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Abstract

Major advances in Structural Seismology during the last twenty years, are related to the emergence

and development of more and more sophisticated 3D imaging techniques, usually named seismic to-

mography, at different scales from local to global. Progress has been made possible by the rapid

developments in seismic instrumentation and by the extensive use of massive computation facilities.

The scope of this chapter is limited to the tomographic elastic structure of the upper mantle. In order

to obtain a good spatial coverage of this part of the Earth, it is necessary to make use of dispersive

properties of surface waves. Most global tomographic models are still suffering severe limitations in

lateral resolution, due to the imperfect data coverage, and to crude theoretical approximations. It

is usually assumed that the propagating elastic medium is isotropic, which is a poor approximation.

It is shown in this chapter how to take account of anisotropy of Earth's materials and a complete

tomographic technique including the resolution of the forward problem and of the inverse problem

is presented. Consequently, by including other geological constraints, it is possible to map not only

the 3D temperature heterogeneities but also the flow field within the convecting mantle. In order

to improve the lateral resolution of global models, the installation of ocean bottom observatories is

necessary and constitutes a new challenge for this new century. The next step will also consist in

systematically applying recent developments in numerical modeling and theory to seismic data, in

order to use the complete information provided by seismic waveforms and to incorporate physical and

chemical constraints provided by other fields of earth sciences.

Keywords: Tomography, isotropic model, seismic anisotropy, S-wave splitting, surface waves, Rayleigh

wave, Love wave, broadband seismology, normal modes, upper mantle, transition zone, inverse prob-

lem.



Introduction

Twenty years ago, the first global isotropic tomographic models of the mantle were published ( Wood-

house and Dziewonski, 1984; Dziewonski, 1984). Since that time, many new tomographic models were

published, and a large family of techniques was made available. This important progress was made

possible by the extensive use of computers which can handle very large datasets and by the availabil-

ity of good quality digital seismograms recorded by broadband seismic networks such as GEOSCOPE

(Romanowicz ei al, 1984), IRIS (Smithy 1986) and all networks coordinated by the FDSN (Federation

of Digital Seismograph Networks). Thanks to the installation of modern digital networks, it is now

possible to map the whole earth from the surface down to the center of the Earth by seismic tomog-

raphy. However, most tomographic techniques only make use of travel times or phase information

in seismograms and very few use the amplitude, even when seismic waveform is used (Woodhouse

and Dziewonski, 1984). Global tomographic models have been improved over years by an increase

in the number of data and more importantly by using more general parameterizations, now includ-

ing anisotropy (radial anisotropy in Naiaf et al. (1986); general slight anisotropy in Montagner and

Tanimoto (1990, 1991)) and to a less extent anelasticity (Tanimoto, 1989; RomanowicZj 1990). This

chapter is focused on the imaging of large scale (> 1000km) lateral heterogeneities of velocity and

anisotropy in the upper mantle (0-660km depth) where the lateral resolution is the best thanks to

surface waves providing an almost uniform lateral and azimuthal coverage, particularly below oceanic

areas. We will discuss how tomographic imaging completely renewed our vision of the upper mantle

dynamics. It makes it possible to relate surface geology and plate tectonics to underlying mantle

convection, and to map at depth the origin of geological objects such as continents, mountain ranges,

slabs, ridges and plumes. The goal of this chapter is not to review all contributions to this topics, but

to underline the main scientific issues, to present different approaches and to illustrate the different

progress (partly subjectively) by some of my results or by other more recent models. This chapter

aims to show why a major step, which takes a complete account of amplitude anomalies in the most

general case and which will enable to map shorter scale heterogeneities, is now possible and presently

ongoing.

1 Effects of seismic velocity and anisotropy on seismograms

For theoretical and practical reasons, the Earth was considered for a long time, as composed of isotropic

and laterally homogeneous layers. While an isotropic elastic medium can be described by 2 independent



elastic parameters (A and fi Lame Parameters), the simplest anisotropic medium (transverse isotropy

with vertical symmetry axis) necessitates 5 independent parameters [Love, 1927: Anderson, 1961) and

the most general elastic medium requires 21 independent parameters. However, since the sixties, it

was recognized that most parts of the Earth are not only laterally heterogeneous but also anisotropic.

Though the lateral heterogeneities of seismic velocities were used for a long time for geodynamical

applications, the importance of anisotropy for understanding geodynamic processes is only recognized

recently.

Seismology is an observational field based on the exploitation of seismic recordings of the displacement

(velocity or acceleration) of the Earth induced by earthquakes. Broadband 3-component high dynamic

seismometers have been installed in more than 500 stations around the world during the last 20 years

(see overview of Romanowicz and Dziewonski, this issue). Thanks to progress in instrumentation and

theoretical developments, it is now possible to observe and to take a simultaneous account of the

effects of lateral heterogeneities of velocity and anisotropy on seismograms.

1.1 First order per turba t ion theory

The basic equation which governs the displacement u(r, t) is the elasto-dynamics equation:

Fsi

Fsi et PE% represent respectively the whole ensemble of applied inertial and external forces (see

Takeuchi and Saito (1972) or Woodhouse and Dahlen (1978) for a complete description of all terms).

Generally, by neglecting the advection term, this equation is written in a simple way:

(podtt-Ho)u(T,t) = F(rSit) (2)

where Ho is an integro-differential operator and F expresses all forces applied to the source volume in

rs at time t. F is assumed to be equal to 0 for t < 0. In the elastic case, there is a linear relationship

between ®ij and the strain tensor ey. aij = Ylki^ijkieki (H~ terms related to the initial stress). Tijki

is a 4^-order tensor, often written in its condensed form Cij as a 6x 6 matrix. By using the different

symmetry conditions T^ki = Tjiki = ^ijik = ^kiiji the tensor T is shown to have 21 independent elastic

moduli in the most general anisotropic medium. In an isotropic medium, this number reduces to 2,

the Lame coefficients A and \x.



When looking for the free oscillations of the Earth F = 0. The solution u(r, t) of equation (2) can be

calculated for a spherically symmetric non rotating reference Earth model associated with the operator

Ho, according to the equation:

po$*u(r,t) = Hou(r,t) (3)

The solution of equation (3) is beyond the scope of this chapter and is described elsewhere in the

treatise (Woodhouse). The eigenvalues of the operator Ho are equal to —pQnuJf where nujg is the

eigenfrequency characterized by 2 quantum numbers n and £1 respectively termed radial and angular

orders. The corresponding eigenfunctions nu™(r, t) depend on 3 quantum numbers n, £, m, where m

is the azimuthal order, with the following property — £ < m < £. Therefore, for a given eigenfrequency

nuj£ calculated in a spherically symmetric Earth model, 2£ + 1 eigenfunctions can be defined. The

eigenfrequency nuj£ is said to be degenerated, with a degree of degeneracy 2-̂  + 1. There is a com-

plete formal similarity with the calculation of the energy levels of the atom of hydrogen in quantum

' mechanics. The eigenfunctions nu™(r, £) of the operator HQ are orthogonal and normalized.

The important point is that the basis of functions nujp(r,£) is complete. This implies that any

displacement at the surface of the Earth can be expressed as a linear combination of these eigenfuctions:

n,£,m

Therefore, these eigenfunctions can be used to calculate the synthetic displacement at any point r, at

time t, due to a point force system F at point rg and a step time function and its associated moment

tensor M, which is a good starting model for earthquakes. The solution of the equation (2) is given

by:

u(r,t) = £ nu?(r) " - " f ' ^ I M : n<?)s (4)
n,£,rn t

where e is the deformation tensor. Since the equation (4) is linear in M, it can be easily generalized

to more complex spatial and temporal source functions, and can be rewritten:

where G(r, rg,t, ts) is the Green operator of the medium. Normal mode theory is routinely used to

calculate synthetic seismograms at long periods (T > 40s.) and Centroid Moment Tensor solutions

(Dziewonski et al., 1981).



An example of real and synthetic seismograms is presented in figure 1. However, there are still some

discrepancies (usually frequency dependent) between the observed and synthetic seismograms. The

simplest way to explain the observed time delays consists in removing the assumption that the Earth

is spherically symmetric, i.e. there are lateral heterogeneities between the source and the receiver.

The next issue consists in characterizing these lateral heterogeneities. Since the agreement between

synthetic and observed seismograms is good at long periods (T > 40s), we can reasonably infer that

the amplitude of heterogeneities is small (< 10%). Behind the surface wave train, a long coda is

usually observed, interpreted as scattered waves. However, when filtering out the periods shorter than

40s, this coda vanishes, which means that the scattering effect is only large in the shallowest regions of

the Earth (primarily the crust, and the upper lithosphere) but that it is probably negligible at larger

depths. However, some groups start to use the information contained in these coda waves (Aki and

Richards, 1980; Snieder et al7 2002), and even from seismic noise (Shapiro et aln 2005) for imaging the

crust. For the sake of simplicity, our study is limited to long period surface waves and it is hypothesized

that the scale of lateral heterogeneities is large compared with the seismic wavelength. This point will

be discussed in section 2.1. A second hypothesis which must be discussed, is the isotropic nature of the

Earth materials. Actually, it is a poor assumption, because seismic anisotropy can be undoubtedly

observed at different scales. Finally, the influence of lateral variations of attenuation must also be

taken into account and will be discussed in another chapter by B. Romanowicz (Seismic Attenuation

in the Earth).

1.2 Effect of anisotropic heterogeneities on normal modes and surface waves

Different geophysical fields are involved in the investigation of the manifestations of anisotropy of

Earth materials: mineral physics and geology for the study of the microscopic scale, and seismology

for scales larger than typically one kilometer. The different observations related to anisotropy, at

different scales are reviewed in Montagner (1998) and in Park and Maupin (this issue).

Different kinds of observations have been used for investigating anisotropy in the upper mantle: the

Rayleigh-Love wave discrepancy (Anderson, 1961), the azimuthaLvariation of phase velocities of sur-

face waves (Forsythj 1975) and the shear-wave splitting particularly for SKS waves (Vinnik et al^

1992). The lack of stations in oceanic areas explains why it is necessary to use surface waves to

investigate the upper mantle structure (isotropic or anisotropic) at the global or regional scales.

In the simplest case (fundamental modes, no coupling between branches of Rayleigh and Love waves),

the frequency shift ^ (and the corresponding phase velocity perturbation ^-r), for a constant wavenum-



ber k can be written by applying Rayleigh's principle:

5uj _ s v l

—- k _ — k

where €y and Fy^i are respectively the deformation and the elastic tensor components, and nu
r
e
n the

eigenfunctions as defined in the previous section.

We only consider the propagation of surface waves in a plane-layered medium for a general slight elastic

anisotropy, but it can be easily extended to the spherical Earth (Mochizuki, 1986; Tbmmoto, 1986;

Romanowicz and Sniedery 1988; Larson et al, 1998; Trampert and Woodhouse^ 2003). Smith and

Dahlen (1973, 1975), found that, to first order in anisotropy and at frequency a;, the azimuthal

variation of local phase velocity (Rayleigh or Love wave) can be expanded as a Fourier series of the

azimuth 1/ along the path and is of the form:

, 0, <t>)cos4$t + OL±(<JJ, 0, (f))sin4^ (6)

where VQ{UJ^) is the reference velocity of the unperturbed medium, and W is the azimuth along

the path. Moniagner and Naiaf (1986) present the expressions for the different azimuthal coefficients

&i(uj, 0j $) as depth integral functions dependent on 13 simple linear combinations of standard cartesian

elastic coefficients Cij. The Appendix shows how to relate Tij^i to Cij and presents detailed calculation

of azimuthal terms for Love waves.

Constant term ( 0 \£-azimuthal term:
A = pVlH = §(Cn + C22) + \CU + f

C = pV£v = C33

F = 3(^13 + C23)

N = PVlH = l(Cu + C22) - \Cn

2 ^-azimuthal term:

Bc = 3(611 — C22) Bs = C\Q + C26

Gc = 2(655 ~ 6*44) Gs = C54

Hc = 2(613 — 623) Hs = Cm

4 ^-azimuthal term:

as cos 4# 0:4 sin 4 ^

Ec = g (6n + 622) — 4612 — 5666 Es = 5(616



where indices 1 and 2 refer to horizontal coordinates (1: North; 2: East) and index 3 refers to vertical

coordinate, p is the density, Vpjj, Vpy are respectively horizontally and vertically propagating P-wave

velocities, VSH, VSV horizontal and vertical polarized S-wave velocities. So, the different parameters

present in the different azimuthal terms are simply related to elastic moduli Cij.

From a practical point of view, once source phase is removed and assuming that the scale of hetero-

geneities is larger than the wavelength, the total phase (fit (and the travel time) between the epicenter

E and the receiver R, is easily related to the measurement of phase velocity Vd(uj), and therefore to

the local phase velocity V(LJ, #, <f>, #):

UJA fR ds . ,
) jE v(u,e,<}>,%)

Therefore, equations (6) and (7) define the-forward problem in the framework of first order perturbation

theory. We will see in the next section how to solve the inverse problem. That means that, ideally,

surface waves have the ability to provide information on 13 elastic parameters, which emphasizes the

enormous potential of surface waves in terms of geodynamical and petrological implications.

The 0-# term corresponds to the average over all azimuths and involves 5 independent parameters,

A, C, F, L, N, which represent the equivalent transversely isotropic medium with a vertical symmetry

axis (more simply named VTI or radial anisotropy). It must be noted that it is possible to retrieve

the equivalent isotropic shear modulus from these 5 parameters. By using a Voigt average, the shear

modulus /i is equal to:

Lo T?(Cn + C22 + Cm - Cn - Cn - C23 + 3<744 + 3C55 + 3C66)

According to the expressions of A, C, F, L, N in terms of elastic moduli, JJL = j^(C-\-A — 2F + 6L + 5N)

So we can see that the equivalent isotropic velocity depends not only on Vsv a n d VSH-I but also

on P-wave velocity and anisotropy (<f> = ^) and on r) = -J~~J-. By rewriting this expression fj, =

jg(C + (1 — 2i])A + (6 + Ai])L + 5iV), neglecting anisotropy in P-wave (</> = 1) and assuming r\ = 1,

it is found that fi = pVg. = | L + |iV = \pVgy + \P^SH- Naturally, this choice is partly arbitrary,

since usually, there is no S-wave anisotropy without P-wave anisotropy. Another way might consist

in using correlations between anisotropic parameters for petrological models as derived by Montagner

and Anderson (1989a).

The other azimuthal terms (2-# and 4-#) depend on 4 groups of 2 parameters, B, G, H, E respectively

describing the azimuthal variation of A, L, F, N. These simple parameters make it possible to describe

in a simple way the two seismically observable effects of anisotropy on surface waves, the " polarization"



anisotropy (Schlue and Knopoff, 1977) and the azimuthal anisotropy (Forsyth, 1975).

Another important point in these expressions is that they provide the partial derivatives for the radial

and azimuthal anisotropy of surface waves. The corresponding kernels and their depth dependence

are plotted in Montagner & Nataf (1986) (Figures A2-A3). These partial derivatives of the different

azimuthal terms with respect to the elastic parameters can be easily calculated by using a radial

anisotropic reference Earth model, such as PREM (Dziewonski and Anderson, 1981). The partial

derivatives of the eigenperiod oXg with respect to parameter p1 '^^~- can easily be converted into phase

velocity partial derivatives by using:

V{dp)T UT{dp)k

For example, the parameters Gc and Gc have the same kernel as parameter L (related to Vsv) as

shown by comparing the expressions offti, R% and R$ in equation (29) of Appendix. For fundamental

modes, the calculation of kernels shows that Love waves are almost insensitive to Vsv (Figure A2) and

Rayleigh waves to VSH- Rayleigh waves are the most sensitive to SV-waves. However, as pointed out

by Anderson and Dziewonski (1982), the influence of P-waves (through parameters A and C) can be

very large in an anisotropic medium. The influence of density is also very large for Love and Rayleigh

waves, but as shown by Takeuchi and Saito (1972), it is largely decreased when seismic velocities are

inverted for, instead of elastic moduli and density.

1.3 Comparison between surface wave anisotropy and SKS splitting data

It can be noted that some of the linear combinations of elastic moduli Gij, derived from surface waves

in the previous section, also' come up when considering the propagation of body waves in symmetry

planes for a weakly anisotropic medium (see for example Crampin et al. (1984) and their azimuthal

dependence

pV} = A + Bc cos 2# + Bs sin 2# -f Ec cos 4# + Es sin 4#

pV^p = N - Ec cos 4W - Es sin 4#

pVjlR = L + Gc cos 2\l> + Gs sin 2#

A global investigation of anisotropy inferred from SKS body wave splitting measurements (delay times

and directions of maximum velocities) has been undertaken by different authors (Vinnik et al., 1992;

Silver,, 1996; Savage, 1999). Unfortunately, most of SKS measurements have been done in continental

parts of the Earth, and very few in oceans. It turns out that a direct comparison of body wave

and surface wave datasets is now possible (Montagner et al., 2000). If the anisotropic medium is



assumed to be characterized by a horizontal symmetry axis with any orientation (that is a very strong

assumption which can be alleviated as shown by Chevrot et a!., 2004), and for a vertically propagating

SKS wave, a synthetic dataset of SKS delay times and azimuths can be calculated from the global

distribution of anisotropy derived from surface waves, by using the following equations:

f^ sin^(z))\ (8)

where StsKS is the integrated travel time for the depth range 0-h for a propagation azimuth \&, where

the anisotropic parameters Gc(z),Gs(z) and L(z) are the anisotropie parameters retrieved from surface

waves at different depths. It is remarkable to realize that only the (^-parameter (expressing the SV~

wave azimuthal variation) is present in this equation. From equation (8), we can infer the maximum

value of delay time St>rg^x
s and the corresponding azimuth #'SKS"-

z±max , I i i j _ . / P ^c{z)

J dz-
tan(2*SKS) = " ^ (10)

JO az L(z)

However, equation (8) is approximate and only valid when the wavelength is much larger than the

thickness of layers. It is possible to make more precise calculations by using the technique derived for

2 layers by Silver & Savage (1994) or by using the general expressions given in Rumpker and Silver

(1998), Montagner et al (2000), Chevrot et at, 2004).

With equations (9) and (10), a synthetic map of the maximum value of delay time Sfgjfs can be

obtained by using an 3D anisotropic surface wave model. A detailed comparison between synthetic

SKS derived from AUM (Montagner & Tanimoto, 1991) and observed SKS (Silver, 1996) was presented

in Montagner et al. (2000). Figure 2 shows such a map for the Earth centered in the Pacific, by

using the anisotropic surface wave model of Montagner (2002) derived from the data of Montagner and

Tanimoio (1991) and Ekstrom et al. (1997). First of all, the comparison shows that both datasets are

compatible in magnitude but not necessarily in directions. Some contradictions between measurements

derived from surface waves and from body waves have been noted. The agreement of directions is

correct in tectonically active areas but not in old cratonic zones. The discrepancy in these areas

results from the rapid lateral change of directions of anisotropy at a small scale. These changes stem

from the complex history of these areas, which have been built by successive collages of continental

pieces. It might also result from the hypothesis of horizontal symmetry axis, which was shown to be

9



invalid in many areas (Plomerova et aln 1996). The positive consequence of this discrepancy is that a

small scale mapping of anisotropy in such areas might provide clues for understanding the processes

of growth of continents and mountain building opening a new field in paleoseismology.

Contrarily to surface waves, SKS-waves have a good lateral resolution, and are sensitive to the short

wavelength anisotropy just below the stations. But their drawback is that they have a poor vertical

resolution. On the other hand, global anisotropy tomography derived from surface waves only provides

long wavelength anisotropy (poor lateral resolution) but enables the location at depth of anisotropy.

The long wavelength anisotropy derived from surface waves will display the same direction as the short

wavelength anisotropy inferred from body waves only when large scale vertical coherent processes are

predominant. As demonstrated by Montagner et at. (2000), the best agreement between observed

and synthetic SKS can be found when only layers in the uppermost 200km of the mantle are taken

into account. Moreover, tomograophic models derived from surface waves looses resolution at depths

greater than 200km. In some continental areas, short scale anisotropy, the result of a complex history,

might be important and even might mask the large-scale anisotropy more related to present convec-

tive processes. From a statistical point of view, it is found good agreement between orientations of

anisotropy and plate velocity motion. The differences between anisotropy and tectonic plate directions

are related to more complex processes, as will be seen in section 3.

2 Upper mantle tomography of seismic velocity and anisotropy

We now show how to implement theory of section 1 from a practical but general point of view, and

how to design a tomographic technique in order to invert for the 13 different elastic parameters +

density. A tomographic technique necessitates to solve at the same time, a forward problem and an

inverse problem. By using the results of the previous section, it is successively considered how to set

the forward problem, and how it is used to retrieve a set of parameters by inversion.

2.1 Forward problem.

It is firstly necessary to define the data space d and the parameter space p. It is assumed that a

functional g relating d and p can be found such that:

d = g(p), where d is the set of data (which samples the data space), and p the set of parameters.

Data Space: d

The basic dataset is made of seismograms u(t). We can try to directly match the waveform in the time

10



domain, or we can work in the Fourier domain, by separating phase and amplitude on each component

The approach consisting in fitting seismic waveforms is quite general but, from a practical point of view,

it does not necessarily correspond to the simplest choice. In a heterogeneous medium, the calculation

of amplitude and phase effects makes it necessary to calculate the coupling between different multiplets

{Li and Tanimoto, 1993; Li and Romanowicz, 1995), which is very time consuming. When working

in Fourier domain, different time windows can be considered and the phase of different seismic trains,

body waves and surface waves can be separately matched {Nolet, 1990; Leveque et at, 1991) under

drastic simplifying assumptions. It was shown in Figure 1 an example of data seismogram and

synthetic seismograms obtained by normal mode summation with the different higher modes. The

fundamental wavetrain is well separated from other modes at large epicentral distances. The part of

the seismogram corresponding to higher modes is more complex and shows a mixing of these modes

in the time domain. Therefore, from a practical point of view, the fitting of the fundamental mode

wavetrain will not cause any problem and has been widely used in global mantle tomography.

The use of higher mode wavetrain and the separation of overtones is much more difficult. The first

attempts were performed by Nolet (1975), Cara (1978), Okal and Bong-Jo (1985) and Dost (1990) by

applying a spatial filtering method. Unfortunately, all these techniques can only be applied in areas

where dense arrays of seismic stations are present, i.e. in North America and Europe. By using a

set of seismograms either recorded in one station but corresponding to several earthquakes located in

a small source area, Stutzmann and Montagner (1993) showed how to separate the difierent higher

modes. A similar approach was also followed by Van Heijst and Woodhouse (1997). We only detail

in this paper the technique which was designed for fitting the fundamental mode wavetrain and the

reader is referred to Stutzmann and Montagner (1993, 1994), Van Heijst and Woodhouse (1997) and

Beucler et al. (2003) for the description of the recovery of higher mode dispersion properties and to

Romanowicz for a general overview. Figure 3 presents an example of phase velocity dispersion for

difierent surface wave modes (fundamental and first higher modes {Beucler et al., 2003)) and how

they compare with previous investigations (C7ara, 1978; Van Heijst and Woodhouse, 1997).

We take advantage of the fact that, according to the Fermat's principle, the phase velocity pertur-

bation is only dependent to second order on path perturbations, whereas amplitude perturbation are

dependent, at first order, to these perturbations, which implies that the eigenfunctions must be recal-

culated at each iteration. Therefore, the phase is a more robust observable than the amplitude. The

11



amplitude A(UJ) depends in a complex manner upon seismic moment tensor, attenuation, scattering,

focusing effects, station calibration and near-receiver structure whereas the contribution of lateral het-

erogeneities of seismic velocity and anisotropic parameters to the phase (f>{uj) can be easily extracted.

The dataset under investigation, is composed of propagation times (or phase velocity measurements

for surface waves) along paths: d = {p^~y}-

On the other hand, the phase of a seismogram at time t is decomposed, as follows: (f) = k.r + ^Q, where

k is the wave vector, <f)'Q is the initial phase including several terms: (/)Q — >̂o + ^ s + ^/? <fis is the initial

source phase, 4>o is related to the number of polar phase shifts, <j>i is the instrumental phase. cf> can be

measured on seismograms by Fourier transform. We usually assume that (f>s is correctly given by the

centro'id moment tensor solution. For a path between epicenter E and receiver R with an epicentral

distance A, the phase 4> is given by:

UJA

^ = + 0 0 + 0 3 + ^ (11)
Vobs

In the general case, we want to relate the observed phase velocity Vobsi1-^) to the parameters of the

Earth model p(r,#, (j>). Data and 3D parameters can be related through integrals over the whole

volume of the Earth. But for computing reasons, it is usual to use a multistep approach, where we

first retrieve the local phase velocity V(u;, 0, (f) including its azimuthal terms, and then perform the

inversion at depth. These 2 steps can be reversed since the order of the integrations can be reversed.

It is necessary to consider the nature of the perturbed medium. Following the approach of Snieder

(1983), if the perturbed medium is at the same time smooth (long wavelength heterogeneities) and

weak (small amplitude of heterogeneities), geometrical optics approximation (and ray theory) applies.

This hypothesis is not necessarily met within the Earth where some geological objects (slabs, mantle

plumes, ...) have a length scale which can be close to the seismic wavelength. In the approximation of

ray theory, the integral on volume, reduces to the curvilinear integral along the geometrical ray path.

When ray theory is applicable:

rR u)ds

Where the integral is understood between the epicenter E and the receiver R.

Following the results of the previous section, different approximations are implicitly made when using

this expression of the phase:

• large angular order £ >» 1, but not too large (scattering problems). From a practical point of

view, this means that measurements are performed in the period range 40s < T < 200s with seismic

wavelengths between 200 and 1000km.

12



• geometrical optics approximation: If A is the wavelength of the surface wave at period T, and A5

the spatial wavelength of heterogeneity: A5 >̂ A = VT => As~2000km.

* slight anisotropy and heterogeneity: y C l . According to Smith and Dahlen (1973) for the plane

case, the local phase velocity can be decomposed as a Fourier series of the azimuth *£ (equation 6):

Each azimuthal term ai(Ty0,(f)) of equation (6) can be related to the set of parameters Pi(r,0,(f>)

(density + 13 elastic parameters), according to the expressions derived in Appendix.

A A ^ 2 14 fRds
14

Vobs(T) V0(T) ^ = 0 ^ = 1 JE

Pi Ah {U)

Equation (13) defines the forward problem in the framework of a Erst order perturbation theory,

relating the data and the parameter spaces. This approach is usually coined PAVA (Path average

approximation Many terms in equation (13) are equal to zero since all parameters are not present in

each azimuthal term. A last important ingredient in the inverse problem formulation is the "structure"

of the data space. It is expressed through its covariance function (continuous case) or covariance matrix

(discrete case) of data Cd- When data (k are independent, Cd is diagonal and its elements are the

square of the errors on data a^.

-Finite-frequency effects

As mentioned previously, a strong hypothesis is that in the framework of geometrical optics approxi-

mation, we can only image of large scale heterogeneities. But it is well known that some interesting

geological objects such as slabs, plumes. To go beyond the ray theory, it is necessary to take account

of the finite-frequency effect (scale length has the same order of magnitude as the seisinic wavelength),

it is possible to use the scattering theory based on the Born or Rytov approximations (see for ex-

ample Woodhouse and Girnius (1982) for normal mode approach, Snieder (1988) for surfaces waves,

Yomogida (1992), Dahlen et at. (2000) for body waves). Equation (13) shows that the sensitivity

kernels are ID, meaning that only heterogeneities in the vertical plane containing the source and the

receiver are taken into account, whereas, by using the scattering theory, it is possible to calculate 3D

kernels and consequently to take account of off-path heterogeneities. The equations (12) and (13)

must be replaced by an integral over the volume O:

(14)
Yebs(T) V0(T)
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where K(T, 9} <p)) is the scattering Frechet sensitivity kernel), which depends on wave type (Rayleigh or

Love) and on the relative location of E and R (see for example Romanowicz, 2002 for a review). Very

different strategies can be followed for calculating this triple integral, by separating the surface integral

and the radial integral. For a point scatterer, the kernel displays a typical shape of banana-doughnut

{Dahlen et al, 2000). Different approximations of K(T1 9, <fi) have been proposed (Spetzler et al., 2002;

Yoshizawa and Kennett, 2002; Ritzwoller et al, 2002), but Sieminski et al. (2004) showed that ray

theory surface wave tomography with a very dense path coverage, can detect heterogeneities with

length scales smaller than seismic wavelength. The discussion of the advantages and shortcomings of

these different techniques is beyond the scope of this chapter but some new tomographic models using

three-dimensional sensitvity kernels are coming up [Zhou et al., 2004, 2006) for radially anisotropic

media.

Parameter space: p(r)

It is quite important to thoroughly think of the structure of the parameter space. First of all, it is

necessary to define which parameters are required to explain our dataset, and how many physical

parameters can be effectively inverted for, in the framework of the theory that is considered. For

example, if the Earth is assumed to be elastic, laterally heterogeneous but isotropic, only 3 independent

physical parameters, Vp, Vs and density p (or the elastic moduli A, y, and p) can be inverted for,

from surface waves. In a transversely isotropic medium with a vertical symmetry axis {Anderson,

1961; Takeuchi and Saito, 1972), the number of independent physical parameters is now 6 (5 elastic

parameters + density). In the most general case of a weak anisotropy, 14 physical parameters (13

combinations of elastic moduli + density) can be inverted using surface waves. Therefore, the number

of "physical" parameters pi is dependent on the underlying theory which is used for explaining the

dataset.

Once the number of "physical" independent parameters is defined, we must define how many "spatial"

(or geographical) parameters are required to describe the 3D distributions pi(r, 0, (f>). That is a difficult

problem because the number of "spatial" parameters which can be reliably retrieved from the dataset,

is not necessarily sufficient to provide a correct description of Pi(r} 9, <fi). The correct description of

Pi{r19, (f)) is dependent on its spectral content: for example, if piir, 0, (p) is characterized by very large

wavelengths, only a small number of spatial parameters is necessary, but if Pi(r,6, <j>) presents very

small-scale features, the number of spatial parameters will be very large. In any case, it is necessary to

assess the range of possible variations for pi(r, 0, (f>) in order to provide some bounds on the parameter

space. This is done through a covariance function of parameters in the continuous case (or a covariance
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matrix for the discrete case) CPiPj(r,r') at 2 different points r, r'. These a priori constraints can be

provided by other fields in geoscienees, geology, mineralogy, numerical modeling...

Consequently, a tomographic technique must not be restricted to the inversion of parameters p =

{pi(r, d1 (p)} that are searched for, but must include the calculation of the final covariance function (or

matrix) of parameters Cp. That means that the retrieval of parameters is contingent to the resolution

and the errors of the final parameters and is largely dependent on the resolving power of data (Backus

and Gilbert, 1967, 1968, 1970). Finally, the functional g which expresses the theory relating the data

space to the parameter space is also subject to uncertainty. In order to be completely consistent, it is

necessary to define the domain of validity of the theory and to assess the error aT associated with the

theory. Tarantola and Valette (1982) showed that the error ax is simply added to the error on data

2.2 Inverse problem

The equation (13) expressing the first order perturbation theory of the forward problem in the linear

case, can be simply written:

where G is a matrix (or a linear operator) composed of Predict derivatives of d with respect to p,

which has the dimensions rid x % (number of data x number of parameters). This matrix usually is

not square and many different techniques in the past have been used for inverting G. In any case,

the inverse problem will consist in finding an inverse for the functional g, that we will write g"1,

notwithstanding the way it is obtained, such that:

To solve the inverse problem, different algorithms can be used.The least-squares solution is usually

solved by minimizing a cost function. Making symmetric the data space and the parameter space,

Tarantola and Valette (1982) are defining the cost function J as:

J = (d - GpfCjl(d - Gp) + (p - pofCpHp - Po)

The first term corresponds to classical least-squares with no damping, whereas the second term corre-

sponds to damping, imposing smoothness upon the parameter space. Different choices were proposed
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for this second term. For example Montagner (1986b) is using a Gaussian covariance function char-

acterized by a correlation length and an a priori error ap on parameters. Another choice consists

in taking a constant value such that SptC~1Sp = X25pt8p (Yoshizawa and Kennett, 2004). Or the

covariance operator can be replaced by a Laplacian operator (see for example Zhou et aln 2006):

5ptC~18p = e ( / / / 1V2(—)|2<JQ )
\ P )

\%f <J *J Jr /

A complete discussion about damping can be found in Trampert and Snieder (1996) who showed that

they prefer Laplacian over model damping to reduce the spectral leakage. By using the expression of

J, a quite general algorithm has been derived by Tarantola and Valette (1982):

- Po)) (15)

where C^ is the covariance matrix of data, CPo the covariance function of parameters p, and G is

the Frechet derivative of the operator g at point p(r). This algorithm can be made more explicit by

writing it in its integral form:

p(r) = po(r) + T ^ Y ] / clr'Cp^r, r/)Gi(r
/)(5^1)iJ-Fj (16)

with Sij = Cdij + j v drtdr2 Gl(r1)CPQ(rljr2)Gj(r2), Fj = dj - #(p) + j v dr" O,-(r")(p(r") - po(r"))

This algorithm can be iterated and enables to solve slightly non-linear problems, which is the case for

the inversion at depth. Different strategies can be followed to invert for the 3D-models p(r), because

the size of the inverse problem is usually enormous in practical applications. For the example of mantle

tomography, a minimum parameter space will be composed of 13 (+density) physical parameters

multiplied by 30 layers (if the mantle is divided into 30 independent layers. If geographical distributions

of parameters are searched for up to degree 40 (lateral resolution around 1000km), that implies a

number of about 700, 000 independent parameters. Such a problem is still very hard to handle from

a computational point of view. A simple approach for solving this problem consists in dividing the

inversion procedure into 2 steps. The first step consists in regionalizing phase (or group) velocity data

in order to retrieve the different azirmithal terms, and the second step is the inversion at depth. It

was implemented by Montagner (1986a,b) and a very similar technique is presented by Barmin et al.

(2001). In case of a large dataset, Montagner and Tanimoto (1990) showed how to handle the inverse

problem by making a series expansion of the inverse of matrix S. It was recently optimized from a
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computational point of view by Debayle and Sambridge (2004) and Bender and Montagner (2005).

One advantage of this technique is that it can be applied indifferently to regional studies or global

studies. In case of imperfect spatial coverage of the area under investigation, it does not display ringing

phenomena commonly observed when a spherical harmonics expansion is used (Tanimoto, 1985).

From a practical point of view, the choice of the model parameterization is also very important and

different possibilities can be considered:

• Discrete basis of functions:

A simple choice consists in dividing the earth into 3D blocks with a surface block size different from

the radial one. The size of block depends on the lateral resolution expected from the path coverage.

A variant of this parameterization is the use of a set of spherical triangular grid points (see for

example Zhou et al., 2005). The block decomposition is valid as well for global investigations as

for regional studies. Usually, the Earth surface parameterization is different for the radial one. For

global study, the natural basis is composed of the spherical harmonics for the horizontal variations

Pi(r, 0, <fi) = X^~cT Ylm=-~e aI"( r)^7n(^' (i))' Other choices are possible, such as spherical splines (Wang

and Dahlen, 1995).

• Continuous function p(r). In that case, the function is directly inverted for. Since the number of

parameters is then infinite, it is necessary to regularize the solution by defining a covariance func-

tion of parameters CPo(r, r '). For the horizontal variations, a Von Mises distribution (Fisher, 1953;

Montagner, 1986b) can be used for initial parameters po(r)'

Cpo(r, r ) = <jp(r)<7p(r ) exp ^ « <7p(r)<7p(r ) exp

where LC0r is the correlation length which will define the smoothness of the final model. This kind

of distribution is well suited for studies on a sphere and is asymptotically equivalent to a Gaussian

distribution when Lcor <C a (a radius of the Earth). When different azimuthal terms distributions are

searched for, it is possible to define cross-correlated covariance functions of parameters CPiP.(r, r '),

but since the different terms of the Fourier expansion in azimuth correspond to orthogonal functions,

the cross-correlated terms off the diagonal can be taken equal to zero.

It is interesting to note that the use of the Gaussian covariance operator CPQ in the technique described

here and which can be named "Gaussian" tomography, is similar to using "fat" rays, which should

be wider than the Fresnel zone in order to be in the right conditions of application of ray theory,

and consequently to get rid of the finite-frequency effects. As discussed by Ritzwoiler et at (2002)

and Sieminski et al. (2004), there might be some slight differences in amplitude between Gaussian
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tomography and Diffraction tomography (taking account of finite-frequency effects), but not in the

location of heterogeneities provided that the spatial path coverage is sufficiently dense.

The radial parameterization must be related to the resolving capability of the data at depth, according

to the frequency range under consideration. For the radial variations, polynomial expansions can be

used (see for example Dziewonski and Woodhouse, (1987) for Tshebyshev polynomials, or Boschi and

Ekstrom (2002) for radial cubic splines). Since the number of physical parameters is very large for the

inversion at depth, physical parameters are usually correlated. The different terms of the covariance

function Cp between parameters p\ and pi at radii ri and rj can be defined as follows:

°~
r . ) 2

^Pl ,P2 Vi •> r j ) = °>1 °P2 Cpi ,P2 J

Where Cpi,P2 *s ^ e correlation between physical parameters p\ and P2 inferred for instance from

different petrological models {Montagner and Anderson, 1989a) such as pyrolite (Ringwood, 1975) and

piclogite (Anderson and j?ass, 1984; and bass and Anderson^ 1986). LTi1 Lr. are the radial correlation

lengths which are used to smooth the inverse model.

The a posteriori covariance function is given by:

Cp = CPQ - CPoG (Cd + GCPoG ) ~ GCPo = (G Cd G + CpQ )~ (17)

The resolution R of parameters can be calculated as well. It corresponds to the impulsive response of

the system: p = g-^d = g~"1gp/ = Rp'- If the inverse problem is perfectly solved, R is the identity

function or matrix. However, the following expression of resolution is only valid in the linear case

(Montagner and Jobert, 1981):

R = CmGT(Gd + GGP0G
TylG = (GTCdG + Cmr1GTCj1G (18}

It is interesting to note, that the local resolution of parameters is imposed by both the correlation

length and the path coverage, contrarily to the Backus-Gilbert (1967, 1968) approach, which primarily

depends on the path coverage. The effect of a damping factor in the algorithm to smooth the solution,

is equivalent to the introduction of a simple covariance function on parameters weighted by the errors

on data (Bo-Liu et aln 1989). When the correlation length is chosen very small, the algorithms of

Backus-Gilbert (1968, 1970) and Tarantola and Valette (1982) are quite equivalent.

By considering the a posteriori covariance function and the resolution, it is possible to assess the

reliability of the hypotheses made about the independence of parameters. For example Tanimoto and

Anderson (1985) and Montagner and Jobert (1988) showed that there is a trade-off between azimuthal
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terms and constant term in case of a poor azimuthal coverage. For the inversion at depth Nataf et

al. (1986) also display the trade-off between physical parameters VPH, Vsv, £> § and 77 when only

Rayleigh and Love wave 0 — #-temis are used in the inversion process.

Though 13 elastic parameters (+ density) are necessary to explain surface wave data (Rayleigh and

Love waves), for small anisotropy, only 4 parameters are well resolved (Montagner and Jo'bert, 1988):

the azimuthally averaged S-wave velocity Vs, the radial anisotropy expressed through the £ parameter

(£ = (VSH/VSV)2) where V$H (resp. Vsv) is the velocity of S-wave propagating horizontally with

horizontal transverse polarization (resp. with vertical polarization), and the G (GCJGS) parameters

expressing the horizontal azimuthal variation of Vsv C w a s introduced in the reference Earth model

PREM (Dziewonski and Anderson, 1981) down to 220km in order to explain a large dataset of free

oscillation eigenfrequencies and body wave travel times. The other elastic parameters can be derived,

by using constraints from petrology in order to reduce the parameter space (Montagner & Anderson,

1989a). This approach was followed by Montagner & Anderson (1939b) to derive an average reference

earth model, and by Montagner & Tanimoto (1991) for the first global 3-D anisotropic model of the

upper mantle.

2.3 Isotroplc and anisotropic images of the upper mantle

The complete anisotropic tomographic procedure has been implemented for making different regional

and global studies. Many global isotropic tomographic models of the upper mantle were published

since Wooodhouse and Dziewonski (1984) and the recent results have been reviewed by Romanowicz

(2003). Many models inverting only for radial anisotropy but neglecting azimuthal anisotropy, have

also been published (Nataf et al, 1984, 1986; Ekstrom and Dziewonski, 1998; Shapiro and Ritzw• oiler;

2002, Gung et al, 2003; Panning and Romanowicz, 2004; Zhou et al, 2006) The complete anisotropic

tomographic technique (regionalization + inversion at depth) has been applied for investigating the

upper mantle structure either at a regional scale of the Indian Ocean (Montagner, 1986a; Montagner

and Jobert, 1988; Debayle and Leveque, 1997), of the Atlantic Ocean (Mocquet et al, 1989; Silveira et

al, 1998; Silveira and Stutzmann, 2002), of Africa (Hadiouche et al, 1989; Debayle et al, 2001; Sebai

et al, 2005; Sicilia et al, 2005), of Pacific Ocean (Nishimura & Forsyth, 1989; Bussy et al, 1993;

Montagner, 2002; Ritzwoller et al, 2004), of Antarctica (Roult et al, 1994 ), Australia (Debayle and

Kenneti, 2000; Simons et al, 2002) and Central Asia (Griot et al, 1998a,b; Villasenor et al, 2001)

or at a global scale (Montagner & Tanimoto, 1990, 1991; Montagner, 2002; Debayle et al, 2004). The

reader is also referred to a quantitative comparison of tomographic and geodynamic models by Becker
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and Boschi (2002).

An important issue, when constructing tomographic models is the correction for crustal structure,

where sedimentary thickness, Motto depth variations are so strong that they affect dispersion of surface

waves at least up to 100s : it was shown (Montagner and Jobert, 1988) that standard perturbation

theory is inadequate to correct for crustal correction and more rigorous approaches were proposed

(Li and Romanowicz (1996); Boschi and Ekstrom, 2002; Zhou et aln 2005) using the updated crustal

models 3SMAC (Nataf and Ricard, 1996; Ricard et a!., 1996) or CRUST2.G (Mooney et al, 1998;

Laske et a!., 2001).

As an example of the results obtained after the first step of the tomographic procedure, Figure 4 shows

different maps of 2 — # azimuthal anisotropy for Rayleigh waves at 100s period for the first 3 modes,

n=0,l,2 superimposed on the isotropic part (0 — W term) of phase velocity. From petrological and

mineralogical considerations, Montagner and Nataf (1988) and Montagner and Anderson (1989a,b)

showed that the predominant terms of phase velocity azimuthal expansion are the 0-# and 2-# for

Rayleigh waves, and 0-^f and 4-# for Love waves. However, Trarnpert and Woodhouse (2003) carefully

addressed the requirement of azimuthal anisotropy, and demonstrated that Rayleigh wave data need

both 2W and 4\& terms, which is also confirmed by Bender and Montagner (2005). It was shown that for

the same variance reduction, a global parameterization of anisotropy including azimuthal anisotropy

requires fewer parameters than an isotropic parameterization. This apparent paradox can be explained

by the fact that the increase of physical parameters is largely compensated by the smaller number of

geographical parameters, i.e. larger scale heterogeneities. Other tests have questioned whether phase

data are sensitive enough to detect azimuthal anisotropy (Larson et ah, 1998; Laske et aln 1998) and

the use of additional polarization data has been proposed.

Most tomographic models agree that down to about 250-300km, the deep structure is closely related

to plate tectonics and continental distribution. Figure 5 presents two horizontal cross-sections from

the most recent model of Debayle et at (2005), which illustrates and confirms the robust features of

the upper mantle models published so far since Montagner and Tanimoto (1991). In the upper mantle

depth range around 100km, all plate boundaries are slow: ridges and back-arc areas are slow, shields

are fast and seismic velocity in oceanic areas is increasing with the age of the seafloor. Except at few
v2, — v2

places, it is found that radial anisotropy expressed through the £ parameter (£ = &a ^SJL\ \s positive
vsv

, as large as 10% in some oceanic areas and decreases with depth.

The amplitude of SV-wave azimuthal anisotropy (G parameter) presents an average value of about 2%

below oceanic areas (Figure 5b). Montagner (1994, 2002) noted a good correlation between seismic
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azimuthal anisotropy and plate velocity directions given by Minster and Jordan (1978) or DeMets et al.

(1990). However, the azimuth of G-parameter can vary significantly as a function of depth (Montagner

& Tanimoto, 1991). For instance, at shallow depths (down to 60km), the maximum velocity can be

parallel to mountain belts or plate boundaries (Vinnik et al, 1991; Silver, 1996; Babuska et al, 1998),

but orthogonal to them at large depth. This means that, at a given place, the orientation of fast axis

is a function of depth, which explains why the interpretation of SKS splitting with a simple model is

often difficult.

As depth increases, the amplitude of heterogeneities rapidly decreases, some trends tend to vanish,

and some distinctive features come up: Fast ridges are still slow but slow ridges are hardly visible and

back-arc regions are no longer systematically slow. Large portions of fast ridges are offset with respect

to their surface signatures. Below 300km of depth (not shown here), high velocity body below the

western and the eastern Pacific rim is the most striking feature, which can be related to subducting

slabs.

A visual and quantitative comparison of existing models can be found in the REM (Reference Earth

Model) web site at the following address: http://mahi.ucsd.edu/Gabi/rem2.dir

3 Geodynamic applications

The most popular application of large-scale tomographic models is the understanding of mantle con-

vection. Seismic velocity anomalies can be converted, under some assumptions, into temperature

anomalies, density anomalies but also into chemical or mineralogies! heterogeneities. The application

of seismic anisotropy to geodynamics in the upper mantle is straightforward, if we assume that, due

to the lattice preferred orientation (LPO) of anisotropic crystals such as olivine (Christensen and

Lundquist, 1982; Nicolas et al., 1973), the fast-polarization axis of mineralogical assemblages is in the

flow plane parallel to the direction of flow. Figure 6 shows what is expected for the observable pa-

rameters Vs, C? G, ipG in the case of a simple convective cell with LPO. Radial anisotropy £ expresses

the vertical (£ < 1) or horizontal character (£ > 1) of convective flow, and the azimuthal anisotropy

G, can be related to the horizontal flow direction. Conversely, the three maps of Vs, £, G, can be

interpreted in terms of convective flow. These 3 pieces of information are necessary to correctly inter-

pret the data. For example, upwellings or downwellings are both characterized by a weak or negative

£ parameter, but a correlative positive or negative SVs discriminates between these possibilities. By

simultaneously inverting at depth for the different azimuthal terms of Rayleigh and Love waves, it is
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therefore possible to separate the lateral variations in temperature from those induced by the orien-

tation of minerals. Such an interpretation should however be erroneous in water-rich mantle regions

where LPO of minerals such as olivine is no simply related to the strain field (e.g. Jung and Karato,

2001). We will only present some examples of interesting applications of anisotropy in large scale geo

dynamics and tectonics. Seismic anisotropy in the mantle therefore reflects the strain field prevailing

in the past (frozen-in anisotropy) for shallow layers or present convective processes in deeper layers.

Therefore, it makes it possible to map convection in the mantle. It must be noted that, when only the

radial anisotropy is retrieved, its interpretation is non unique. A fine layering of the mantle can also

generate such a kind of anisotropy, and neglecting the azimiithal anisotropy can bias the amplitude of

radial anisotropy.

The uppermost mantle down to 410km is the depth range where the existence of seismic anisotropy is

now widely recognized and well documented. Azimuthal variations have been found for body waves

and surface waves in different areas of the world. During the last years, the shear wave splitting,

primarily for SKS waves was extensively used to study continental deformation, but very few studies

using body waves are devoted to oceanic areas. Conversely, global anisotropic upper mantle models

have been primarily derived during the last 10 years from surface waves, which are sensitive to structure

below oceanic areas in the absence of ocean bottom stations and consequently body wave data. The

intercomparison of anisotropic body wave and surface wave data is still in its infancy. However, as

shown by Montagner ei al. (2000), Vinnik et al. (2002), Simons et al. (2003) such a comparison is

providing encouraging results.

3.1 Oceanic plates

Oceans are the areas where Plate tectonics applies almost perfectly and this is particularly the case

in the largest one, the Pacific plate. Figure 7 presents 3 vertical cross-sections at two different

latitudes, displaying Vsv velocity anomalies (figure 7a) and the 2 kinds of anisotropy, which can be

retrieved by simultaneous inversion of Rayleigh and Love waves constant 0 — # and azimuthal terms

of equation (1) from the model of Moniagner (2002). On figure 7b, the equivalent radial anisotropy

of the medium, for S-wave expressed through the £ parameter, is displayed. The maps of figure 7c

are the distributions of the G-parameter related to the azimuthal variation of SV-wave velocity. The

maximum amplitude of G is around 5% and rapidly decreases as depth increases. The distribution of

velocity and anisotropy are completely different for these different cross-sections. The thickening of
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lithosphere with the age of the seafloor is well observed on Vgv velocity maps, but lithosphere is much

thicker in the northern cross-section. When compared with the cooling half-space model, bathymetry,

heat flux and lithospheric thickness flatten with age (see Ritzwoller ei al, 2004 for recent results). This

flattening is explained by basal reheating, especially in the Central Pacific and the birth of small-scale

convection below the lithosphere (Davaille and Jaupart, 1994; Solomaiov and Moresi, 2000).

Radial cross-sections (Figure 7b) show that the 8^ = £ — £,PREM parameter is usually negative and

small, where flow is primarily radial (mid-ocean ridges and subduction zones). Forthe east Pacific

Rise, Gu et al (2005) found that a negative radial anisotropy is observed at least down to 300km.

Between plate boundaries, oceans display very large areas with a large positive radial anisotropy such

as in the Pacific Ocean (Ekstrom & Dziewonski, 1997), characteristic of an overall horizontal flow

field. This very large anisotropy in the asthenosphere might be the indication of a strong deformation

field at the base of the lithosphere (Gung et al, 2003), indicative of the upper boundary layer of the

convecting mantle {Anderson and Regan, 1933; Montagner, 1998).

Since convective flow below oceans is dominated by large scale plate motions, the long wavelength

anisotropy found in oceanic lithospheric plates and in the underlying asthenosphere, should be similar

to the high-resolution anisotropy measured from body waves. Incidentally, one of the first evidences

of azimuthal anisotropy was found in the Pacific Ocean by Hess (1964) for Pn-waves. So far, there

are very few measurements of anisotropy by SKS splitting in the oceans. Due to the lack of seismic

stations on the sea floor (with the exception of H2O halfway between Hawaii and California), the only

measurements available for SKS were performed in stations located on ocean islands (Ansel & Nataf,

1989; Kuo & Forsyth, 1992; Russo & Okal, 1999; Wolfe & Silver, 1998), which are by nature anomalous

objects, such as volcanic hotspots, where the strain field is perturbed by the ascending material and

not necessarily representative of the main mantle flow field. SKS splitting was measured during the

temporary MELT experiment on the East-Pacific Rise (Wolfe & Solomon, 1998) but the orientation

of the splitting is in disagreement with the petrological predictions of Blackman et al. (1996). Walker

et al. (2001) presented a first measurement of SKS splitting at H2O, but it is in disagreement with

independent SKS splitting measurements at the same station by Vinnik et al. (2002) and with surface

wave anisotropy (Montagner, 2002).

The large scale azimuthal anisotropy within and below lithosphere in the depth range 10Q-300km is

closely related to plate motions (Montagner, 1994; Ekstrom, 2000) and modeled in this framework

(Tommasi et al, 1996). Oceanic plates are zones where the comparison between directions of plate

velocities (Minster & Jordan, 1978) or NUVEL-1 (DeMets ei ah, 1990) and directions of G— parameter
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is the most successful (Figure 8). Conversely, such a comparison is more difficult and controversial

below plates bearing a large proportion of continents, such as the European-Asian plate, characterized

by a very small absolute motion in the hotspot coordinate system and probably a large influence of

inherited anisotropy.

The map with the G~parameter at 100km (Figure 5) as well as the cross-sections of figure 7c show

that the azimuthal anisotropy is very large along spreading ridges with a large asymmetry for the

East Pacific rise. The direction of anisotropy is in very good agreement with plate motion, which

is also found in all other available models (Ekstrom, 2000; Smith et aln 2004; Dehayle et at, 2005).

The anisotropy is also large in the middle of the Pacific plate, but a line of very small azimuthal

anisotropy almost parallel to the EPR is observed there (see also Figure 2 for synthetic SKS). This

linear area of small anisotropy was coined Low Anisotropy Channel (LAC) by Moniagner (2002).

When calculating the variation of the amplitude of azimuthal anisotropy as a function of depth, a

minimum comes up between 40 and 60Ma age of the seafloor (Figure 9a). The LAC is presumably

related either to cracking within the Pacific plate and/or to secondary convection within and below

the rigid lithosphere, predicted by numerical and analog experiments and also translated in the Vs

velocity structure (Ritzwoller ei al., 2004; Figure 9b). These new features provide strong constraints

on the decoupling between the plate and asthenosphere. The existence and location of these LACs

might be related to the current active volcanoes and hotspots (possibly plumes) in Central Pacific.

LACs, which are dividing the Pacific Plate into smaller units, might indicate a future reorganization of

plates with ridge migrations in the Pacific Ocean. They call for more thorough numerical modelling.

3.2 Continents

Differences in the thickness of high-velocity layer underlying continents as imaged by seismic tomog-

raphy have fuelled a long debate on the origin of continental roots (Jordan, 1978). Some global

tomographie models provide a continental thickness of about 2Q0-250km in agreement with heat-flow

analysis or electrical conductivity, but others suggest thicker zones up to 400km.

Seismic anisotropy can provide fundamental information on the structure of continents, their root and

the geodynamic processes involved in mountain building and collision between continents (Vinnik et

al., 1992; Silver, 1996) such as in Central Asia (Grioi et al., 1998a,b). Radial anisotropy £ is usually

very heterogeneous below continents in the first 150-200km of depth with positive or negative areas

according to geology. But it seems to display a systematic tendency of being positive at larger depth

(down to 300km), whereas it is very large in the oceanic lithosphere in the depth range 50~200km
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and decreases rapidly at larger depths (Montagner, 1994). Conversely, radial anisotropy displays a

maximum (though smaller than in oceanic lithosphere) below very old continents (such as Siberian and

Canadian Shield) in the depth range 200-400km (Montagner and Tanimoto, 1991). Seismic anisotropy

below continents, sometimes confined to the upper 220km {Gaherty & Jordan, 1995) can still be

significant below. A more quantitative comparison of radial anisotropy between different continental

provinces is presented in Babuska ei al. (1998), and demonstrates systematic differences according to

the tectonic context. The existence of positive large scale radial anisotropy below continents at depth

might be a good indicator of the continental root which was largely debated since the presentation

of the model of tectosphere by Jordan (1978, 1981). If this maximum of anisotropy is assumed to

be related to an intense strain field in this depth range, it might be characteristic of the boundary

between continental lithosphere and "normal" upper mantle material. Gung et al. (2003) showed

that it is possible to reconcile different isotropic tomographic models by taking into account seismic

anisotropy. They find that significant radial anisotropy (with VSH > Vsv) under most cratons in the

depth range 250-400km, similar to that found at shallower depths (80-250km) below oceanic basins.

Such a result is also in agreement for the Australian continent (Debayle and Kennett, 2000; Simons et

a!., 2002). So, all results seem to show that the root of continents as defined by radial anisotropy is

located between 200 and 300km. However, this result is not correlated with a maximum in azimuthal

anisotropy in this depth range {Debayle and Kenneii, 2005): the fast-moving Australian plate seems

to be the only continental region with a sufficiently large deformation at its base to be transformed

into azimuthal anisotropy. They propose that, for continents other than Australia, weak influence

of basal drag on the lithosphere may explain why azimuthal anisotropy is observed only in a layer

located in the uppermost 100 km of the mantle. This layer shows a complex organisation of azimuthal

anisotropy suggesting a frozen-in origin of deformation, compatible with SKS splitting.

The difference in radial and azimuthal anisotropies between oceans and continents might reflect a

difference of coupling between lithosphere and asthenosphere, through the basal drag. The coupling

might be weak below continental roots, in contrast with the Pacific plate, where the coupling (reflected

by plate direction) is the first order effect in the uppermost 200km for young ages, before thermal

instabilities take place at the base of the lithosphere, as evidenced by the existence of low anisotropy

channels. These results on the difference between oceanic and continental anisotropies are illustrated

in Figure 10.
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3.3 Velocity and Anisotropy in the transit ion zone

The transition zone plays a key role in mantle dynamics, particularly the 660km-discontinuity which

might inhibit the passage of matter between the upper and the lower mantle. Its seismic investigation

is made difficult on the global scale by the poor sensitivity of fundamental surface waves in this depth

range and by the fact that teleseismic body waves recorded at continental stations from earthquakes

primarily occuring along plate boudaries have their turning point below the transition zone. For

body waves, many different techniques using SS-precursors (Shearer, 1991) or P-to-S converted waves

(Chevrot et al, 1999) were used at global scale to investigate the thickness of the transition zone. In

spite of some intial controversies, a recent model by Lawrence and Shearer (2006) provides a coherent

large-scale image of the transition zone thickness.

Whatever the type of data (normal mode, higher modes of surface waves, body waves), an important

feature of the transition zone is that, contrarily to the rest of the upper mantle, the upper transition

zone is characterized by a large degree 2 pattern (Masters et al., 1982), and to a less extent, a strong

degree 6. The degree 2 pattern (as well as degree 6) can be explained by the predominance of a simple

large-scale flow pattern characterized by two upwellings in central Pacific Ocean and Eastern Africa and

two downwellings in the Western and Eastern Pacific Ocean (Montagner & Romanowicz, 1993). This

scheme was corroborated by the existence, in the upper transition zone, of a slight but significant degree

4 radial anisotropy displayed by Montagner & Tanimoto (1991) and Roult et al. (1990) in agreement

with the prediction of this model. Therefore, the observations of the geographical distributions of

degrees 2, 4, 6 in the transition zone are coherent and spatially dependent. Montagner (1994) compared

these different degrees to the corresponding degrees of the hotspot and slab distribution. In this simple

framework, the distribution of plumes (degree 2+6) are merely a consequence of the large scale simple

flow in the transition zone. The degree 6 of velocity in the transition zone is well correlated with the

distribution of hotspots and might indicate that many mantle plumes might originate in the transition

zone. Ritsema et at (2004) observe lower-than-average shear velocity at eight hotspots in this depth

range (Figure l l a ) . These results suggest that there are different families of plumes, some of them

originating in the transition zone.

As for anisotropy in the transition zone, Montagner & Kenneit (1996), by using eigenfrequency data,

display some evidence of radial anisotropy in the upper (410-660km) and lower (660-900km) transition

zones. Gung and Romanowicz (2004) also display a slight maximum of the degree 0 £ in the transition

zone. The existence of anisotropy close to the 660km-discontinuity was also found by Vinnik &

Montagner (1996) below Germany and Vinnik et al. (1998) in central Africa. By studying P-to-
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S converted waves at the GRF network and at GEOSCOPE station BNG in central Africa, they

observed that part of the initial P-wave is converted into SH-wave. This signal can be observed on

the transverse component of seismograms. The amplitude of this SH-wave cannot be explained by a

dipping 660km-discontinuity and it constitutes a good evidence for the existence of anisotropy just

above this discontinuity. However, there is some evidence of lateral variation of anisotropy in the

transition zone as found by the investigation of several subduction zones (Fischer & Yang, 1994;

Fischer & Wiens, 1996). Fouch & Fischer (1996) present a synthesis of these different studies and

show that some subduction zones such as Sakhalin Islands require deep anisotropy in the transition

zone, whereas others such as Tonga do not need any anisotropy. They conclude that their data might

be reconciled by considering the upper transition zone (410-520km) intermittently anisotropic, and

the rest of the transition zone might be isotropic.

The evidence of anisotropy in the transition zone was confirmed by 2 independent studies, using

different datasets. The observations of Wookey et at. (2002), though controversial, present evidence

of very large S-wave splitting (up to 7.s) in the vicinity of the 660km discontinuity between Tonga-

Kermadec subduction zone and Australia. On a global scale, Trampert and van Beijst (2002) show a

long-wavelength azimuthal anisotropic structure in the transition zone. The rms amplitude of lateral

variations of G is about 1% (Figure llb,c). Beghein and Trampert (2003) using probability density

functions and separating £, <f> and r\ anisotropies display a complex behaviour according to tectonics

into the transition zone, and suggest a chemical component. The interpretation of these new exciting

results is not obvious and new data are necessary to close the debate on the nature of velocity and

anisotropy heterogeneities in the transition zone. But they confirm that the transition zone might be

a mid-mantle boundary layer, and that a detailed and reliable tomographic model of S-wave velocity

and anisotropy in the transition zone will provide fundamental insights into the dynamic of the whole

mantle.

4 Numerical Modeling and Perspectives

In the previous sections, we have highlighted the presence of lateral heterogeneities in seismic velocity

and anisotropy in different parts of the earth's upper mantle. However, anisotropy is not present in all

depth ranges nor at all scales. It was also showed that isotropic models cannot simultaneously explain

Love-wave and Rayleigh-wave dispersion. There is some good consensus for the presence of radial

anisotropy in many parts of the upper mantle and even in the lower mantle (Panning et a/., 2004).
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The existence of azimuthal anisotropy is more controversial, though, from petrological reasons, it turns

out that radial anisotropy and azimuthal anisotropy are intimately related and should searched for

simultaneosuly. Additional data such as polarization data might help to provide additional constraints

on both kinds of anisotropy (Yu and Park, 1993; Pettersen and Maupin, 2002). But it requires the

development of improved theoretical and numerical methods in order to work on the amplitude of

seismograms.

Thanks to the access to very powerful computers, we are at the beginning stage of a new era for

seismology. The twentieth century was dominated by the use of ray theory and later on, of normal

mode theory. Since it is now feasible to numerically compute synthetic seismograms in complex 3D

structures in global spherical geometry (Komatitsch and Vilotte, 1998; Komatitsch and Tramp, 1999;

Gapdeville et al, 2003), it is possible to model the complex interaction between seismic waves and 3D

heterogeneity, particularly in anisotropic, anelastic media. Some new and sophisticated tomographic

methods are presently developed (Montelli et at, 2004; Capdeville et al, 2005; Tromp et al., 2005;

Zhou et al., 2006), which should renew our vision of the complexity of the Earth mantle, providing

access to short-scale heterogeneities such as mantle plumes, in anisotropic and anelastic media.

A second important challenge is the complete understanding of the origin of anisotropy from the

mineral scale up to global scale in the different layers of the earth. In the upper mantle, seismic

anisotropy is due to LPO of anisotropic minerals such as olivine at large scales, requiring several

strong conditions, starting with the presence of anisotropic crystals up to the existence of an efficient

large scale present or past strain field. In order to fill the gap between grain scale modeling (McKenzie,

1979; Ribe, 1989; Kaminski and Ribe, 2001) and large scale anisotropy measurements in a convective

system (Tommasi et al., 2000), there is now a real need to make more quantitative comparisons

between seismic anisotropy and numerical modeling. Gaboret ei ah (2002) and Becker et al. (2002)

calculated the convective circulation in the mantle by converting perturbations of S-wave velocity

into density perturbations. Figure 12 shows 2 cross-sections through the Pacific hemisphere and

the associated flow lines (Gaboret et al., 2003) derived from the tomographic model of Ekstrom and

Dziewonski (1998). This kind of modeling makes it possible to calculate the strain tensor and to test

different hypotheses for the prevailing mechanisms of alignment, by comparison with seismic data.

The upper mantle is the best known of the deep layers of the earth, where there is now good agree-

ment between many isotropic global tomographic models. But the account of seismic anisotropy is

mandatory to avoid biased isotropic heterogeneities. The main application of anisotropy is the map-

ping of mantle convection and of its boundary layers (Karato} 1998; Montagner, 1998). The finding of
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anisotropy in the transition zone (if confirmed) will provide strong constraints on the flow circulation

and the exchange of matter between the upper and the lower mantle. Pursuing the first pionneering ef-

forts, the systematic modeling of the complete seismic waveform in 3D heterogeneous, anisotropic and

anelastic media associated with new techniques of numerical modeling of seismograms will probably

renew our vision of the whole mantle.

In parallel to these theoretical and numerical challenges, there is a crucial need for instrumental

developments since there are still many areas at the surface of Earth devoided of broadband seismic

stations. These regions are primarily located in southern hemisphere and more particularly in oceanic

areas where no island is present. Therefore, an international effort is ongoing, coordinated through

I.O.N. (International Ocean Network) in order to promote the installation of geophysical ocean bottom

observatories in order to fill the enormous gaps in the station coverage (for a description of I.O.N.,

http://seismo.berkeley.edu/seismo/ion).
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Appendix: Effect of Anisotropy on surface waves in the plane-layered
medium

x (North)

Figure 1: Definition of the Cartesian coordinate
system (x, y, z) used in the calculations. \fr is
the azimuth of the wavevector with respect to
North.

TZ

The half-space is assumed to be homogeneous and may be described by its density p(z) and its
4th-order elastic tensor T(z) with 21 independent elastic coefficients. All these parameters are so far
supposed independent of x and y coordinates (z is the vertical component). This condition will be
released in the next section. The unperturbed medium is assumed isotropic with an elastic tensor
TQ(Z). In that medium, the two cases of Love and Rayleigh wave dispersion can be successively
considered.

The unperturbed Love wave displacement is of the form:

-W(z)ain
W(z) cos# \ exp(i[k(x cos ̂  + ysinV) - u;t]) (19)

where W(z) is the scalar depth eigenfunction for Love waves, k is the horizontal wave number, and XF
is the azimuth of the wave number k measured clockwise from the North.

The unperturbed Rayleigh wave displacement is of the form:

/ V(z)cos^ \
u(r,*)=[ V(z)sinW \ exp(i[k(xcos t + ysin t ) - uJt}) (20)

V W(z) )
where V(z) and U(z) are the scalar depth eigenfunctions for Rayleigh waves. The associated strain
tensor e(r,t) is defined by:

>i + ui |i) (21)

where , j denotes the differentiation with respect to the j-th coordinate. The medium is perturbed
from Tg(z) to TQ(Z) + 7(2), where 7(2) is small compared to TQ(Z) but quite general in the sense that
there is no assumption on the kind of anisotropy. This means that in this approximation, we can still
consider quasi-Love modes and quasi-Rayleigh modes (Crampin, 1984). From Rayleigh'b principle,
the first order perturbation <5V(k) in phase velocity dispersion is [Smitli and Dahlen, 1973, 1975):

z ( 2 2 )

where U( and e^ are respectively the displacement and the strain for the unperturbed half-space and
the asterisk denotes complex conjugation. Now because of the symmetry of the tensors -j(z) and e,
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we use the simplified index notation c%j and €{ for the elements jijkt and e^, but the number n^ of
coefficients 7 ^ / for each Cy must be taken into account. The simplified index notation for the elastic
tensor jijki is defined in a coordinate system {x\1 #2, 2̂ 3) by:

if
if
if
if

i
k
i
k

= 3 =*
= l=-

_ / | _A

> q =
n —

> q =

i
k
9 -
9 _

i -
k-

3
•I

This kind of transformation enables us to relate the 4th order tensor 7 (3x3x3x3) to a matrix c
(6x6). The same simplified index notation can be applied to the components of the strain tensor e^,
transforming the 2nd order tensor e (3x3) into a vector with G components. However, it is necessary to
be careful, because to a given cpq correspond several jijki, and jijki must be replaced by nPqCpg, where
npq is the number of Jijki giving the same cpq. Therefore, the equation (22) expressing Rayleigh's
principle can be rewritten as:

f OO <sr~y $

dz (24)

We only detail the calculations for Love waves.
• Love waves.
By using previous expressions for u(r , t) (19) and 6y(r, i) (21), the various expressions of strain are:

e\ = —i cos # sin # k W
'sin^kW

e4 = l/2costW / /

€5 = - l /2sin\&W ;

ee = l/2(cos2 # - sin2 t

where W' = ^ - . In table 1, the different terms riijCij6i€j are given. We note that when Cfjeie*
is a purely imaginary complex, its contribution to SV(k, \&) is null. When all the contributions are
summed, the different terms cos* # sin1 # are such that k + I is even, which is not surprising in the
light of the reciprocity principle. Therefore, each term can be developed as a Fourier series in # with
only even terms. Finally it is found:

(26)

In the particular case of a transversely isotropic medium with a vertical symmetry axis (also named
radial anisotropic medium), we have: c\\ = C22 = ^^4, C33 = 8C) c\2 = S(A — 2iV), c\$ = C23 = 8F,
C44 = C55 = £L, cg6 = $-N and C14 = C24 = C15 = C25 = cig = C26 = 0. The local azimuthal terms
vanish and the previous equation (26) reduces to:

1 f°° W'2

SVL(kt f/) = ^ — / {W28N + ^SLjdz (27)
2VL JO k/
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Therefore, the same expressions as in Takeuchi and Saito (1972, p. 268) are found in the case of
radial anisotropy. The 0 — # term of equation (26) corresponds to the averaging over azimuth #,
which provides the equivalent transversely isotropic rriodel with vertical symmetry axis by setting:

SN = |(cn + C22) - |ci2 + \cm

SL ~ |(c44 + c55)
If we call Cij the elastic coefficients of the total elastic tensor, we can set:

N - pVlH = i(Cn + C22) - ^Cia + \cm
o 4 L

L = pVsv = -(C44 + C55)

According to equation (26), the first order perturbation in Love wave phase velocity (TVz,(fc, \&) can
then be expressed as:

6VL(k, t ) = —j^lLiik) + L2(k) cos2f + L3(k) sin2t + L4(k) cos4f + I5(fc)sin4^ (28)
2 VOL [k)

where
L0{k) = j™ PW2dz

I f ^

i Jo°° -Es.
• Rayleigh waves.
The same procedure holds for the local Rayleigh wave phase velocity perturbation <5VR, starting

from the displacement given previously (Montagner and Nataf, 1986).

SVR(k, #) = —i—fi^ fc ) + R2(k) cos 2W + R3(k) sin 2# + R4(k) cos4f + R5(k) sin4W (29)
2VoR{k)

where

TT0 SfW1-^ + lW-SC+2JT-SF + (T- Uf.SL}dz

i T . + T ^ ' ^ + (T " U?.G3]dz
«4W = i /0°° Ec.V

2dz
fl5W = i /0°° Es.V

2dz

The 13 depth-dependent parameters A, C, F, L, iV, BC1 Bs, JEfc, Hs, Gc, Gs, EC1 Es are linear combina-
tions of the elastic coefficients Cy and are explicitly given as follows:

Constant term ( 0 # -azimuthal term: independent of azimuth)

A = pVpH = ^(Cn + C22) + 4C12 + 2^66
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N = PV$U = \{CU + C22)

cos 2̂ 3
Bc =
Gc =
Hc =

2 3

X / /Of

4 ^

^ -azimuthal

- c22)
, — C44)

! — C*2S)

/ -azimuthal

term:

sin2f
Bs = 1
G a =
HH =

term:

C26

cos 4# sin 4#
Ec = g(Cn + C22) — 4^12 — f̂ 66 -^s = 2^lG

where indices 1 and 2 refer to horizontal coordinates (1: North; 2: East) and index 3 refers to vertical
coordinate, p is the density, Vpi^Vpy are respectively horizontal and vertical propagating P-wave
velocities, VSHJVSV horizontal and vertical polarized S-wave velocities. We must bear in mind that
AJCJLJN anisotropic parameters can be retrieved from measurements of the P- and S- wave velocities
propagating perpendicular or parallel to the axis of symmetry.
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Table 1: Calculation of the various Qjeiej for Love waves, with the simplified index notation.
a — cos W; 8 = sin W

ij
11
22
33
12
13
23
24
14
15
16
24
25
26
34
35
36
44
45
46
55
56
66

cut
c15(«

c16( a/3)

C24(

C25(

)

/32). fc2f

c46( i
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Figure 1 : example of real and synthetic seismograms used for retrieving
Rayleigh wave dispersion curve for the fundamental mode and overtones
(Beucler et al., 2003). Behind body waves, the signal is composed of surface
waves. The complex phase before the high amplitude wave packet
corresponding to the fundamental mode of Rayleigh wave (n=0) can be
synthetized by summing the first overtones.
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Figure 2 : Map of synthetic SKS splitting derived from the anisotropic surface
wave model of yontagner (2002). The delay time is expressed in seconds.
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Figure 3 : Phase velocity of the fundamental mode and the first 6 higher modes
of Rayleigh compared with PREM (right plot) and with results (center) obtained
in previous studies along the same path between Vanuatu and California (SCZ
Geoscope station) (Beucler et al., 2003).
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Figure 4 : Rayleigh wave Phase velocity maps at period T=100S for the first 3
modes (n=0, 1, 2) after Beucler and Ivtontagrter (2006)
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Figure 5 : 2 cross-sections at 100km (top) and 200km (bottom) depths of the

global tomographic model of Debayle et al. (2005). Directions of azimuthal

anisotropy are superimposed on S-wave velocity heterogeneities. The length of

bars is proportional to its amplitude (<2%)
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Figure 6 : The seismic observable parameters V$, | , G, WQ associated with a
simple convecting cell in the upper mantle, assuming lattice-preferred
orientation of anisotropic minerals such as olivine. A vertical flow is
characterized by a negative § radial anisotropy (ratio between VSH and Vsv and
a small azimuthal anisotropy (G« 0). An upwelling (resp. downwelling) is
characterized by a large positive (resp. negative) temperature anomaly inducing
SVS <0 (resp. 5VS >0).
A predominant large scale horizontal flow will be translated into a significant
amplitude of the G azimuthal anisotropy and its orientation will reflect the
direction of flow (with a 180° ambiguity)
(After Montagner, 2002).
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Figure 7: Vertical cross-sections of the distribution of Vs, -̂̂ ref» G in the Pacific
Plate at-20° south and 20° north between radii 6000km (370kmdepth) and
6350km (20km depth) (after Montagner, 2002). The color scales in percents are
the same for Vs and §.
The vertical scale is exaggerated to make the figures more readible.
a) Vs $ V _̂S$
b) 61 = §-?ref' deviation of i= with respect to a reference model (ir6f PREM
model)
c) G : amplitude of azimuthal anisotropy- parameters
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Figure 8 : Histogram of the difference between plate velocities directions and
synthetic SKS anisotropy azimuths in the Pacific plate (After Montagner, 2002).
It is calculated by summing the contributions of each grid point
(5°x5°) weighted by the latitude and the amplitude of anisotropy.
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Fig. 9a Average shear velocity structure (After Ritzwolier et al., 2004)
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Fig 9b Azimuthal delay time in seconds (After IVIontagner, 2002)

Figure 9 : variations of average S-wave velocity and azimuthal anisotropy
(through the delay time of synthetic SKS splitting) plotted versus the age of
lithosphericsea floor. In both cases the structure below the plate for age
between 60 to 100Ma looks anomalous.
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Figure 10 : Scheme illustrating the difference in the location of maxiinum
anisotropy between oceans and continents.
Adapted from Gung et at. (2003).
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Figure 11: Transition zone Heterogeneities
a): Model of shear velocity in the transition zone at 575km depth derived by
inverting fundamental-mode and overtone Rayleigh wave phase vefocoties, and
teleseismic body wave data (from Ritsema et al., 2004).

Azimuthai anisotropy
b) 4-W term ; c) 2~V term
(Adapted from Trampert and van Heijst, 2002)
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Figure 12 :Mantle heterogeneities and convective flow below the Pacific
Ocean. Adapted from Gaboret et al. (2003)



Figure A1 : Definition of the Cartesian coordinate system (x.y.z) used in the
calculations. Y is the azimuth of the wavevector with respect to North.
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Figure A2 : Partial derivatives for Love waves of the period of fundamental
normal modes 0T40 (left) and 0T120 (right) with respect to the elastic
coefficients of a transversely isotropic earth L, N and density p, as a function of
depth in the upper mantle (from Montagner and nataf, 1986). The partial
derivatives with respect to A, C, F are null for these modes. The plots are
normalized to their maximum amplitudes, given for a Ah=1000km thick
perturbed layer. The combinations of elastic coefficients that have the same
partial derivative as L are -GC) -Gs for the azimuthal terms 2W, and as N are Ec,
Es for the azimuthal term 4¥. Note that the amplitude of the L-partiai is very
small for the fundamental modes, which is not the case for higher modes.
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Figure A3 : kernels for Rayleigh waves. Same conventinos as for figure A1 in
the same depth range. The partial derivative with respect to N has not been
plotted since its amplitude is very small for fundamental modes. Note that 3
partials contribute to the 2Y-azimuthaI terms , A-partial for Bc, Bs, F-partiai for
Hc, Hs and the largest one L-partiai for GC,GS.


