpha^2eta^2.k^2W^2$		
1	22	$c_{22}\alpha^2\beta^2.k^2W^2$		
1	33	0		
2	12	$-c_{12}lpha^2eta^2.k^2W^2$		
2	13	0		
2	23	0		
2	24	· · · · ·		
4	14	$c_{14}(-i\alpha^2\beta)$. $\frac{kWW'}{2}$		
4	15	$c_{15}(i\alpha^2\beta).\frac{kW\tilde{W}'}{2}$		
4	16	$c_{16}(-\alpha\beta)(\alpha^2-\beta^2).\frac{k^2W^2}{2}$		
4	24	$c_{24}(-i\alpha^2\beta).\frac{kWW'}{2}$		
4	25	$c_{25}(-\imath\alpha\beta^2)$. $\frac{kWW'}{2}$		
4	26	$c_{26}(\alpha\beta)(\alpha^2-\beta^2)$. $\frac{k^2W^2}{2}$		
4	34	0		
4	35	0		
4	36	0		
4	44	$c_{44}\alpha^2 \cdot \frac{W^2}{4}$		
8	45	$c_{45}(-\alpha\beta)$. $\frac{W^{\prime 2}}{4}$		
8	46	$c_{46}(-i\alpha)(\alpha^2-\beta^2)$. $\frac{kWW'}{2}$		
4	55	$c_{55}\beta^2 \cdot \frac{W'^2}{4}$		
8	56	$c_{56}(i\beta)(\alpha^2-\dot{\beta}^2).\frac{kWW'}{2}$		
4	66	$c_{66}(lpha^2-eta^2).rac{k^2W^2}{4}$		

Table 1: Calculation of the various $c_{ij}\epsilon_i\epsilon_j$ for Love waves $\alpha = \cos\Psi; \ \beta = \sin\Psi$

13 parameters

0¥ term	$A = \frac{3}{8}(C_{11} + C_{22}) + \frac{1}{4}C_{12} + \frac{1}{2}C_{66}$ $C = C_{33}$ $F = \frac{1}{2}(C_{13} + C_{23})$ $L = \frac{1}{2}(C_{44} + C_{55})$ $N = \frac{1}{8}(C_{11} + C_{22}) - \frac{1}{4}C_{12} + \frac{1}{2}C_{66}$	Vev Vev Vsv Vsv
	cos	sin
2Ψ term	$B_{c} = \frac{1}{2} (C_{11} - C_{22})$ $G_{c} = \frac{1}{2} (C_{55} - C_{44})$ $H_{c} = \frac{1}{2} (C_{13} - C_{23})$	$B_{\bullet} = C_{16} + c_{26} \rightarrow B$ $G_{\bullet} = C_{54} \rightarrow G$ $H_{\bullet} = C_{36} \rightarrow H$
4¥ term	$E_c = \frac{1}{8} \left(C_{11} + C_{22} \right) - \frac{1}{4} C_{12} - \frac{1}{2} C_{66}$	$E_s = \frac{1}{2} \left(C_{16} - C_{26} \right) \to E$

Transversely Isotropic Medium With vertical Symmetry axis

Isotropic medium: 2 parameters VTI: 5 parameters (A,C,F,L,N) + 8 (from surface waves)

Montagner and Nataf, 1986

13 parameters

- Best Resolved parameters for Surface Waves
- $\mathbf{L} = \rho V_{SV}^2$ Isotropic part of V_{SV} .
- $\xi = \frac{N}{L} = \frac{V_{SH}^2}{V_{SV}^2}$ Radial Anisotropy.

 G, Ψ_G Azimuthal Anisotropy of V_{SV} , also related to SKS splitting (when horizontal symmetry axis).

- + a priori information (from mineralogy, ...)
- Body Waves (Crampin, 1984)

 $\rho V_{gSV}^2 = L + G_c cos 2\Psi + G_s sin 2\Psi$

$$ho V^2_{qSH} = N - E_c cos 4 \Psi - E_s sin 4 \Psi$$

Geodynamic Interpretation

Convective cell: anisotropic parameters

2 D tomography: N cells

Isotropic Inversion:

N independent parameters 0- Ψ term VR1 Variance reduction

Anisotropic inversion

3N' = N

VR2>VR1 => the anisotropic model can be simpler than the isotropic model

Parameter Space

Physical parameters: ρ + 13 physical parameters

Geographical parameterization: $\mathbf{p}(\mathbf{r},\theta,\phi)$

Continuous parameterization

Spherical harmonic expansion

Lateral resolution:
 Hor 1000km, Rad 50km => 500*60*14 ≈ 420,000 parameters

Calculation of dispersion curves: Fundamental modes and higher modes

Comparison with previous results along the Vanuatu-California path.

Beucler et al., 2002

Phase velocity maps At 100s

2nd overtone

1st overtone

Fundamental mode

Beucler and Montagner, 2006

Global Tomography

Scale $\Lambda \approx 2000$ km (degree 20) Seismic wavelength $\lambda \leq 500$ km Ray theory applies

Shear wave velocities - depth = 100km

CAN WE NEGLECT SMALL-SCALE HETEROGENEITIES?

Scale $\Lambda > 1000$ km Seismic wavelength 20km $\leq \lambda \leq 500$ km

Λ heterogeneity scale, λ wavelength

Typical scales ∧≈2,000km, λ≈ 500km

Finite frequency sensitivity of surface waves to anisotropy using adjoint methods

Anne Sieminski¹, Qinya Liu², Jeannot Trampert¹ and Jeroen Tromp²

(1) Utrecht University(2) Caltech Seismological Lab

Effects on amplitude?

- Surface wave tomography of mantle anisotropy is based on ray theory
- Finite frequency tomography has been tested to improve the imaging of the isotropic mantle
- How do finite frequency surface waves "sense" anisotropy ?
- Computational tool : Adjoint Spectral Element Method (ASEM) (Tromp et al., 2005)

Time Reversal- Adjoint Method (Tarantola, 1984, Tromp et al., 2005): Adjoint => Fréchet Derivatives

Sensitivity computation

(1)

- Sensitivity kernel : $\delta T = \iiint K_{\delta m}^{\delta T}(x) \delta m(x) dx^3$
- Construction :

Tape et al. (2006)

• Off the ray path :

at 150 km depth (mode 0 ; 100s < T < 180s ; Δ = 120°)

(3)

• Off the ray path :

at 150 km depth (mode 0 ; 100s < T < 180s ; Δ = 120°)

• Love-Rayleigh coupling effect :

at the surface (mode 0 ; 100s < T < 180s ; $\Delta = 120^{\circ}$)

• Cross-branch coupling effect :

at the surface (mode 0 ; 100s < T < 180s ; $\Delta = 120^{\circ}$)

• Path-dependency (azimuthal anisotropy) :

• Love-Rayleigh coupling and path-dependency :

www.spice-rtn.org

Conclusion

• Surface wave amplitude sensitivity to anisotropy is controlled by :

- significant mode coupling effects
- strong path-dependency (azimuthal anisotropy)
- source radiation
- \Rightarrow Most of the sensitivity kernels do not show a simple elliptical pattern
- \Rightarrow Consequences for tomography?