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1. Introduction 
 
    Wave motion is one of the well-known scientific concepts. Behavior of the waves 
on the water surface, as well as propagation of acoustic or light waves are known from 
everyday experience. However, it is not easy to define the wave. In general we can say 
that it is a form of propagation of a disturbance of some physical field. We know 
seismic, electromagnetic, acoustic, gravitational waves. Though, there is no exact 
general definition of the waves, because of a variety of their characteristic features in 
different cases. For example, we may generally define the wave as a disturbance 
(signal), which propagates in a space with a certain velocity, but a form of the signal, 
as well as its velocity may vary. However, this definition involves propagation of heat 
(disturbance of temperature), but it is well known that the heat is propagated in 
another way – not by a wave. Therefore it is preferable to proceed from an intuitive 
notion on a wave as on a signal propagating from one to another part of a medium 
with a certain finite velocity. This signal may be distorted, may change its intensity 
and velocity, but should remain distinguishable. A perturbation arising in a part of the 
medium causes returning forces preventing this perturbation, and the forces are of 
such kind that they lead to appearance of similar (in general not exactly the same) 
perturbation in neighboring points. 
   Seismic waves arise in solid media due to elastic forces. A main peculiarity of 
seismic waves is that there are at least two types of waves (in anisotropic media - three 
types), with different velocities and different polarization. This fact is due to existence 
of at least two different elastic modules: in isotropic media - compressible and shear 
modules. Therefore returning forces are different for different types of deformation. 
       
         
   A nature of the wave may be explained by consideration of a compressional wave in 
a thin rod. The rod may be represented as a set of interacting elements. If one element 
is displaced, a force appears between this one and neighboring elements which is 
proportional to a relative variation of a distance between them. We can imagine that 
the elements are connected by elastic springs, and the force is due to compression or 
tension of the springs. 
 
Let a force due to deformation of the spring be  
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Motion of the i-th element of mass m submits to the Newton’s law: 
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In continuous case, when ∆x→0, and m=ρ∆x, u=u(x,t), we obtain 
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This is the simplest one-dimensional wave equation. Its solution is as follows:  
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    where  f(ξ) and g(ξ) are arbitrary functions, and c is regarded as velocity of the 
wave propagation. 
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      If the masses deviate from the equilibrium in perpendicular direction (shear), it 
would be the same, but the module K is different (it is less than compression module), 
and the velocity of shear wave propagation  is less than for the compressional wave. 
   In continuum (2D or 3D) there are both types of deformation (compression and  
shear), therefore two types of waves may propagate. 
 
 
 
 
 
 
 
 
 
 
 
 
2. Equation of motion for solid elastic media 
 
 
   Consider an element Ω of elastic medium bounded by a surface S.  
 
Equation of motion of this element               
may be written as follows: 
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where F is body force density, Tn is stress applied 
to the boundary. 
    
  Applying Gauss formula to the surface integral, and taking into account that the 
stress tensor is symmetric, we finally obtain that 
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where T  is stress tensor, or a matrix formed by vector-rows  ττττx, ττττy, ττττz:  
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     Eqs. (2,3) are valid for all types of media: isotropic, anisotropic, inhomogeneous, 
anelastic, which differ by the relationship between stress and strain. Below we shall 
consider some particular cases. 
 
    2.1. Homogeneous isotropic elastic medium. P and S waves. 
 
  In homogeneous isotropic medium the relationship between stress and strain, which 
in turn is related with spatial derivatives of displacement, is following: 
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Substituting (4) to (2) (here we neglect the body forces) we obtain 
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The simplest approach to solve this equation (which is valid only for inhomogeneous 
medium!) is to represent the unknown vector function in terms of scalar and vector 
potentials: 
        ψψψψrot+∇= ϕu   
Substituting this representation to (5) we obtain two independent equations for the 
potentials: 
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These are the wave equations (scalar and vector): they describe propagation of the 
waves with two different velocities a and b. The scalar potential determines the 
longitudinal (compressional), or P-wave, vector potential determines the share, or S-
wave. 
   To solve these equations we should know the initial conditions, i.e. the functions 
ϕ(x) and  ψψψψ(x) at t=0. 
   It is clear that the solutions of (6) are additive, i.e. if 21   and   ϕϕ are two different 

solutions of (6a), then  21 ϕϕ +  will also be a solution of this equation. It means that 
that by superposition of different (elementary) solutions we can construct the solution, 
which would fit the given initial conditions. The simplest elementary solutions are the 
plane waves. 
 
 

2.2. Plane waves 
 
At first we shall consider the scalar wave equation 

     
2

2

2

1

t

u

c
u

∂
∂=∆                   (7) 

    ),,,( 321 txxxuu =               

A solution of (7) may be represented in the following general form: 
   )),(()),((),( xkxkx ++−= tgtftu        (8) 
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 where  f(ξ) and g(ξ) are arbitrary functions, and 
2

2 1

c
=k  . So the two terms in the 

right-hand side of (8) describe the waves propagating in opposite directions with the 
velocity c. It is clear that at any moment the solution at a plane (k,x)=const  is the 
same. 
   For simplicity we shall represent the solution of (6a),(6b) by one term in (8): 
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  The motion in P-wave is directed along the direction of propagation k, while in S-
wave it is orthogonal to k. 
 
  It is clear that in both cases (P and S waves) the displacement may be represented in 
the form 
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where n and l are unit vectors, and c is a velocity . Using the concept of plane waves 
we can show that c may be equal a or b,  and in case c=a polarization vector l=n, and 
in case of c=b   l is orthogonal to n. 
  Substituting (10) to (5) we obtain 
      [ ] ( ) ( )ctcct /),(/),(),()( 2 xnlxnlnln −Φ ′′=−Φ ′′++ ρµµλ  
or 
       lnln )(),()( 2 µρµλ −=+ c . 
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  lnln  ),( θ=  ,                                                        (11) 

or lNl  θ= , where the matrix TnnN = , so that θ and  l are eigenvalue and 
eigenvector of the matrix N correspondingly. 
It is easy to show that θ  fits the equation 
       023 =−θθ  
that has three roots 
            0   ,1 321 === θθθ  

They correspond to the velocities 
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The eigenvector corresponding to the first root is l=n, and those corresponding to the 
other two roots are mutually orthogonal unit vectors, both orthogonal to n, i.e to the 
direction of propagation. Thus the first root corresponds to the longitudinal wave, and 
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to other ones – to two share waves propagated with one and the same velocity. As 
shown below, in anisotropic medium these two roots are different, so that there are 
two quasi-share waves propagating with different velocities. 
 
  2.3. Inhomogeneous plane waves 
 
  The concept of plane wave may be extended to complex vectors l and n. 
  A solution of the wave equation (5) in the form (10) assumes n to be a unit vector, 
i.e.   
         (n,n)=1                                                          (12) 
 But n can also be a complex vector, i.e. 
        21 nnn i+=  
Obviously, the function Φ(ζ) , as a function of a complex variable ζ=ξ+iη, should 
also be complex, as well as the polarization vector l: 
          21 lll i+=  
          ),(),()( ηξηξηξ igfi +=+Φ  
Since both n an l are unit vectors, we have 
                             

                  

0),(

1),(),(

0),(

1),(),(

1),(2),(),(

21

2211

21

2211

212211

=
=−

=
=−

=+−

ll

llll

nn

nnnn

nnnnnn i

                                   

As usual, since the displacement u is real, we take only the real part of the complex 
solution: 
       )/),( ,/),(()/),(  ,/),((),( 212211 cctgcctft nxnxlnxnxlxu −−−−−=    (13) 
This formula describes inhomogeneous plane wave. The motion in the 
inhomogeneous wave has the following meaning.  Temporal behavior of  
displacement is the same along straight lines obtained by intersection of the planes 
(x,n1)=const and  (x,n2)=const. Direction of  the wave propagation coincides with the 

vector n1,  the wave propagates along this direction with the velocity 
1n

c
V = . Since 

11
2

21 >+= nn , velocity of the inhomogeneous wave is always less than c (a or b). 

The wave form and the wave amplitude are changing in direction of the vector n2. 
Components of the displacement along the vectors l1 and l2 are varying differently, 
accordingly to the functions f  and g. 
  The vectors l1 and l2  in compressional wave coincide with the vectors n1 and n2.  The 
vectors l1 and l2 for shear wave satisfy the relations 
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Orientation of the vectors  n1 , n2 , l1 , l2  are shown below. 
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It follows from (14) that 
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If  β=π, we have SV-wave, and in case β=π/2 the wave is SH. It is clear that for SH-
wave l2=0, and only in this case polarization is linear. 
 
 If the function  Φ(ζ) is analytical, then according to the Cauchi-Riemann relationship 
for real and imaginary parts of an analytical function of complex variable 
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  Particle motion in harmonic inhomogeneous waves is elliptic for P and SV waves, 
and linear for SH waves (see fig. below ) 
 
 

    In general case the functions f(ξ,η), g(ξ,η) may be represented as a superposition of 
these solutions, i.e. 
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Since time t enters to the real part of the complex argument ct /),( 1 xn−=ξ ),  a 

shape of signal at a fixed point x is determined by f and g as functions of ξ. It is clear 
that the function g as a function of ξ (or t)  in a given point x  is the Hilbert transform 
of  f.  
  Remind that this theory is true if Φ(ζ) (and consequently f(ξ,η) as a function of t) is 
analytical function. However, in practice, we deal with non-analytical signals, which 
are equal to zero up to some moment. Nevertheless, usually the theory of 
inhomogeneous waves is extended to this case, and g(t) is assumed to be the Hilbert 
transform of non-analytical f(t).  This leads to a paradox – the signal in 
inhomogeneous wave arrives earlier than  should be expected according to the 
causality principle. Examples of such signals (bold lines) and corresponding Hilbert 
transforms (dashed lines) are shown below.  Nevertheless it is possible to use for 
practical problems, because the earlier disturbance is not significant. 
 
 

                    
  
 
 The functions  f and g are not finite in the infinite space due to the exponential term 

)/),(( 2 ce nx=− ηωη  . Therefore they may be used to represent solutions of the wave 
motion either in a finite volume, or in case of sources. 
  Any wave field may be represented by superposition of plane waves (both 
homogeneous and inhomogeneous) that fits the equation of motion (5) and the 
following boundary conditions: 
• radiation condition, requiring the displacement not to increase at the infinity; 
• boundary conditions at interfaces in the medium; 
• conditions in the points where sources are located. 
   The 1st and the 3d (and sometimes the 2nd) conditions cannot be satisfied by only 
homogeneous plane waves. In such cases the inhomogeneous waves should be 
involved. 
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        2.4. Energy flux 
 
 2.4.1. Energy density 
   Total wave energy is a sum of kinetic and potential energy. The density of kinetic 
energy is  
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Potential energy is the energy of elastic deformation. The density of the potential 
energy is determined as 
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where τij  is stress tensor, and εij  is strain tensor: 
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 2.4.2. Energy density in plane waves 
 
 For plane wave )/),((),( ctt nxlxu −Φ= the density of kinetic energy is expressed as 
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The density of potential energy is 
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For inhomogeneous wave we must replace ijdiv ε and   u   in (15) by   uedivℜ and 

ijeεℜ . These expressions are different for P, SV and SH waves: 
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Taking into account that for P and SV waves 2211    and   , lnln ==   , as well as 

l2=0 for SH-wave, we may write all these expressions in unified form: 
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The first term ( 2)(
2

f ′ρ
) is similar to that for homogeneous wave, the second one 

describes the energy of elastic deformation due to amplitude variation in the direction 
perpendicular to the wave propagation, and the third one includes the part of energy 
due to non-linearity of polarization.  
 
  It should be noted that the total energy density is not constant as in case of 
oscillation. However, it can be explained easily: the energy is transported within the 
medium, and the energy conservation law is justified for the whole volume. 
   
 In case of harmonic wave ( )[ ]cti /),(exp nxlu −= ω  the total energy density is 
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                                                              for inhomogeneous P, SV and SH waves. 
So for homogeneous wave the energy oscillates within a half of period from 0 to 

2ρω , whereas for inhomogeneous wave it never achieves 0. This can be easily 
explained: if the amplitude does not change along the wave front, then at the moments 
corresponding to maximum displacement both velocity and strain vanish. However 
this is not so if polarization is elliptic and  the amplitude varies in the direction 
perpendicular to the wave propagation. 
   
2.4.3. Vector of the energy flux (Poynting vector) 
 
    Here we shall derive the expression for the energy flux in general case. 
    For simplicity we assume that there no external forces  in the medium, then the 
equation of motion is 
        uT &&ρ=∇                      (17) 
Multiply (17) by u& : 
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Thus, variation of the energy within a volume Ω is equal (with opposite sign) to a flux 
of the Poynting vector across the surface. 
  

   On the other hand, ∫∫−=
∂
∂

S

ndSWc
t

E
  and p=Wc , where c is group velocity, i.e. the 

velocity of energy transport: in case of homogeneous wave in isotropic medium it is 

equal to cn, and in case of inhomogeneous wave it is 
1

1

1 n
n

n
c

.  

The relationship uTc &−=W  is useful in case of anisotropic media (as is shown later), 
because it provides the expression for group velocity that differs from phase velocity. 
 
  2.5. Spherical waves 
   
 We consider spherically symmetric solution of scalar wave equation 

                       ),(       ,
1

2
tR

a
ϕϕϕϕ ==∆ &&  

In spherical coordinates 

                    
2

2

222
2

2 sin

1
sin

sin

11

φ
ϕ

θθ
ϕθ

θθ
ϕϕ

∂
∂+









∂
∂

∂
∂+









∂
∂

∂
∂=∆

RRR
R

RR
 

For spherically symmetric solution 
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A solution for Rϕ  is the same as for 1D wave equation. Hence,  when  the wave 
propagates  from the origin (R=0), 
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It should be noted that (19) represents a solution of (18) everywhere except the point 
R=0. But because the wave propagates from R=0, this point may be regarded as a 
source, where a body force is applied. Therefore to get the solution that exists 
everywhere including R=0, we must proceed from another equation, notably, 
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Then (19) is the solution of (20) valid in the whole space. 
 
     It should be noted that a solution in the form of ‘pure’ spherical wave  exists only 
for longitudinal waves. For shear wave we cannot have spherical symmetry  because 
this is impossible for vectors tangential to a spherical surface. 
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   Now we shall represent spherical wave as a superposition of plane waves. For this 
purpose it is necessary at first to represent the function F(t) in a form of the Fourier  
integral 

                 ∫
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It is sufficient to restrict the analysis by a harmonic wave: 
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    It follows from (20) that  (21) is a solution of the equation  
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  Let us represent the solution in a form of 3D spatial Fourier transform: 
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then , substituting (23) to (22), we obtain the equation for Φ(k): 
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But the because of (24) the variables zyx kkk ,,  are not independent. Therefore we can 

integrate over one of the components of the wave vector, e.g. over kz. The integration 
is performed by the use of the theory of  residuals, and finally we obtain  
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and the sign at γ is chosen so that Re γ>0. 
  (25) is  the Weyl integral that represents spherical wave as superposition of  plane 
waves. Since ∞<<∞−∞<<∞− xx kk   , , the integrand contains both homogeneous, 

and inhomogeneous plane waves. 
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The integral (25) may be transformed to the Zommerfeld integral that represents 
spherical wave as a superposition of cylindrical waves. Let us replace the variables: 

     
ϕη
ϕη

sin              sin

cos              cos

kkry

kkrx

y

x

==
==

 

Then 

        ϕ
γ

γηϕ
π

ω π

kdkd
zikr

R

aRi
∫ ∫
∞ −−

=
0

2

0

])cos(exp[

2

1)/exp(
 

Taking into account that    )()]cos(exp[
2

1
0

2

0

krJdikr =−∫ ϕηϕ
π

π

 

we obtain 

             kdk
zkrJ

R

aRi
∫
∞ −

=
0

0 )exp()()/exp(

γ
γω

  

   In case of exp(-iωR/a) it is necessary to take *γ (complex conjugate) instead of γ in 
the right-hand side. 
  This relationship can be extended to a case of non-analitical signals with sharp onset. 
If F(ω) is Fourier transform of  a signal f(t),  then 
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How to understand that a wave with discontinuity on the front can be 
represented as a superposition of the waves including inhomogeneous waves, 
which arise simultaneously along the whole vertical axis? The simplest way to 
show this  is  to analyze spherical wave as a superposition of cylindrical waves 
(Zommerfeld integral) rather than of plane waves. 

   Let us take r=0. Then the integral represents the wave field at 
         the z-axis. The integral becomes 
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Now we shall show that contribution of the inhomogeneous waves is compensated by a part 
of contribution of homogeneous waves 

 
  Contribution of homogeneous waves: 
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   Contribution of inhomogeneous waves: 
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  Thus the total contribution of the inhomogeneous waves is cancelled by a part of the 
contribution of homogeneous waves.  
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    2.6. Cylindrical  waves 
 
  If the wave field is symmetric in respect to a straight line (z-axis), and the field does 
not depend on z-coordinate, the wave equation for potentials may be written in 
cylindrical coordinates as follows: 

               )(    ,
11

2

2

2
ac

tcr
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rr
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∂
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∂
∂

∂
∂ ϕϕ

     for scalar potential, 

and similar equations for components of the vector potential with c=b. 
  This case may be regarded as 2D case, i.e. corresponding to the wave propagation in 
a plane z=const. Unlike the 1D case (plane wave) and the 3D case (spherical wave), in 
2D case it is impossible to construct a solution in a general form f(r,t),  and it is 
necessary to express a solution as a function of t in the form of Fourier integral, and 
consequently to solve the equation for the harmonic wave: 

       0ˆ
ˆ1

2
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∂
∂

∂
∂ ϕωϕ

cr
r

rr
                            (26a) 

or  

      0ˆ
ˆ1ˆ 2
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∂
∂ ϕϕϕ

k
rrr

                               (26b) 

where ck /ω= . 
   Solution of the eq.(26b) is the Bessel functions. If  the wave is expanded from r=0, 
then 
             )(),(ˆ )2(

0 krAHr =ωϕ , 

and the solution for ),( trϕ  in  form of the Fourier transform is following: 

                       ∫
∞

∞−

= ωωωω
π

ϕ dticrHAtr )exp()/()(
2

1
),( )2(

0  

So unlike the 1D and 3D cases, the waveform is not left unchanged in the process of 
propagation. This peculiarity was noticed by Hadamard in his classic studies of the 
wave equation: he pointed that the behavior of the solution is different for odd and 
even numbers of spatial dimension. 

  At large distances 






 >>1
c

rω
we can use the asympotic representation for the Hankel 

function, so that the solution can be written as a wave with unchanged form and with 

the amplitude decaying as 
r

1
: 

           
r

crti
Ctr

)]/(exp[
),(

−= ωϕ  

Though cylindrical waves cannot be excited in reality, they are important in analysis 
of surface waves and the waves with axial symmetry. 
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2.6. Anisotropic medium 

 
  For anisotropic elastic medium the relationship between stress and strain is 
expressed by the Hooke’s law in the  form: 
             klijklij c ετ =                                                       (27) 

(summation over repeated subscripts is assumed here and below). In the similar 
notation we may re-write the equation of motion (2): 
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                                                    (28) 

   Substitute (27) into (28): 
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A solution of this equation also may be represented in a form of plane waves: 

        







−Φ=

c

xn
tlu qq

ii                                                 (30) 

where nq  are components of the unit vector indicating the direction of propagation, and 
l i are components of the polarization (unit) vector. Substitute this to (29): 

     ijklljkijkl lcnnlnnlc 2)(
2

1 ρ=+                                       (31) 

This is a system of 3 linear equation for the components of the polarizarion vector  

321 ,, lll  . Determinant of the system should be equated to 0, so we obtain a cubic 

equation  for c2. All three roots of this equations are different (unlike the isotropic 
case) and depend on n, i.e. the velocity is different in different directions. The 
components of the vector l are not related to n as was in isotropic case.                 
In this case we have no pure ‘longitudinal’ and ‘shear ‘ waves: in so-called ‘quasi-
longitudinal’ wave the polarization vector l does not coincide with n, and in two 
‘quasi-shear’ waves  they are not orthogonal to n. 
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Tranv                 Example:     Transersly isotropic medium 
 

 Let z-axis is the axis of symmetry. Then 
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As before, we look for a solution for plane wave in the form 








 −Φ=
c

t
),( xn

lu . Substituting this solution to the wave 

equation we obtain the following equation for the velocity c 
and the polarization vector l: 

                           ll 2c=M , 
where M  is matrix with elements depending on n and the 
modules A,L,N,F,C. In general case (arbitrary direction of n) 
the solution is too complicated, but it is simplified in the 
particular cases, when n is directed along or perpendicular to 
z-axis: 
   ••••  0    ,1 === yxz nnn        

                      2cρξ =  
                    Equation for ξ 
                           0)2()2( 223 =−+++− CLCLLCL ξξξ              (32) 
                    has the solutions: 
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                      ••••   1     ,0 22 =+= yxz nnn    

                         0)()( 23 =−+++++− LANLNLAANLNA ξξξ  (33) 
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   The most unusual property of the waves in anisotropic medium is that the energy is 
transferred in the direction that does not coincide with the direction of of propagation. 
It is difficult to understand for plane waves, but can be illustrated on the example of 
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the waves propagating from a point source. Surfaces of constant phase at two different 
moments are shown below: 
 
   
 

               
 
 
Vector k=n/c is the wave vector, and c is phase velocity. But the energy is transported 
along the ray q=n’/u, where u is group velocity. The group velocity and the direction 
of the energy transfer can be obtained using the vector of energy flux, which in 
general case is expressed as follows. 
 
   As was shown above, 
              uTc &−=W , 
where c=un’ is the velocity of the energy transport, where u is  group velocity.  Then 
            Wu /),( uTn &−=′         (34) 
From this relationship we can determine both group velocity and direction of the 
energy transport. 
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3. Propagation of elastic waves in media with boundaries 
 
      3.1. Boundary conditions 
 
   If the medium contains a boundary or a discontinuity at which seismic velocity is 
changing, the waves reflect or refract, i.e. some new waves are generated on the 
boundary. These waves must fit the boundary conditions. Boundary conditions relate 
stresses and displacements at the boundaries. 
  At free surface all stresses applied to the surface (so-called tractions) vanish, i.e. if 
the unit normal to the surface S is n, then (T,n)S=0. 
  Boundary conditions at interfaces between two solids may be different. The most 
usual condition is continuity of traction and displacement: 

                        
)2()1(

)2()1(

uu

TT

=

= nn                     (35) 

  These conditions correspond to the welded contact. 
 Another case is the so-called sliding contact. This corresponds to the case, when the 
media in contact are allowed to slide freely along the boundary. It means that the 
tangential component of traction vanishes, whereas normal components of both 
traction and displacement are continuous. No restrictions are placed on the tangential 
component of displacement: 
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   Such contact may be realized if a thin fluid layer is placed between the media. 
   More general condition is the so-called unwelded contact. This includes (35) and 
(36) as particular cases. This contact can be also realized as before: if a thin ‘elastic’ 
layer with vanishing rigidity (µ→0) is placed between the two media. Depending on 
the relation between the thickness of the layer h and the rigidity µ the contact tends to 
the welded or to sliding one. To derive the boundary condition on such contact we 
have to consider the conditions on both interfaces of the layer, and then assume h→0, 
µ→0. The conditions at each interface are assumed as those for the welded contact.  
         
         
    
     
 
 
 
 
At the interface 1 the conditions are as (35): 
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At the interface 2 the displacements and tractions in the layer are 

h µ
1
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        Eliminating the tractions and displacements in the layer we obtain the 
relationship between these quantities in the upper and lower solids: 
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where ( )µ
µ

h
m

h

lim

0
0

→
→

= . 

    If m=0 we obtain the welded contact, and if m→∞ the contact is sliding. 
   Alternative conditions for unwelded contact may be derived if we assume the layer 
between two solids as filled by a viscous fluid. 
       

3.2. Incidence of a plane wave to a plane boundary 
 
   It is well known that if a plane wave is incident to  a plane boundary, new waves 
arise. The number of them depends on a type of the boundary and on polarization of 
the wave. In all cases we shall assume the boundary to be horizontal (z=0), and the 
waveform in the incident plane wave to be  
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so that the plane of incidence is y=0. 
1. Free surface. 

   Scheme of the incident and reflected waves is shown below. 
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   To satisfy the boundary conditions we must assume the wave forms of the reflected 
waves the same as for the incident wave, i.e. F(t).  Also the argument of the function 
F  should be the same at any point x of the boundary z=0. This requirement leads to 
the Snell’s law:  

             
cba

sP 1sinsin ==
αα

     

where the meaning of c is an apparent velocity along the boundary. 
    If P or SV waves impinges to a free surface, the displacements in the reflected P 
and SV waves are expressed as 
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where κP and κS  are the reflection coefficients. They are determined from a linear 
system derived from the two boundary conditions 
          0at        ,0   ,0 === zzzxz ττ  

The system may be written in the matrix notation: 

            bA P =
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where the matrix A is following: 
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and the vector b depends on the incident wave. 
  If P wave is incident, 
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If S wave is incident 
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The reflection coefficients depend on the angle of incidence. The most interesting case 
is when P wave reflected  due to incidence of SV wave becomes inhomogeneous. This 

case arises when 
γ

α 1
sin >S . In this case 2)sin(1cos SP αγα −=   becomes 

imaginary, and the solution for P wave becomes complex. In this case the reflection 
coefficients for both P and S wave also become complex.    Polarization vector   

PzPx αα cossin een +=     for P wave also is complex. The amplitudes of the 

coefficients for 3=γ  are shown below. 
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At overcritical angles ( o

S 35>α )  the modulus of the SS coefficient remains equal to 

1, but its phase changes, though the wave remains to be homogeneous.  
  If, as was defined above, f(ξ,η) and g(ξ,η) are real and imaginary parts of the the 
function of a complex variable F(ζ)=F(ξ+i η) , then displacement in the reflected P 
wave at overcritical angles is 
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Particle motion in P wave for different angles of incidence is shown in the next figure. 
The motion is elliptic, prograde (as a rolling ball), and z-axis of the ellipse increases 
with the angle of incidence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
If P wave is incident, reflection coefficients are always real. The behavior of the 
coefficients with the angle of incidence is shown below. 
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2. Interface between two solids. 
   If  P or SV is incident to the boundary, four waves arise: reflected P and SV, and 
transmitted P and SV. In case of incidence of SH wave only two waves arises:  
reflected and transmitted SH. Reflection and transmission coefficients are determined 
from a system of linear equations resulting from the boundary conditions.  

   The system of equations for P-SV reflection/transmission coefficients in case of 
welded contact between the media (see the scheme above) has the following form: 
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and the vector bi  in the right-hand side depends on the incident wave: it is formed by 
the i-th column of the matrix A according to the rule j

ji
i

j ab )1()( −=   (i=1(2) if P(S) 

wave is incident from the medium (1) , i=3(4)  if P(S) wave is incident from the 
medium 2); the angles α and β correspond to P and S waves.                
  
    As mentioned above, the boundary conditions can be of different type, depending 
on the physical properties of the boundary. It is interesting to compare the coefficients 
for unwelded contact for different values of m. It is convenient to choose a 
dimensionless parameter instead of m, e.g. 11 /~ bmm µω=  , where µ1 and b1 are rigidity 
and shear wave velocity in the medium where the incident wave propagates. 
 
 
 

 
 
The  figure above shows the reflection/transmission coefficients as functions of the 
angle of incidence for different values of m~  (remember that 0~ =m  corresponds to the 
welded contact, and ∞=m~ to the sliding contact).  
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3.3. Head waves 
 
   If spherical wave is incident to a plane boundary, and a velocity of one of the 
reflected/transmitted waves is larger then that of the incident wave, a so-called head 
wave is formed on the boundary in addition to the transmitted and reflected waves. It 
is easier to understand generation of the head wave proceeding from the concept of the 
wave fronts. Let the disturbance in the source begin at t=0, then the surface t=r/c, 
where r is a distance from the source and c is wave velocity, separate the perturbed 
and unperturbed areas. This surface is called the wave front.   
   Let the source be placed in the half-space 1, the source radiates P-wave, and a2> a1. 
At  the boundary z=0 transmitted and reflected P and S waves arise. The front of the 
reflected P wave is spherical, as of the incident wave, and the fronts of all other waves 
are spheroidal.  While the front of the incident wave crosses the boundary under the 

angle less than critical )(sin
2

1)1(

a

a
P <α , the wave fronts can be drawn as in the fig.a. 

The fronts close in one point that the disturbance reaches at a given moment. At the 
moments, when the angle of incidence exceeds the critical one, the picture of the wave 
fronts changes: the front of transmitted wave breaks away from this point and 
propagates in the half-space 2 along the boundary with larger velocity (fig.b). 

In this case a part of the boundary between points A and O turns to be disturbed.  This 
disturbance is radiated to the half-space 1 in a form of so-called head waves with 
conical fronts. The waveform of the head wave (ψ(t)) is the integral of the waveform 
of the incident wave (f(t)): 
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Amplitude of the head wave is determined by the formula: 
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where Γ is the coefficient of head wave generation that is expressed in terms of 
reflection/transmission coefficients in the points A and B. If the types of incident, 
grazing and head waves are indicated by indices m,n,q, then 
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n
nqnmmnq αρ

ρκκ
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3.4. Rayleigh waves 

 
   In a half space with free surface a specific solution may exists that is a superposition 
of inhomogeneous plane P and S waves. If we look for a solution in a form of a plane 
wave, the plane of incidence being y=0 (for simplicity we assume the dependence on 
time to be harmonic) then, according to the general representation of the 
inhomogeneous waves, we may write 
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Replacing these expressions to the boundary conditions at the free surface z=0 we 
obtain a linear system for the amplitudes A and B of P and S waves. This system is 
homogeneous, therefore if a non-zero solution exists, the determinant of the system 
should be equal to zero. This is 
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Thus, the superposition of the waves (38) with A and B satisfying the boundary 
conditions (up to a constant multiplier) represent a wave propagating along x-axis and 
decaying exponentially along vertical direction. It is Rayleigh wave. 
     
Velocity of this wave along x-axis varies 

 from 0.874b up to 0.956b for all possible           values of b/a (from 
2

1
 to 0). It does 

 not  depend on frequency. 

                                 
10

8

6

4

2

0

kz

w

u

 
     Motion in the Rayleigh wave is elliptic, retrograde at the surface and at shallow 
depths, but becomes to be prograde at large depths. The figure shows variation of the 
vertical (w) and horizontal (u) components with depth. 
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Ratio of horizontal and vertical amplitudes in Rayleigh waves at the surface is equal 

to 
4 2

4 2

)/(1

)/(1

ac

bc

−

−
. It depends also only on the ratio b/a. For b/a varying from 

2

1
 to 0  

this ratio varies from 0.786 to 0.541. For b/a= 
3

1
 it is equal to 0.681. 

 
  Rayleigh wave can be generated by a point source in half-space, because the 
spherical wave radiated by such a source may be represented as a superposition of 
both homogeneous and inhomogeneous plane waves. So it contains the waves with 
the apparent velocity equal to the velocity of Rayleigh wave. 
 

3.5. Love waves 
 
    Inhomogeneous SH wave cannot exist in  half-space with free surface, because it is 
impossible to satisfy the boundary condition by only one wave – this can be done only 
if its amplitude is equal to zero. But if we have a layer with S wave velocity less than 
in the underlying half-space, than the waves can propagate along the boundary, and 
the amplitude of the wave decays with depth in  half-space. These are Love waves. 
   Love wave is formed by homogeneous waves within the layer and by 
inhomogeneous waves in the half-space. Therefore the apparent velocity of Love wave 

should be within the limits  21 bcb ≤≤ < because ,
sinsin1
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==  and 

2

1
1sin1

b

b
S ≥≥ α . These waves should satisfy the boundary conditions at the free 

surface and at the interface.         
  Again we shall construct the solution as a superposition of plane waves. 
     In the layer (homogeneous plane waves) 
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   In the half-space (inhomogeneous waves) 
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   It should be noted that in this case polarization vector is real (directed along y-axis), 
because the real part  (l1) is orthogonal to z-axis. So, if we recall the relationship 
between the components (16), we can see that cosβ=0 , so that  l2=0. 
   These waves should satisfy the boundary conditions at the free surface and at the 
interface. 
   At the free surface (z=0)  
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where from A=B. So the solution in the layer may be written as 
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At the interface z=H 
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 It follows from these equations that 
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This is dispersion equation for Love wave velocity: unlike Rayleigh waves in a half-
space the velocity depends on frequency. 
   It is easy to show analytically that b c b1 2≤ ≤  (as concluded above from simple 
physical consideration). In fact, only in this case left and right sides of the dispersion 
equation are real. 
   It is also easy to show that for a given  c  there are infinite numbers of frequencies 
satisfying the dispersion equation. In fact, 
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Also we can show that for any given ω  there are finite  number of c. The Eq. (39) may 
be written as 
                       )(),( 12 cfcf =ω  
A graph for the right-hand side is drawn by solid line. And the graph of the left-hand 

side behaves as tan - at the values of argument 
π

π
2

+ k  it tends to ±∞. But the rate of 

change depends on ω. At the figure below the graphs for the left-hand side are shown 
for two different values of  ω. It is clear that for small ω there is only one root, and the 
number of roots increases with increase of ω. 
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4. Waves in anelastic media 
 
 
  4.1.  Constitutive equations 
 
     Real solids are not perfectly elastic. This causes seismic processes (waves, 
oscillations) to attenuate with time due to various energy-loss mechanisms. The most 
usual explanation of these mechanisms is internal friction between microscopic 
particles of the material that leads to transformation of mechanical energy to heat.  
  The simplest description of attenuation due to ‘friction’ can be developed for an 
oscillating mass on a spring: this is a phenomenological model for seismic 
attenuation. 
 
 
 
 
 
 
 
 
 
 
 
Let x be a deviation of the mass from the equilibrium. The force  f  is friction opposing 
the motion of the mass. Denote K a measure of the spring’s stiffness.  
      The motion of the mass is  determined  by the equation                      
                             mx F&&− = 0 
If friction is absent, and oscillation results only from elastic force,  F=-kx, then 
                            
             0=+ kxxm&& , 
and we obtain harmonic oscillation: 

                  mKtAx /      ),sin( =+= ωϕω  
However, if  a friction exists  between the moving mass and the underlying surface, 
and this force is proportional to the velocity of the mass, so that the total force is 
        
              xkxF &γ−−= , 
then the oscillation attenuate: 

                
titeex ωβ−=  

where 
K

m

m

K

m

2

1      ,
2

βωγβ −==  

   Motion in a solid fits the equation 

                   ∇ =T
u

ρ
∂
∂

2

2t
  

where T is stress tensor. To solve this equation for any particular case it is necessary 
to express the stress in terms of displacement and its derivatives. In perfectly elastic 
medium this relation is expressed by the Hooke’s law.  As shown above, in the case of 
homogeneous isotropic medium the equation of motion is reduced to the following 

m f
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                   ( )λ µ µ ρ
∂
∂

+ ∇ − =2
2

2div rotrot
t

u u
u

, 

 
The solution is a non-attenuated wave. 
   In real media the relationship between stress and strain is more complicated than 
that corresponding to the Hooke’s law. Various properties of realistic materials lead to 
different relationships between stress and strain,– so-called constitutive equations, – 
that describe behaviour of the material when a stress is applied. A constitutive 
equation defines a  rheological model. 
   We consider the main rheological models used for analysis of oscillations and waves 
in solids. 
  Kelvin-Voight (viscoelastic) model.  This model assumes existence of viscous 
coupling between particles in addition to elastic forces. Viscous forces are 
proportional to the velocity of strain. The relationship between stress and strain is as 
follows: 

              
τ µε η

∂ε
∂

σ λθ µε η
∂θ
∂ η

∂ε
∂

ik ik
ik

ii ii
ii

t

t t

= +

= + + ′ +2 2

        

     ( )θ = divu  
This model can be represented by a simple mechanical analogue: elastic element 
(spring) and viscous element (a piston pressed into viscous fluid) connected in 
parallel. If we apply a stress to such system at some moment, the strain arises not 
immediately, but increases gradually. The same happens if the stress is suddenly taken 
away: the strain would vanish gradually. 
 
   

 

τ

t

ε

 
   
   
The relationship between stress and strain may be written in another form: 
 

                         τ µ ε
ε

ε= +








T

d

dt
 

 
 
The strain under constant stress relaxes: 
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                       ( )ε ε ε= − −
o

t Te1 /
 

Tε  is the relaxation time. For small Tε   we obtain the Hooke's law. 
Maxwell model. This model is a particular case of the so-called after-effect models, in 
which the stress is assumed to relate not only with the strain at the same moment, but 
also with the history of strain behaviour at previous time:    

               τ µε ϕ ξ ε ξ ξik ik ik t d= − −
∞

∫ ( ) ( )
0

                      (40)   

ϕ(ξ)  is the so-called creeping function. Various rheological models correspond to 
various creeping function. 

 If  ϕ ξ
µ

ξ
τ

τ( ) exp( / )= −
T

T  (for pressure the Hooke's law is kept), we obtain the 

Maxwell model. Substituting this function to the formula (40) and integrating by parts, 
we  obtain                

                               
d

dt T

d

dt

τ τ
µ

ε
τ

+ =  

The constant Tτ is the relaxation time of stress under a constant strain: 
               τ τ τ= −0 exp( / )t T  
The Maxwell model is valid only for shear strain. The figure below shows the 
mechanical analogue of the Maxwell model, as well as behavior of strain under a 
constant stress, 
 
 

τ

t

ε

 
Standard linear solid. This model combines the both dissipation mechanisms, so that 
the relationship between stress and strain is following:  

                τ
τ

µ ε
ε

τ ε+ = +T
d

dt
T

d

dt
( ) 

 
Mechanical analogue of this model is shown below: 
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In this model the strain is relaxed under a constant stress, and the stress is relaxed 
under a constant strain.  
 
     4.2. Propagation of harmonic waves. 
 
   It is possible to derive the equation of motion in a form 

             
2

2

)(
t∂

∂= u
uL ρ  

only in some particular cases of anelasticity, - for example for viscoelastic medium. 
But it is easy to study propagation of harmonic waves in any linear model. 
   Let us consider harmonic oscillation in various rheological models:  
         u u r= ( ) exp( )i tω  
Time dependence of strain is of the same form: 
           ε ε ω= ( ) exp( )r i t   
For Kelvin-Voight model 
          τ µ ω ε ω µ ω εε ε( , ) ( ) ( ) exp( ) ( ) ( , )r r rt i T i t i T t= + = +1 1  
  For Maxwell model  
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For standard linear solid: 
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Thus for all cases the relationship between stress and strain is formally coincides with 
the Hooke's law, but the elastic modules are complex and depend on frequency. The 
frequency dependence is different for different models. Therefore in analysis of wave 
propagation of harmonic waves in anelastic media we may formally use the inferences 
obtained for perfectly elastic medium. 
   Consider propagation of a plane harmonic wave along x-axis: 
  
                A x t A i t x V( , ) exp[ ( / )]= −0 ω  
If the modules are complex, the wave velocity V should be also complex: 
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Then 

                   A x t A
x

V
i t x V( , ) exp exp[ ( / ( ))]*= −






 −0

ω
ω ω           ( 41 ) 

This shows that the wave attenuates with distance, and its velocity depends on 
frequency: 
V V= ( )ω . Attenuation and dispersion are the main properties of the waves 
propagating in anelastic media. 
      Using the wave number k we can represent the plane wave in the form 
        A x t A i t kx( , ) exp[ ( )]= −0 ω      

where the wave number k  is complex: k k ik= − * , so that the attenuation is 
determined by the exponential term exp(-k*x), k* being the attenuation coefficient. It 
depends on frequency.  
  Quality factor.   Instead of the attenuation coefficient k* seismologists use the 
characteristics called the quality factor Q. It is a measure of energy loss at a distance   

k − =1
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λ
π ,  where  λ is the wave length: 
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The larger Q,, the more proximate the medium to perfectly elastic. Because 
 

k
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 ,  then  Q
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*

π  , and consequently, k
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. Thus, the term describing 

the attenuation is exp( )−
π

QVT
. In inhomogeneous medium, where both velocity and 

Q are functions of coordinates, it is exp −








∫

π
T

ds

QV
  . 

    Now we show how the quality factor Q is expressed in terms of the real and 
imaginary parts of the complex modules, and how to relate it with the relaxation 
times. Consider a shear wave. The complex velocity is expressed in terms of the 
complex shear module as follows: 
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. Knowing the expressions for 

complex modules for different rheological models we can write the quality factor as a 
function of frequency and relaxation times: 
 
 For Kelvin-Voight's model      Q T− =1 ω ε . 

 For Maxwell model                 Q T= ω τ  
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   It seems that Q should noticeably change with frequency. However seismological 
observations indicate that Q does not practically depend on frequency over a large 
range of frequencies. This is because of a variety and scale of attenuation processes in 
real materials. The most general model is the standard linear solid, for which the 
frequency dependence of  1−Q  is as follows: 
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The peak in 1−Q  is known as  Debye peak. It corresponds to the frequency 

ω
ε τ

0

1
=

T T
, and the value of  1−Q  at this frequency  is equal to 
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.  

The superposition of numerous Debye peaks for various relaxation processes within  
different frequency ranges, produces a broad, flattened absorption band.  
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    5.  Representation theorem in elastodynamics 
 
Seismic waves originate from some perturbations in the medium caused by body 
forces or displacement or traction at some surfaces. Within a volume bounded by a 
surface (that may be moved off to infinity) the wave field is determined by forces 
acting within this volume, and by displacement and/or traction at the surface. It is 
analogous to the theorem in the potential theory, where for determination of the 
potential it is sufficient to know the potential and/or its normal derivative at a surface 
bounding a volume and the sources within the volume. The expression for the wave 
field in elastic medium is given by the so-called representation theorem analogous to 
the Green’s theorem in the potential theory. 
      
     5.1 Body forces 
    
   First of all let us consider the equation of motion for unbounded homogeneous 
isotropic medium, in which a source is given by a body force in the right-hand side of 
the equation:  

             ),()2(
2

2

t
t

rotrotdiv xf
u

uu −
∂
∂=−∇+ ρµµλ      (42) 

Solution of this equation can be represented as a superposition of different elementary 
solutions. To construct the solution of (42) we introduce a solution of the equation, in 
which the force is concentrated in a point ξξξξ, directed along q-axis, and acts with time 
as a pulse δ(t). Denote this solution as ),,( tq ξξξξxg  - it is the Green function for the 
elastodynamic equation. It satisfies the equation 

         q

q
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rotrotdiv ex
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gg )()()2(
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δδρµµλ ξξξξ−−
∂

∂=−∇+       

If the pulse originates at the moment t=τ , the solution is ),,( τ−tq ξξξξxg .  
  The  force f(x,t) that enters to the right-hand side of (42) can be represented as a 
superposition of the elementary sources, located at different points and arising at 
different moments, and subsequently, the solution of (42) can be represented as  a 
superposition of the solutions ),,( τ−tq ξξξξxg :   

                xxgxu Ω−= ∫∫∫∑∫
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∞−

dtfdt
x

q

q
q ) ,(),(),( τττ ξ,ξ,ξ,ξ,ξξξξ                 (43) 

 
 This is the expression for the wave field due to body force with density f(x,t). 
 
 
5.2. Boundary conditions; representation theorem 
 
   Now we consider a wave field in a volume Ω bounded by a surface S.  Given are 
adisplacement US (t) and  traction Tn (t) at S. The displacement US (t) and the traction 
Tn(t) cause a wave field within Ω.  Body force with density ),( txf  acts within this 

volume. The wave field in Ω satisfies the equation 
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As shown earlier,  the Green function ),()( τ−tq ξ,ξ,ξ,ξ,xg  is a solution of the equation 
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where ττττq is the stress tensor corresponding to the Green function. 
   Let T and V correspond to any two different solutions of (44) (no matter, with or 
without non-zero right-hand side), T being a symmetric tensor. Then according to 
Gauss formula we obtain 
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For symmetric tensor  ( , ) ( , )TV n T V= n   is true . Then 
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Now we apply (46) to the following combination 
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The terms in the left-hand side may be transformed as 
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  To transform I1 we replace ∇ττττq и ∇Т from the equations of motion: 
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Now let us integrate this expression over t  from -∞ to +∞, and taking into account 
that the Green function as well as its time derivative vanish at ±∞, we obtain that the 
integral is equal to )),,(( 0 qexU τ− . 

   Now we shall transform I2 : 
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Because of symmetry of this expression in respect to U and g , we see that I2 =0. 
  So finally  
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  (47) 

    This is the representation theorem. 
    It is widely used in analysis of seismic sources and in the theory of diffracted 
waves. 
   
 
  
   5.3. Green function for isotropic homogeneous medium 
 
  To apply the formulas (43) and (47) for determining the wave field it is necessary to 
know the Green tensor ),,( tq ξξξξxg . It should be noted that the Green tensor can be 
determined in different ways, depending on the boundary conditions at S. In case of a 
bounded volume it is convenient to assume either displacement or traction equal to 
zero at S , depending on which characteristics of the field (displacement or traction) is 
given at S. In case of unbounded medium it is sufficient to take into account the 
radiation condition. In general case of the medium the Green function can be 
determined only approximately, but in homogeneous isotropic medium the exact 
expression for the Green function exists. It can be easily obtained from  the Stokes’ 
formula for the wave field excited by a point force located in the origin of coordinates 
whose time function is X(t): 
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bRtX
Rb

aRtX
Ra

dtX
RR

t R

bR

aR

R

−

−−+−




 += ∫
(48) 

The Green function ),,( tq ξξξξxg  is obtained from (48)  if we replace ξξξξ−= xR ,  

),(cos Rq ee=θ , and  X(t)=δ(t).  

  The first term in the right-hand side of (48) decays with distance more rapidly than 
the last two ones, so usually, if the source is far away from the point of observation, it 
is sufficient to consider only the second and the third terms.  
 
   5.4. Application of the representation theorem to analysis of 
diffracted waves 
 
  In this section we shall consider a simple example how the representation theorem is 
applied to the problems of diffraction of the waves. We shall analyze the waves 
diffracted at sharp edges of boundaries. The simplest example is the case when a plane 
wave impinges to an opaque boundary x<0: 
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The edge x=0 can be regarded as a source for diffracted waves. 
    It is evident that diffracted waves should depend on frequency. Therefore we should 
analyze harmonic waves. For harmonic waves we may omit the term depending on 
time exp(-iωt), and analyze the solution U(x), which depends only on spatial 
coordinated. Analogously we eliminate such term from the Green’s function that 
would be now of the form ).,( ξξξξxuq  Representation theorem for this case is expressed 
as 
                 [ ]∫ −=

S

SS
q
nS

q
Snq dS))(),,((),(),(()),(( xUxxgxTeU ξξξξξξξξξξξξ τ      (49) 

    Now we shall consider the following problem. An opaque half-plane screen, which 
does not transmit P-wave, is placed along xy-plane  at ∞<<∞−−<<∞− yXx     ,, . 
A plane wave is incident normally to this plane along positive direction of z-axis. We 
shall determine the wave field in the point M ( x=0, z=H). 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
The incident wave is expressed as 
       )exp()( ikzzexU =  

where k=ω/a. This is valid in the half-space z<0. The stress at z=0 is 

)exp()2()2( ikzik
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U
T z

zz µλµλ +=
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∂
+= . But the outward normal to the boundary 

z=0 is –z, therefore at the boundary ))2(  ,0  ,0( µλ +−=−= ikzn TT . The 

displacement at z=0 is U=(0,0,1).  
   For this particular case formula (49) has the following form: 
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  To use the formula (50) we have to determine the Green’s function and the 
corresponding stress. Assuming the frequency to be sufficiently high (the wavelength 
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much smaller than the distance from the ‘source’ M to the boundary) we may keep 
only the main term in the Green’s function (decaying as 1/R). Then the field of P wave 
excited by a unit force placed at M and directed along z-axis is 
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 To calculate z
nzτ   we take into account that  for high frequencies (and for large k) it is 

sufficient to differentiate  in respect to r only the exponential term. Then 
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Substituting all these expressions to (50) we obtain 
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To estimate this integral we use the stationary phase method. The stationary point is   
0== stst yx . In this point r=H. According to the stationary phase method we 

represent the phase function as a series in the vicinity of the stationary point and keep 
only terms of the second order. Then we obtain 
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(It is taken into account that 
H

rr yyxx

1== ). 

     The integral ∫
∞
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dxHikx )2/exp( 2  can be expressed through the Fresnel integral 
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Substituting (52) to (51), and taking into account that )()(   ,
2

)( zFzF
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we finally obtain 
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where  
k

H
RF

π=  is the Fresnel radius. The modulus of this function is shown 

below. 
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Thus, under the edge (X=0) the amplitude of the transmitted wave is twice as less of 
the amplitude of the incident wave. When the screen is moved to the left (X>0) the 
amplitude increases and exceeds that of the incident wave. If the screen is moved to 
the right, the amplitude decreases gradually to zero. 
 
   It is also possible to estimate a phase of the total transmitted wave. The total field 
may be represented as a superposition of ‘pure’ transmitted wave and diffracted wave. 
If the transmitted field is deducted from the total field, we obtain a field of the 
diffracted wave. It can be shown that a phase of this wave is approximately equal to  
kR+π/4, where R is a distance from the point M  to the edge of the screen. Thus the 
edge of the screen may be regarded as a source of the diffracted wave. 
 
  

U=Uinc+UdiffU=Udiff  
 
 
 

   5.5. Application of the representation theorem to excitation of the 
waves by seismic sources 
 
    A source of waves in the elastodynamic theory may be described in two ways: 
either by a body force in the right-hand side of the equation of motion, or by  
displacement / traction at a closed surface bounding a volume where a solution is 
looked for. In both cases we can construct a solution using the representation theorem.  
   In case of body force in unbounded medium the surface integral in (47) vanishes, 
because the ‘surface’ is moved to infinity, where the wave field tends to zero. The 
result is the same as in section 5.1 (formula (43)). The Green function is given in 5.2.  

1

1/2

X/RF
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   If the source is a movement of the fault edges due to rupture along the fault,  the 
medium is bounded by two surfaces – one (S) is at the infinity, and the other consists 
of two edges of the fault at which the traction is equal to zero, and  the relative 
displacement of the edges D(t) is assumed to be known. To obtain the wave field due 
to such a source we may apply the representation theorem (47), in which the volume 
integral is zero, −+ Σ+Σ=S ,  in the integrand of the surface integral 0=nT  and 

relative displacement of the edges of the fault is equal to 
−+ ΣΣ − UU .  

Σ+
Σ−

S

 
 
This approach is valid for faults of different size. It is well known that a far field 
generated by a slip along the fault is the same as generated by double couple point 
force.  If the distance from the fault is compared with the fault size, formula (47) 
allows a near field to be calculated.   


