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of seismic wave propagation
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1. Introduction

Wave motion is one of the well-known scientific concepts. Behavior oivéves
on the water surface, as well as propagation of acoustic or light wavesaavn from
everyday experience. However, it is not easy to defieevaveln general we can say
that it is a form of propagation of a disturbance of some physaldl We know
seismic, electromagnetic, acoustic, gravitational waves. Thougle thamo exact
general definition of thevaves because of a variety of their characteristic features in
different cases. For example, we may generally define the asva disturbance
(signal), which propagates in a space with a certain velocityg barim of the signal,
as well as its velocity may vary. However, this definition involpespagation of heat
(disturbance of temperature), but it is well known that the heatdpagated in
another way — not by a wave. Therefore it is preferable to proceedan intuitive
notion on a wave as on a signal propagating from one to another pameifiam
with a certain finite velocity. This signal may be distortedy mlaange its intensity
and velocity, but should remain distinguishable. A perturbation arisingantaf the
medium causes returning forces preventing this perturbation, and tles fme of
such kind that they lead to appearance of similar (in general actlyexhe same)
perturbation in neighboring points.

Seismic waves arise in solid media due to elastic forces.ai ipeculiarity of
seismic waves is that there are at least two types of waves (in anisatexpe- three
types), with different velocities and different polarization. Thid is due to existence
of at least two different elastic modules: in isotropic mediampressible and shear
modules. Therefore returning forces are different for different types of ddforma

A nature of the wave may be explained by consideration of a congmassiave in
a thin rod. The rod may be represented as a set of interactmgree If one element
is displaced, a force appears between this one and neighboring elevhesttsis
proportional to a relative variation of a distance between them.aWéntagine that
the elements are connected by elastic springs, and the force tis cu@pression or
tension of the springs.

Let a force due to deformation of the spring be
< Au
AX
Motion of thei-th element of mad3 submits to the Newton'’s law:
u., —U u —u
mUI = K i+1 i _K i i-1
AX AX
In continuous case, whéx - 0, andm=pAx, u=u(x,t), we obtain
0%u
=K — 1
pI=K— 1)
This is the simplest one-dimensional wave equation. Its solution is as follows:

u=ft-2)+g(t+2), c:\/K,
C C 0

where (&) andg(¢$) are arbitrary functions, arais regarded as velocity of the
wave propagation.




If the masses deviate from the equilibrium in perpendicular dire¢sihear), it
would be the same, but the modHleés different (it is less than compression module),
and the velocity ofhear waveropagation is less than for the compressional wave.

In continuum (2D or 3D) there are both types of deformation (compression and
shear), therefore two types of waves may propagate.

P wave

i

S wave

2. Equation of motion for solid elastic media

Consider an elemef of elastic medium bounded by a surf&e

Equation of motion of this element
may be written as follows:

p g0 = [[1.ds+ [[[Foode (@)
Q dt S Q

whereF is body force densityl, is stress applied
to the boundary.

Applying Gauss formula to the surface integral, and taking into atd¢bahthe
stress tensor is symmetric, we finally obtain that

2
PRI, BN
ot 2)
or
2 — = —
0%u _ 07, +07y 90
ot? ox ay 0z (3)

whereT is stress tenspor a matrix formed by vector-rows,, Ty, T



Egs. (2,3) are valid for all types of media: isotropic, anisotropic, ingeneous,
anelastic, which differ by the relationship between stress aaih.sBelow we shall
consider some particular cases.

2.1.Homogeneous isotropic elastic medium. P and S waves.

In homogeneous isotropic medium the relationship between stress amadvgtiah
in turn is related with spatial derivatives of displacement, is following:

r = adiwg, + 4 2+ 2 (4)
: : ox; 0x

Substituting (4) to (2) (here we neglect the body forces) we obtain
2

(A + 247)0divu — grotrotu = pgt—l: (5)

The simplest approach to solve this equation (which is valid only for ioheneous
medium!) is to represent the unknown vector function in terms of saathvector
potentials:

u=0¢ +roty
Substituting this representation to (5) we obtain two independent equédiotise
potentials:

p 0°¢ _10%

AP = =— 6a
¢ A+2u dot?  a? ot? (62)
py=PoW_10Y (6b)

U ot*  b® ot?

These are thevave equationgscalar and vector): they describe propagation of the
waves with two different velocitiea and b. The scalar potential determines the
longitudinal (compressionalpr P-wave, vector potential determines share,or S-
wave.

To solve these equations we should knowitliteal conditions i.e. the functions
@(x) and Y(x) att=0.

It is clear that the solutions of (6) are additive, i.ep,if and ¢,are two different
solutions of (6a), theng, + ¢, will also be a solution of this equation. It medhat
that by superposition of different (elementaryusioins we can construct the solution,
which would fit the given initial conditions. Théglest elementary solutions are the
plane waves

2.2. Plane waves

At first we shall consider the scalar wave equation
1 0%u
Au=—— 7
c® ot? @
U = Uu(Xy, Xy, X5, 1)
A solution of (7) may be represented in the follogvgeneral form:
u(x,t) = f(t-(k,x)) +g(t+(k,x))  (8)
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c2
right-hand side of (8) describe the waves propagat opposite directions with the
velocity c. It is clear that at any moment the solution gilane k,x)=const is the
same.

For simplicity we shall represent the solutidri@a),(6b) by one term in (8):

p(x.t) = F(t=(kp,) IKPI%

where (&) andg(¢) are arbitrary functions, ar'1lsl|2 =— . So the two terms in the

WOL) =nF(t-(Kp.X) |k =%

Then
u=u, +ug,
where
up =0¢ = -k, f'(t = (kp,X)) (9)
ug =rot = (nxkg)F'(t—(ks,x))
The motion in P-wave is directed along the dicgcbf propagatiork, while in S-
wave it is orthogonal th.

It is clear that in both cases (P and S wavesHitplacement may be represented in

the form
u= Idb(t - (n—cx)j (10)

wheren and| are unit vectors, andis a velocity . Using the concept of plane waves
we can show that may be equah or b, and in case=a polarization vectol=n, and
in case ot=b | is orthogonal tan.
Substituting (10) to (5) we obtain
(A + n(l,n) + (d]®"(t - (n,x)/c) = pc2Id"(t - (n,x) /)
or
(A+)n(l,n) = (oc* - p)l .
Let us defined = il , then
A+ u
n(l,n) =461, (11)
or NI =81, where the matrixN =nn", so thatd and | are eigenvalue and
eigenvector of the matriX correspondingly.
It is easy to show tha& fits the equation
6°-6°=0
that has three roots
6,=186,=6,=0
They correspond to the velocities

, = )I+2,U=a, szcsz\ﬁzb
P P

The eigenvector corresponding to the first rodtis and those corresponding to the
other two roots are mutually orthogonal unit vestdyoth orthogonal ta, i.e to the
direction of propagation. Thus the first root cgpends to the longitudinal wave, and




to other ones — to two share waves propagated amighand the same velocity. As
shown below, in anisotropic medium these two rauts different, so that there are
two quasi-sharevaves propagating with different velocities.

2.3. Inhomogeneous plane waves

The concept of plane wave may be extended to lexnvectord andn.
A solution of the wave equation (5) in the forh®) assumes to be a unit vector,
ie.
6.n)=1 (12)
Butn can also be a complex vector, i.e.
n=n,+in,
Obviously, the functior®({) , as a function of a complex variale&+in, should
also be complex, as well as the polarization vdctor
=1, +il,
D($ +in) = £(¢,n) +ig(s,7)
Since botm anl are unit vectors, we have

(nl’nl) - (nz’nz) + Zi(nl’nz) =1
(ny,n;) —(ny,n,) =1
(ny,n,)=0
(I,1) = (5,15) =1
(I.1;)=0
As usual, since the displacemenis real, we take only the real part of the complex
solution:
ux,t) =1, f(t-(x,n)/c, =(x,n,)/c)-1,9(t-(x,n,)/c,—(x,n,)/c) (13)
This formula describesinhomogeneous plane wavelhe motion in the
inhomogeneous wave has the following meaning. Teaip behavior of

displacement is the same along straight lines oéthby intersection of the planes
(x,n1)=const and X,n,)=const. Direction of the wave propagation coiesiavith the

o : . c .
vectorn; the wave propagates along this direction withuvélecity V =—. Since

Iny|

n, = 1/1+|n2|2 >1, velocity of the inhomogeneous wave is always feaac (a or b).

The wave form and the wave amplitude are changindirection of the vectons.
Components of the displacement along the vedtoasd |, are varying differently,
accordingly to the functiorfs andg.

The vectord; andl, in compressional wave coincide with the vectorandn,. The
vectorsl; andl, for shear wave satisfy the relations

(ll'nl)_(|2’n2) =0
(I;,n,)+(,,n)=0
Orientation of the vectors, n,, l1, I, are shown below.

(14)



It follows from (14) that

(ny.15)

In2

If B=m, we have SV-wave, and in cd%erv2 the wave is SH. It is clear that for SH-
wavel,=0, and only in this case polarization is linear.

cosf =-—

If the function ®(() is analytical then according to the Cauchi-Riemann relationship
for real and imaginary parts of an analytical fumetof complex variable
of _og of __dg
o dn' on ¢
If the motion is harmonic oscillation with frequeno, i.e. if
P(¢) = Aexplax) = Aexp{ax — arn), then
f(&,n) = Ae™™ coswf

g(é,n7) = Ae" sina¥
Particle motion in harmonic inhomogeneous wasedliptic for P and SV waves,
and linear for SH waves (see fig. below )

Particle motion in harmonic
inhomogeneous waves

o

SV SH

A

\Q’
=

In general case the functicifg,s), g(,/7) may be represented as a superposition of
these solutions, i.e.



f(¢&) = T Alw)e™ coswédw
a(é.n7) = T Alw)e ™ sinwsdw

Since timet enters to the real part of the complex arguménrtt —(n,,x)/c), a

shape of signal at a fixed poixis determined by andg as functions of. It is clear
that the functiorg as a function of (ort) in a given poink is the Hilbert transform
of f.

Remind that this theory is truedf({) (and consequentli§é,,) as a function of) is
analytical functionHowever, in practice, we deal witton-analytical signalswhich
are equal to zero up to some moment. Neverthelassally the theory of
inhomogeneous waves is extended to this caseg@nts assumed to be the Hilbert
transform of non-analyticalf(t). This leads to a paradox — the signal in
inhomogeneous wave arrivesarlier than should be expected according to the
causality principle. Examples of such signals (boiés) and corresponding Hilbert
transforms (dashed lines) are shown below. Negkla$ls it is possible to use for
practical problems, because the earlier disturbaniet significant.

The functionsf andg are not finite in the infinite space due to the @xgntial term
e “7(n=(x,n,)/c) . Therefore they may be used to represent sokitbthe wave
motion either in a finite volume, or in case of sm®s.

Any wave field may be represented by superpositad plane waves (both
homogeneous and inhomogeneous) that fits the egquati motion (5) and the
following boundary conditions:

« radiation condition, requiring the displacementtaancrease at the infinity;
» boundary conditions at interfaces in the medium;
« conditions in the points where sources are located

The 1st and the 3d (and sometimes the 2nd) tonslicannot be satisfied by only
homogeneous plane waves. In such cases the inhoemge waves should be
involved.



2.4. Energy flux

2.4.1. Energy density
Total wave energy is a sum of kinetic and po&¢mnergy. The density of kinetic
energy is

1

k

oul’
ot

Potential energy is the energy of elastic deforomati he density of the potential
energy is determined as

1
= E; Tij gij ;

. ou Ou,
where 7; is stress tensor, ang; is strain tensor: & == —+—J . For
2 6xj o0X.

homogeneous isotropic medium
1./,
W, = EA(dlvu)2 tUY (15)
ij

2.4.2. Energy density in plane waves

For plane wavei(x,t) =®(t — (x,n)/c) the density of kinetic energy is expressed as

= g[q)']2 - for homogeneous wave

W, :§||lf’—|zg'|2 =§(]|1|2(1")2 +|I2|2(g’)2) - for inhomogeneous wave

(here and below andg’ mean% and a—g).

The density of potential energy is

W, __{/] 2/”’[(| o] + hlxn|¢] }:g[cp']2 =W, -for homogeneous wave.

2
For inhomogeneous wave we must replateu andg; in (15) by Uediw and

Ueg; . These expressions are different for P, SV andvates:

A '0{( )+ 4,u|n | |n | [ ]} - for P -wave,

I\J

w

p

{17 +an |n 19 +(g)]} for sv-wave,
{6+l +@)2] -for SHwave.

w

p

P
2
P
2

Taking into account that for P and SV wayeg=|l,|, and |n,|=|I,| ,as well as
[,=0 for SH-wave, we may write all these expressianmified form:



w, =20 e ey @ P 20 ey s @y] as)

The first term g(f’)z) is similar to that for homogeneous wave, the sdcone

describes the energy of elastic deformation dwsnplitude variation in the direction
perpendicular to the wave propagation, and thel thire includes the part of energy
due to non-linearity of polarization.

It should be noted that the total energy dengtynot constant as in case of
oscillation. However, it can be explained easihe energy is transported within the
medium, and the energy conservation law is justifee the whole volume.

In case of harmonic wave = | exdi a)(t - (x,n)/c)] the total energy density is
W = pa? sin?[eft - (x,n)/c)] for homogeneous wave,
and

w= ot ocf 22502 | anlo- ) 7y 0L

|2

2

oo

for inhomogeneous P, SV and SH waves
So for homogeneous wave the energy oscillates nighhalf of period from 0 to
pw®, whereas for inhomogeneous wave it never achi€ve$his can be easily
explained: if the amplitude does not change albeganave front, then at the moments
corresponding to maximum displacement both veloaitg strain vanish. However
this is not so if polarization is elliptic and tlanplitude varies in the direction
perpendicular to the wave propagation.

2.4.3. Vector of the energy flux (Poynting vector)
Here we shall derive the expression for thegniux in general case.

For simplicity we assume that there no exteforaes in the medium, then the
equation of motion is

OT = gl a7)
Multiply (17) by u:
: . 1a(pu®) _ oW,
UT,u) = plu =— =
Omu) == =

(OT,u)=0(Tu)- (TO,u)
The last term in the right-hand side is

. . . 0(1 (1 ow
(TD,U) =i =Gy €5 i :E[Ecikjl & gikj :E(E Tik‘gikj = atp
ow

Thus 3t =0(Tu) =-0Op p=-Tu - Poynting vector

Therefore, IfE = ”J'WdQ then
Q

%_'tf = —J'E[J'divde = —jsj p,dS
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Thus, variation of the energy within a voluf2as equal (with opposite sign) to a flux
of the Poynting vector across the surface.

On the other hanef,,—ltE = —”WchdS andp=Wc , wherec is group velocity, i.e. the
S

velocity of energy transport: in case of homogesesave in isotropic medium it is

. . .C N,
equal to @, and in case of inhomogeneous wave THTW
nl I’]1

The relationshiphc = —=Tu is useful in case of anisotropic media (as is shiater),
because it provides the expression for group vigldicat differs from phase velocity.

2.5. Spherical waves

We consider spherically symmetric solution of acalave equation
1,
Ag =§¢, ¢=9¢(RY)

In spherical coordinates

np=2 a(Rz%j+ L i(sine%j,LR 1 0%

R2OR| OR) RZsindod 06 ) RZsin’6 d¢?
For spherically symmetric solution
10 26¢j 1 0%
—— | R —= |== : 18
R? GR( dR) a’® ot® (18)
or

0% 209 _ 1 0%
dR> ROR a’ ot’
The latter may be represented in the form
~ Ro)=22 (Rp)
oR? a® ot®
A solution forR¢ is the same as for 1D wave equation. Hence, whenwave
propagatesrom the origin R=0),

SRy = F —RR/a)

It should be noted that (19) represents a soluwfofi8) everywhere except the point
R=0. But because the wave propagates fRRs0, this point may be regarded as a
source, where a body force is applied. Thereforegdb the solution that exists

everywhere including=0, we must proceed from another equation, notably,

1 0(.,00 1 0%
——| R —= |== -4B(R)F (t 20
RzaR( aRj a® ot? (RFE) (20)
Then (19) is the solution of (20) valid in the wlabace.

(19)

It should be noted that a solution in the fafpure’ spherical wave exists only
for longitudinal waves. For shear wave we canneehspherical symmetry because
this is impossible for vectors tangential to a sjgat surface.
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Now we shall represent spherical wave as a pop#ion of plane waves. For this
purpose it is necessary at first to representuhetionF(t) in a form of the Fourier
integral

F(t) = Tlf(a)) explat)dw .

It is sufficient to restrict the analysis by a hanit wave:
A(R1) = exp[-i ag— R/a)]

Also we may omit the factor expd), and consider the part of the solution that
depends only on spatial coordinates:
H(R) = expgaR)

It follows from (20) that (21) is a solutionthe equation

(21)

a)2

Ap +— ¢ = -41O(X) (22)
a
Let us represent the solution in a form of 3Dtisp&ourier transform:
_ 1
P0) =2 [ @) expli k1 (23)
then , substituting (23) to (22), we obtain theagmun ford(k):
arn
dk) = 5
, W
e
where
k2=(k,k)=kf+kj+kz2 (24)
Thus,
expfaR/a) _ 1 expli(k,x)]
= 75 m o dkdk,dk,
Ca?

But the because of (24) the variablgsk,,k, are not independent. Therefore we can

integrate over one of the components of the wawetovee.g. ovek,. The integration
is performed by the use of the theory of residuaisl finally we obtain

epraR/a)_i”eXpﬂ(kxX’kaY)—Hzl]
R o y

where
1/2
W’
y= (kf +k; Tz j

and the sign atis chosen so that ReO.
(25) is theWeyl integralthat represents spherical wave as superpositioplahe
waves. Since-o <k <o, —o <k <oo, the integrand contains both homogeneous,

and inhomogeneous plane waves.

dk.dk,  (25)
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The integral (25) may be transformed to Zmenmerfeld integrathat represents
spherical wave as a superposition of cylindricaye@g Let us replace the variables:
X =T C0s} k, = kcosg

y =rsing k, =ksing
Then
expiaR/ a) :iﬁexpﬁkr cos@—/7)—1/12|]kdkOl¢
R 21y ) y

2
Taking into account that ZL jexpﬂkr cos@ —n)]dg = J,(kr)
T 0

we obtain
exp(aR/a) _ I Jo(kr)expyi2)
R 0 y
In case of expi(eR/a)it is necessary to takg (complex conjugate) instead pin
the right-hand side.

This relationship can be extended to a case famalitical signals with sharp onset.
If F(w) is Fourier transform of a sign@t), then

[Fl@expioft-R/a)l .
MR & = [Fl@)expian)]
R R e )
How to understand that a wave with discontinuity e front can be
represented as a superposition of the waves imgudihomogeneous waves,
which arise simultaneously along the whole vertabak? The simplest way to
show this is to analyze spherical wave as a pagéron of cylindrical waves

(Zommerfeld integral) rather than of plane waves.
Let us take=0. Then the integral represents the wave field at
the z-axis. The integral becomes

]’iexp(—yjz])kdk_“J’.a .\ T _ (homogeneasi .\ inhomogeneus
5 y o e \wavegy =ig waveqy isreal)

Now we shall show that contribution of the inhomogeneous waves is congzehgat part
of contribution of homogeneous waves

kdk

J(knexpehd),
14

Contribution of homogeneous waves:

wla a 0 o
[ EPEDy = fenptcigiapop = A 19/ L
0 IE wla ‘Z‘ ‘Z‘
Contribution of inhomogeneous waves:

T &;”‘Z‘)kdk: Texp(—(\zpdz :é

Thus the total contribution of the inhomogeneous waves is cancelled by a part of th
contribution of homogeneous waves.

D
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2.6. Cylindrical waves

If the wave field is symmetric in respect to migiht line g-axis), and the field does
not depend on z-coordinate, the wave equation &@dentials may be written in
cylindrical coordinates as follows:

10 [ragpj_ 1 0%
ror\_ or) c?ot®’
and similar equations for components of the vegtdential withc=b.

This case may be regarded as 2D case, i.e. porrésg to the wave propagation in
a planez=const. Unlike the 1D case (plane wave) and the&2 (spherical wave), in
2D case it is impossible to construct a solutioraigeneral fornf(r,t), and it is
necessary to express a solution as a functidnrothe form of Fourier integral, and
consequently to solve the equation for the harmwaice:

(c=a) for scalar potential,

10( 0¢)

T lr|+=—@=0 26a

r ar[ arj c? ? (262)
or

0°¢p 109 .,

29 4+2%% 1k2p=0 26D

or? ror ¢ (260)

wherek =ca/c.
Solution of the eq.(26b) is the Bessel functidhghe wave is expanddcomr=0,
then
H(r, ) = AHP (kr),
and the solution fop(r,t) in form of the Fourier transform is following:

B(rt) =~ TA(a))Héz) (ar 1¢) explat)de
27T 5,

So unlike the 1D and 3D cases, the waveform idefbunchanged in the process of
propagation. This peculiarity was noticed by Hadaima his classic studies of the
wave equation: he pointed that the behavior ofsihletion is different for odd and

even numbers of spatial dimension.

o
function, so that the solution can be written agaae with unchanged form and with

At large distance%ﬂ >> 1) we can use the asympotic representation for thé&élan

: : 1
the amplitude decaying aj::
r

¢(r,t)=cexpﬂaf/tF—r/c)]

Though cylindrical waves cannot be excited in tgathey are important in analysis
of surface waves and the waves with axial symmetry.
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2.6. Anisotropic medium

For anisotropic elastic medium the relationshiptween stress and strain is
expressed by the Hooke’s law in the form:

T =Gy (27)

(summation over repeated subscripts is assumed dratebelow). In the similar
notation we may re-write the equation of motion (2)

drij _ azui
0x; 7 a2
Substitute (27) into (28):
1 0 (0du, . ou, 0°u,
—cC + = ' 29
2 ™ ox, (ax, 6xkj e (29)
A solution of this equation also may be representeddform of plane waves:

n, X
u, :IiCD(t——q qj 130

(28)

c

wheren, are components of the unit vector indicatingditection of propagation, and
li are components of the polarization (unit) vecBubstitute this to (29):

1
Ecijkl (I.njn, +I|nknj):pC2|i (31)

This is a system of 3 linear equation for the congmts of the polarizarion vector
l,,1,,1; . Determinant of the system should be equated, tsoOve obtain a cubic

equation forc’. All three roots of this equations are differennl{ke the isotropic
case) and depend am i.e. the velocity is different in different ditgans. The
components of the vectbare not related to as was in isotropic case.

In this case we have no pure ‘longitudinal’ ande@h‘ waves: in so-called ‘quasi-
longitudinal’ wave the polarization vectdrdoes not coincide witm, and in two
‘quasi-shear’ waves they are not orthogonai.to
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Example:  Transersly isotropic medium

Let z-axis is the axis of symmetry. Then
I = A&, +(A-2N)e,, +Fg,

r, =As, +(A-2N)g,, +Fe,
Z-zz = F (Exx + gyy) + ngz

r,, =Ne&,,
r,=Le,
z-ZX = LgZX

As before, we look for a solution for plane wavehe form

u= Id)[t —Mj . Substituting this solution to the wave
c

equation we obtain the following equation for tledocity c
and the polarization vectdr

Ml =¢c’l,
whereM is matrix with elements depending om@and the
modulesA,L,N,F,C In general case (arbitrary directionmf
the solution is too complicated, but it is sim@diin the
particular cases, whenis directed along or perpendicular tg

Z-axis:
en=1n=n,=0
&=pc?
Equation faf
E-2L+C)EP+L(L+2C)é-1°C= 0 (32)
has the solutions:
$=C, §,=4;,=L,

l,=n, (,,n)=0 (I,n)=0, (I,,1,)=0

 n,=0, nf+nj=1

- (A+N+L)E? +(AN+LA+LN)E-LAN =0 (33)
&=A &=L, & =N
[, =n, l,=e,, |,=(nxe,)

The most unusual property of the waves in aropat medium is that the energy is
transferred in the direction that does not coinewté the direction of of propagation.
It is difficult to understand for plane waves, lmain be illustrated on the example of
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the waves propagating from a point source. Surfatesnstant phase at two different
moments are shown below:

Vectork=n/c is the wave vector, ardis phase velocity. But the energy is transported
along the rayg=n’/u, whereu is group velocity. The group velocity and the diiac

of the energy transfer can be obtained using theoveof energy flux, which in
general case is expressed as follows.

As was shown above,
Wc=-Tu,
wherec=un’ is the velocity of the energy transport, whetis group velocity. Then
un' =—(T,u)/W (34)
From this relationship we can determine both greeipcity and direction of the
energy transport.
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3. Propagation of elastic waves in media with bouraties

3.1. Boundary conditions

If the medium contains a boundary or a discaniynat which seismic velocity is
changing, the waves reflect or refract, i.e. some nvaves are generated on the
boundary. These waves must fit theundary conditionsBoundary conditions relate
stresses and displacements at the boundaries.

At free surfaceall stresses applied to the surface (so-cdliactiong vanish, i.e. if
the unit normal to the surfa&s n, then {,n)s=0.

Boundary conditions at interfaces between twadsoiay be different. The most
usual condition is continuity of traction and degment:

Tn(l) = Tn(2)
u® =@ (35)

These conditions correspond to tiredded contact.

Another case is the so-callstiding contact This corresponds to the case, when the
media in contact are allowed to slide freely aldhg boundary. It means that the
tangential component of traction vanishes, whenmasnal components of both
traction and displacement are continuous. No &ins are placed on the tangential
component of displacement:

().
Tnn - Tnn

O = +@ =
Tnt - Tnt =0 (36)
u r21) —u r(12)

Such contact may be realized if a thin fluidelais placed between the media.

More general condition is the so-calledwelded contactThis includes (35) and
(36) as particular cases. This contact can beraliized as before: if a thin ‘elastic’
layer with vanishing rigidity { - 0) is placed between the two media. Depending on
the relation between the thickness of the ldyand the rigidityu the contact tends to
the welded or to sliding one. To derive the boupdamdition on such contact we
have to consider the conditions on both interfaxfabe layer, and then assuime 0O,

K- 0. The conditions at each interface are assum#tbas for the welded contact.

h 1

E 2

At the interfacel the conditions are as (35):

Ton = Ton
<oy
urgl) — ur(wfl)
u® =y

At the interface the displacements and tractions in the layer are
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(1)
F12 = 701 +6Tnn h . 9
nn nn an nn
ar'™
(f2) — ~(f1) nt (f1)
Ty W =1y + an h- Ty
(f2)
U2 =y +aun h (1)
n n an n
(f2)
' =0+ Sy e
on h-0

H-0
Eliminating the tractions and displacemeins the layer we obtain the
relationship between these quantities in the uppdrlower solids:

O =,
Z-nn - Z-nn

O =+
Tnt - Tnt (37)
u r21) -u rgz)

u® +mr® =y®

. [h
wherem=lim|\—|.
V7
h-0
H-0
If m=0 we obtain the welded contact, andif: « the contact is sliding.
Alternative conditions for unwelded contact nieeyderived if we assume the layer
between two solids as filled by a viscous fluid.

3.2. Incidence of a plane wave to a plane boundary

It is well known that if a plane wave is incidén a plane boundary, new waves
arise. The number of them depends on a type obdla@dary and on polarization of
the wave. In all cases we shall assume the bourtddog horizontal Z0), and the
waveform in the incident plane wave to be

F(t _ xsina zcosaj
C
so that the plane of incidenceyrsD0.
1. Free surface.
Scheme of the incident and reflected wavesasvaibelow.

> % ’X | »X

SV SV SV SH H
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To satisfy the boundary conditions we must assthe wave forms of the reflected
waves the same as for the incident wave F(g. Also the argument of the function
F should be the same at any potaf the boundary=0. This requirement leads to
the Snell’s law:

sina, _sina, _1
a b o
where the meaning afis an apparent velocity along the boundary.
If P or SV waves impinges to a free surface, displacements in the reflected P
and SV waves are expressed as

xsina, + zcosa

Up =Kk F(t— ®)(e, sina, +e, cosa,)

Xsina. + zcosa
Ug =k F(t- =

)(e, cosas —e,sinay)

wherekp andks are thereflection coefficientsThey are determined from a linear
system derived from the two boundary conditions

r,=0r1,=0 atz=0
The system may be written in the matrix notation:

i)
KS

where the matriA is following:
A= sin2a,  Jcosrg _a
-ycos2a, sin2ag | b

and the vectob depends on the incident wave.
If P wave is incident,

b= A,

b1 =-A,
If S wave is incident

b, = Ay,

bl =-A,
The reflection coefficients depend on the anglmaidence. The most interesting case
is when P wave reflected due to incidence of SVeAgecomes inhomogeneous. This

. . 1 . ,
case arises whersina, >~. In this casecosa, =+1-(ysinas)® becomes
4

imaginary, and the solution for P wave becomes d¢exnpn this case the reflection
coefficients for both P and S wave also become ¢texnp Polarization vector
n=e,sina, +e,cosa, for P wave also is complex. The amplitudesef t

coefficients fory = /3 are shown below.



20

257

2.0

1.5

SS

1.0
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At overcritical angles € >35°) the modulus of the SS coefficient remains egoal

1, but its phase changes, though the wave remains homogeneous.

If, as was defined abov#¢,77) and g(&,/7) are real and imaginary parts of the the
function of a complex variable({)=F(¢+i ) , then displacement in the reflected P
wave at overcritical angles is

Up (% 2) = Re{(/(l +iK,)(F(t —% ,é,/y2 sin? a, —1) +ig(t —% ,%,/y2 sin? a, —1))(e, ysina +ie,y? sin a, —1}

For harmonic wave

up(t,x,2) = Re{(/ﬂ +iK,)(cosfu(t —g) +isin[a(t _g)])(exySinas + iez\/yzsinz—as—l)}e_a:m)

Particle motion in P wave for different anglesmdidence is shown in the next figure.
The motion is elliptic, prograde (as a rolling balindz-axis of the ellipse increases
with the angle of incidence.

O

—_—

64°
Particle motion in
inhomogeneous
750 reflected SP-wave
8Q°

If P wave is incident, reflection coefficients ambvays real. The behavior of the
coefficients with the angle of incidence is shovetolw.
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0.0 ‘ ‘ 0
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2. Interface between two solids.

If P or SV is incident to the boundary, fourwsa arise: reflected P and SV, and
transmitted P and SV. In case of incidence of SHewanly two waves arises:
reflected and transmitted SH. Reflection and trassion coefficients are determined
from a system of linear equations resulting from bloundary conditions.

\S

_ 7 @

\\\\ /\\\ P

\ﬁ

o \\\ . B reflected/

incident > | transmitted

waves NS waves
// ///

P = 2
s s (2

The system of equations for P-SV reflectiondrarssion coefficients in case of
welded contact between the media (see the scheowe)aftas the following form:
0
()

S1 i
" |=b®,
X
0)
S2
where
- cosa; sing, -Cox, -sing,
sina, cos, -sina, co0s,
A= : :
ﬂS|n2a1 icos2,[>’1 &smmz - &cosz,[z’z
b, a, b,
- pa cos2p  pbsin2p  p,a,cos2p, p,b,sin24,
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and the vectob; in the right-hand side depends on the incident wiave formed by
thei-th column of the matri¥ according to the rulé’ =a; (-1)’ (i=1(2) if P(S)
wave is incident from the medium (1Li)=3(4) if P(S) wave is incident from the
medium 2); the angles and3 correspond to P and S waves.

As mentioned above, the boundary conditionshmwf different type, depending
on the physical properties of the boundary. Ihtefiesting to compare the coefficients

for unwelded contact for different values af.

It is convenient to choose a

dimensionlesparameter instead aif, e.g. M= cwmy, /b, , wheregs andb, are rigidity
and shear wave velocity in the medium where thiglemt wave propagates.

P-wave reflection coefficient

P-wave transmission coefficient

Vp=7.8, Vs=4.5

19 ;< Vp,=8.2, Vs=4.8

0.8
0.6;
0.4;
0.2;

0 i

angle of |nC|dence deg

7

—— ;
0-0 20 40 60 80
angle of incidence, deg.

S wave reflection coefficient

S-wave transmission coefficient

0.8 —

0.6 —

0.4 —

0.2~

0.8 -

I e
20 40 60 80
angle of incidence, deg.

20 40 60 80
angle of inciidence, deg.

The figure above shows the reflection/transmissimetficients as functions of the
angle of incidence for different values wf (remember tham =0 corresponds to the
welded contact, andh = « to the sliding contact).
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3.3. Head waves

If spherical wave is incident to a plane boundamyd a velocity of one of the
reflected/transmitted waves is larger then thathefincident wave, a so-calldéead
waveis formed on the boundary in addition to the traitiied and reflected waves. It
is easier to understand generation of the head m@ozeding from the concept of the
wave fronts.Let the disturbance in the source begin=, then the surface=r/c,
wherer is a distance from the source angs wave velocity, separate the perturbed
and unperturbed areas. This surface is called #we front.

Let the source be placed in the half-spgdie source radiates P-wave, aad a;.

At the boundary=0 transmitted and reflected P and S waves arise.ffbnt of the
reflected P wave is spherical, as of the incidesney and the fronts of all other waves
are spheroidal. While the front of the incidentvearosses the boundary under the

angle less than criticafsina <ﬁ), the wave fronts can be drawn as in the fig.a.
a'2

The fronts close in one point that the disturbam@ehes at a given moment. At the
moments, when the angle of incidence exceeds tieatone, the picture of the wave
fronts changes: the front of transmitted wave ksealway from this point and
propagates in the half-spa2along the boundary with larger velocity (fig.b).

a b
P, P
1 M A 1
1 \% ;1 x/ 1\ / ;1 N:%% 7
O
2 S, 2 S, N

Q

P,

In this case a part of the boundary between péirdad O turns to be disturbed. This
disturbance is radiated to the half-spdcen a form of so-called head waves with
conical fronts. The waveform of the head wayé)) is the integral of the waveform
of the incident wavef(t)):

W(t) =jf(r)dr W(t) =jf(r)dr

Amplitude of the head wave is determined by thenida:

r©+R

W(t-

|
-—)tana{
a

Pcrit
2
| 3/2 \/?

r Uhead = r
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where I is the coefficient of head wave generation thaexpressed in terms of
reflection/transmission coefficients in the poidtsand B. If the types of incident,

grazing and head waves are indicated by indit@sq then
Mo.=—K. K —'0 .
p,sin2a,

mn nm™ nq

3.4. Rayleigh waves

In a half space with free surface a specifictsoh may exists that is a superposition
of inhomogeneouplane P and S waves. If we look for a solution foran of a plane
wave, the plane of incidence beigg0Q (for simplicity we assume the dependence on
time to be harmonic) then, according to the genespresentation of the
inhomogeneous waves, we may write

ups(t,x,2) = A{—e —|e1I Jexp[a)(t—x/c)]ex;{ azwf ]
us(t,x,z):B[iewlb -1+— e]exp[a)(t—x/c)]ex;{ az‘/ J

Replacing these expressions to the boundary conditat the free surfacz0 we
obtain a linear system for the amplitudesndB of P and S waves. This system is
homogeneous, therefore if a non-zero solution gxisie determinant of the system
should be equal to zero. This is

e

Thus, the superposition of the waves (38) withand B satisfying the boundary
conditions (up to a constant multiplier) represemtave propagating alongaxis and
decaying exponentially along vertical directionisiRayleigh wave

Velocity of this wave along-axis varies

from 0.874 up to 0.956 for all possible values bfa (from 1 to 0). It does

V2

not depend on frequency.

w L,

kz
Motion in the Rayleigh wave is elliptic, regrade at the surface and at shallow
depths, but becomes to be prograde at large defitlestigure shows variation of the

vertical (v) and horizonta{u) components with depth.
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Ratio of horizontal and vertical amplitudes in Ragh waves at the surface is equal
4/1—(c/b)?
, Y1-(c/b)

4/1—-(c/a)?

this ratio varies from 0.786 to 0.541. Fda= 1 it is equal to 0.681.

V3

Rayleigh wave can be generated by a point sourchalf-space, because the
spherical wave radiated by such a source may besepted as a superposition of
both homogeneous and inhomogeneous plane waves.cBotains the waves with
the apparent velocity equal to the velocity of Ragh wave.

. It depends also only on the raba. Forb/a varying fromi to0

2

3.5. Lovewaves

Inhomogeneous SH wave cannot exist in haléspeth free surface, because it is
impossible to satisfy the boundary condition byyame wave — this can be done only
if its amplitude is equal to zero. But if we havéager with S wave velocity less than
in the underlying half-space, than the waves capagate along the boundary, and
the amplitude of the wave decays with depth inf-shce. These ateve waves

Love wave is formed by homogeneous waves witkive layer and by
inhomogeneous waves in the half-space. Thereferapparent velocity of Love wave

- . 1 _sinag _sina
should be within the limits b, <c<b,< because== = 2, and

c b b,
b,

1=sinag =2 —. These waves should satisfy the boundary conditianthe free
2

surface and at the interface.
Again we shall construct the solution as a supgtion of plane waves.
In the layer(homogeneous plane waves)

X 1 1 X 1 1
V, = Aexplaft——-z | ——-—)]+ Bexplao(t ——+ 2 | - ——
In the half-spacénhomogeneous waves)

X . 1 1
V, =Cexpllao(t——+iz | — ——

It should be noted that in this case polarizatiector is real (directed aloyeaxis),
because the real partly)(is orthogonal taz-axis. So, if we recall the relationship
between the components (16), we can see thg=6osso thatl,=0.

These waves should satisfy the boundary comditext the free surface and at the
interface.

At the free surfacez£0)

dv . 1 1
Ty SHh— = ",Ulww/g ‘?(A‘ B)expliaft —x/c)] =0

where fromA=B. So the solution in the layer may be written as

V, = 2Aco{az iz —iz]expﬁ aw(t —x/c)]
\/ b c
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At the interfacez=H

Vl(H) V(H) = 2ACO{CJ—| b—i—%]:Cexr{—aﬂ iz_i}
!

1§ (H) =12 (H) => -2Auw \/ﬁsu{aHF] \/jex{_m czl_b;]

It follows from these equations that

-
iR

This isdispersion equatioior Love wave velocity: unlike Rayleigh waves irhalf-
space the velocity depends on frequency.
It is easy to show analytically théif < c< b, (as concluded above from simple

physical consideration). In fact, only in this cds# and right sides of the dispersion
equation are real.

It is also easy to show that fogaven c there are infinite numbers of frequencies
satisfying the dispersion equation. In fact,

I\J‘l—\ I\U‘H

+km, k=123....

Also we can show that for amgyvenw there are finite number of The Eq. (39) may
be written as

f,(c,w) = f,(c )
A graph for the right-hand side is drawn by soaiiiet| And the graph of the left-hand

. 7l .
side behaves as tan - at the values of argunérenkn it tends tateo. But the rate of

change depends @n At the figure below the graphs for the left-hamdle are shown
for two different values ofw. It is clear that for smatb there is only one root, and the
number of roots increases with increasesof

|
|
|
|
|
|
|
I
|
|
|
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4. \Waves in anelastic media

4.1. Constitutive equations

Real solids are not perfectly elastic. Thisuises seismic processes (waves,
oscillations) to attenuate with time due to varienergy-loss mechanisms. The most
usual explanation of these mechanisms is internatidn between microscopic
particles of the material that leads to transforomabf mechanical energy to heat.

The simplest description of attenuation due tectibn’ can be developed for an
oscillating mass on a spring: this is a phenomeagicdd model for seismic
attenuation.

—VWN— m =
7

Let x be a deviation of the mass from the equilibriurine Torcef is friction opposing
the motion of the mass. Dendfea measure of the spring’s stiffness.
The motion of the mass is determined byetingation
mx—-F =0
If friction is absent, and oscillation results oflgm elastic force F=-kx, then

mX+kx=0,
and we obtain harmonic oscillation:
Xx=Asin( +¢), w=+K/m
However, if a friction exists between the movimgss and the underlying surface,
and this force is proportional to the velocity bétmass, so that the total force is

F =-kx- )X,
then the oscillation attenuate:
x =g Ag“

2
Where,B:L, a):\/Kw/l—ﬂ m
2m m K

Motion in a solid fits the equation

2°u

dZ

whereT is stress tensor. To solve this equation for amjiquéar case it is necessary
to express the stress in terms of displacemenitardkrivatives. In perfectly elastic

medium this relation is expressed by the Hookeis Ids shown above, in the case of
homogeneous isotropic medium the equation of maseaduced to the following

T = p
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2

Az’

(A+2u)0Odivu — protrotu = p

The solution is a non-attenuated wave.

In real media the relationship between stresk sirain is more complicated than
that corresponding to the Hooke’s law. Various prtips of realistic materials lead to
different relationships between stress and strasoyealledconstitutive equations, —
that describe behaviour of the material when asstie applied. A constitutive
equation defines aheological model

We consider the main rheological models useamhatysis of oscillations and waves
in solids.

Kelvin-Voight (viscoelastic) model. This model assumes existence of viscous
coupling between particles in addition to elastiorcés. Viscous forces are
proportional to the velocity of strain. The relatship between stress and strain is as
follows:

0%,

Ty = ME T 1] a
a6 Ok,
O =AO+2pE; +1' 5+ 217 5+

(6 =diwu)
This model can be represented by a simple mecHaaraogue: elastic element
(spring) and viscous element (a piston pressed wgoous fluid) connected in
parallel. If we apply a stress to such system atesonoment, the strain arises not
immediately, but increases gradually. The same drapf the stress is suddenly taken
away: the strain would vanish gradually.

The relationship between stress and strain mayriteewin another form:
r= /J(g +T, d—g)
- ¢ dt

The strain under constant stress relaxes:
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=g, (1-e"%)
T, is the relaxation time. For smdl} we obtain the Hooke's law.
Maxwell model. This model is a particular case of the so-cadliter-effect mode)sn

which the stress is assumed to relate not only thighstrain at the same moment, but
also with the history of strain behaviour at presdime:

Ty = HEy _]]¢(<()£ik (t-¢)dé (40)

0
¢() is the so-calledreeping functionVarious rheological models correspond to
various creeping function.

If ¢($) :Tﬁexp(—f IT,) (for pressure the Hooke's law is kept), we obthi&

T

Maxwell modelSubstituting this function to the formula (40) antkgrating by parts,
we obtain

dr 7  de
at T Hat
The constanT; is the relaxation time of stress under a consain:
T=r1,expi-t/T,)
The Maxwell model is valid only for shear strainher figure below shows the
mechanical analogue of the Maxwell model, as wellbahavior of strain under a

constant stress,

= t
ES % 777777

Standard linear solid. This model combines the both dissipation mechanismshat
the relationship between stress and strain isviatiQ:

r+Td—T— (£+Td—£
rat - H ¢ dt

Mechanical analogue of this model is shown below:
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I

In this model the strain is relaxed under a coristéess, and the stress is relaxed
under a constant strain.

4.2. Propagation of harmonic waves.

It is possible to derive the equation of motilo= form
d°u
LW =p
only in some particular cases of anelasticity r-efoample for viscoelastic medium.
But it is easy to study propagation of harmonic &awn any linear model.
Let us consider harmonic oscillation in variokisological models:
u=u(r)expliat)
Time dependence of strain is of the same form:
g =¢&(r)expliat)
For Kelvin-Voight model
r(r,t)=u@+iaT,)e(r)expiat) = u(1+iaT,)e(r,t)
ForMaxwell model
I+iaT )r(r,t) = haT &(r,t)

il ue(r,t
(1+iair,)
For standard linear solid:
B (1+iaT£)

Thus for all cases the relationship between stadsstrain is formally coincides with
the Hooke's law, but the elastic modules are coxalel depend on frequency. The
frequency dependence is different for different gledTherefore in analysis of wave
propagation of harmonic waves in anelastic medianag formally use the inferences
obtained for perfectly elastic medium.

Consider propagation of a plane harmonic wagagt-axis:

A(x,t) = Ajexplia(t —x/V)]
If the modules are complex, the wave velo®ityhould be also complex:

1 1 [

V V() V
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Then
A(x 1) = Abexp(—v—“{() explwt-x N @)]  (41)

This shows that the wave attenuates with distaaod, its velocity depends on
frequency:
V =V(«). Attenuation and dispersion are the main properted the waves
propagating in anelastic media.

Using the wave numbkme can represent the plane wave in the form

A(x,t) = A expli(wt- kx)]
where the wave numbek is complex: k =k —ik™, so that the attenuation is
determined by the exponential term ekp(}, K being the attenuation coefficient. It
depends on frequency.

Quality factor.  Instead of the attenuation coefficignt seismologists use the

characteristics called thguality factorQ. It is a measure of energy loss at a distance

A
k™= on where A is the wave length:

., AE  exp(2k x)- expF2K (x+ K')] . Kk’
1-_=== =1- — = 2—
Q = £ exp2K’ X) 1-exp2k™ /k)= 2 o

The largerQ,, the more proximate the medium to perfectly etaBecause

K'VT ., 7 L
, and consequentlk =-———. Thus, the term describing

k VT

_<n -1
=T then Q™ =

o i . . .
the attenuation |exp(—ﬁ). In inhomogeneous medium, where both velocity and

Q are functions of coordinates ité&r{—zjﬁj
’ T°QV) '

Now we show how the quality fact@ is expressed in terms of the real and
imaginary parts of the complex modules, and howelate it with the relaxation
times. Consider a shear wave. The complex veldsitgxpressed in terms of the
complex shear module as follows:

iz [ 2 _ \/E(l_ﬂ_J
prips N u\" 2u

2k’ 2v)™ ’
It follows from Q™" =—— that Q™ :% :#7. Knowing the expressions for

Kk

complex modules for different rheological modelsea® write the quality factor as a
function of frequency and relaxation times:

ForKelvin-Voight's model Q™" = «T,.
For Maxwell model Q=uaT,
-1 - w(Ts _Tr)

Forstandard linear solid  Q >
1+ T, T,



32

It seems tha@ should noticeably change with frequency. Howeveasnselogical
observations indicate th& does not practically depend on frequency over gelar
range of frequencies. This is because of a vaaietlyscale of attenuation processes in
real materials. The most general model is the stahtinear solid, for which the
frequency dependence @™ is as follows:

The peak inQ™" is known as Debye peak It corresponds to the frequency

1 _ _ i T 1)
, = and the value of Q™ at this frequency is equal e
° LT tﬂ T, TJ'

The superposition of numerous Debye peaks for uarrelaxation processes within
different frequency ranges, produces a broadgefiatlabsorption band
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5. Representation theorem in elastodynamics

Seismic waves originate from some perturbationghan medium caused by body
forces or displacement or traction at some surfadéthin a volume bounded by a
surface (that may be moved off to infinity) the wafield is determined by forces
acting within this volume, and by displacement andfaction at the surface. It is
analogous to the theorem in the potential theoryere for determination of the
potential it is sufficient to know the potentialddoar its normal derivative at a surface
bounding a volume and the sources within the voluhie expression for the wave
field in elastic medium is given by the so-callegresentation theorem@nalogous to
the Green’s theorem in the potential theory.

5.1 Body forces

First of all let us consider the equation of imotfor unbounded homogeneous
isotropic medium, in which a source is given byoaypforce in the right-hand side of

the equation:

0%u

ot?

(A +2)0divu — rotrotu = p

-f(x,t) (42)

Solution of this equation can be represented apearposition of different elementary
solutions. To construct the solution of (42) weaduce a solution of the equation, in
which the force is concentrated in a pdintirectedalongg-axis,and acts with time

as a pulsedt). Denote this solution as(x,&,t )it is the Green function for the

elastodynamic equation. It satisfies the equation
2

q
() +24)0divg? - urotrotg® = ,oaang - 5(x-E)a(t)e,
If the pulse originates at the moménrt, the solution igg?(x,&,t -7 )

The forcef(x,t) that enters to the right-hand side of (42) carrd@esented as a
superposition of the elementary sources, locatedifigrent points and arising at
different moments, and subsequently, the solutib4d) can be represented as a

superposition of the solutiorg’ (x,&,t -7 : )

u@,t) = Tdrﬂjz f,(x,1)g?(x, &t - 7)dQ, (43)

This is the expression for the wave field dueddybforce with density(x,t).

5.2. Boundary conditions; representation theorem

Now we consider a wave field in a volur@ebounded by a surface Given are
adisplacement/s (t) and tractionl, (t) atS The displacements (t) and the traction
Tn(t) cause a wave field withiQ. Body force with densityf (x,t) acts within this

volume The wave field i satisfies the equation
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2
OT-p ‘j_)tE =—f(x,1) (44)
As shown earlier, the Green functigif’ (x,&,t -7 is)a solution of the equation
9°
Ot - p at% = -5(x - §)d(t - 1)e, (45)

wheret%is the stress tensor corresponding to the Greestifum

Let T andV correspond to any two different solutions of (449 (natter, with or
without non-zero right-hand sidej, being a symmetric tensor. Then according to
Gauss formula we obtain

j div(TV)dQ = j (TV,n)dS (46)

For symmetric tenso(TV,n) =(T,,V) istrue . Then
j div(TV)dQ = j (T.,V)dS
Q S

Now we apply (46) to the following combination

[ (div(rou) - div(Tg") b = j (0, u)-(T,.9%) s

Q
The terms in the left-hand S|de may be transforased

div(TV) =(0,TV) =(OT,V) +(TO,V)
Denote
= [ (@, v) - @TuY)as
S
.= [(@0,u)-(TOuY)s
S
To transforml we replaceIt® u OT from the equations of motion:

j{p( S U) = (U,e)3(x = §)at = 1) = (g "U)+(fg)}d9—

=HUED.e)I-D+[ g [at -2 jmj(fg)dn

Now let us integrate thls expression ovefrom - to 40, and taking into account
that the Green function as well as its time deiavanish attoo, we obtain that the
integral is equal te- (U(x,,7),€,) .
Now we shall transforny I
(t",U)=r1 N, +7 N, +T N
Sy Yy s
A A A,
oz
A
oz

y y

yX d( + Tyy W + TYZ
oJ A

sz “+ sz “+ z-zz
2 &

T +

= AdivgdivU +§z Vil
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Because of symmetry of this expression in respeldtandg , we see thab =0.
So finally

(UGE7),80) = ot (T, (c1),0% (%6, & t = 1) = (13 (%6, &t = 7), U, 1) JdS+
™ S 47)

+ [dt] (F (x,)g° (x,&,t = 1)dQ
-0 Q

This is the epresentation theorem.

It is widely used in analysis of seismic sograad in the theory of diffracted

waves.

5.3. Green function for isotropic homogeneous medium

To apply the formulas (43) and (47) for determinthe wave field it is necessary to
know the Green tensog?(x,&,t . Jt should be noted that the Green tensor can be

determined in different ways, depending on the blamy conditions a&. In case of a

bounded volume it is convenient to assume eithgplaicement or traction equal to
zero atS, depending on which characteristics of the fieldglacement or traction) is
given atS In case of unbounded medium it is sufficient a&et into account the
radiation condition. In general case of the medithm Green function can be
determined only approximately, but in homogene@aaropic medium the exact
expression for the Green function exists. It careasily obtained from the Stokes’
formula for the wave field excited by a point fotoeated in the origin of coordinates
whose time function iX(t):

H R/b
u(x,t) = 1 {ZcosseeR+Sln36ee}er(t—r)dr+ cosf X(t-R/a)e, -
4| R R Rla 4rpa“R (48)
S'”f X(t-R/b)e,
4rpb°R

The Green functiong”(x,&,t s obtained from (48])f we replaceR = |x —E|,
cosd = (g,,€g) , and X(t)=at).

The first term in the right-hand side of (48) algs with distance more rapidly than
the last two ones, so usually, if the source isaf@ay from the point of observation, it
is sufficient to consider only the second and tieltterms.

5.4. Application of the representation theorem to analysis of
diffracted waves

In this section we shall consider a simple exannaw the representation theorem is
applied to the problems of diffraction of the wav&¥e shall analyze the waves
diffracted at sharp edges of boundaries. The sshpbeample is the case when a plane
wave impinges to an opaque bounde«®:
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The edgex=0 can be regarded as a source for diffracted waves.

It is evident that diffracted waves should depen frequency. Therefore we should
analyze harmonic waves. For harmonic waves we may the term depending on
time exp(tat), and analyze the solutiok(x), which depends only on spatial
coordinated. Analogously we eliminate such termmfrthe Green’s function that
would be now of the fornu“(x,€ )Representation theorem for this case is expressed

as

(U®).e,) = [[(T,(x5).0%(xs. &) - (13 (x5.8), U(xs)]dS  (49)

Now we shall consider the following problem. An gpe half-plane screen, which
does not transmit P-wave, is placed alapglane at—c <x,<-X, —co<y<oo,
A plane wave is incident normally to this planerggositive direction oz-axis. We
shall determine the wave field in the point M=0, z=H).

The incident wave is expressed as
U(x) = e, exp(kz)

where k=w/a. This is valid in the half-space<0. The stress at z=0 is
ou,

0z
z=0 is -z, therefore at the boundarylT, =-T,= (0,0, —ik(A+2u .))The
displacement a=0 isU=(0,0,1).

For this particular case formula (49) has tH®¥ang form:

U, M) = [ [[(T,.0%(xs,M)) - (2 (x5, M), U aixdly (50)
-X —o0
To use the formula (50) we have to determine @reen’s function and the
corresponding stress. Assuming the frequency tsulffeciently high (the wavelength

T,,=(A+2) =ik(A +2u)exptkz) . But the outward normal to the boundary
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much smaller than the distance from the ‘souMefo the boundary) we may keep
only the main term in the Green'’s function (decgyas 1R). Then the field of P wave
excited by a unit force placedMtand directed alongaxis is

1
ZS:
9=

explir)(e, €, )e, = ~— - expikr)e,
r

2

expﬁkr)H—2
r

1
ZS:
9, (9 pp—n

To calculater?, we take into account that for high frequencad(for largek) it is
sufficient to differentiate in respectitanly the exponential term. Then

H 3
Il = ik 5 exp@kr)(/]ﬂ+2/,1H—3J
4rpa“r r r
Substituting all these expressions to (50) we abtai

(—Ik(/] + 2,u)— —|k()lE +2U

Dexp(kr)CI dy

To estimate this integral we use the stationarysphmethod. The stationary point is
Xg = Y¢ =0. In this pointr=H. According to the stationary phase method we

represent the phase function as a series in tlr@tyiof the stationary point and keep
only terms of the second order. Then we obtain

r3

U,(M)=- Me p@kH)jexp(krwy /2)dyjexp@kr X2 12)dx =
4mpa’H
y (51)
__ ik [27H )
= exp@kH)_jxeprkx /2H)dx

: : 1
(It is taken into account that, =r,, _ﬁ)'

The integraljexpﬂkx2 /2H)dx can be expressed through the Fresnel integral
-X

F(2) :Jz'eprnt2 /2)dt

Texp@kaIZH)dx:\/i( (00) — F(_kXZ)J (52)

Substituting (52) to (51), and taking into accothdt F () = \/; , F(-2)=-F(2

we finally obtain
e—in/4

U,mM)= expakH)E+ 7 F(X/RF)}

where R. :1/% is the Fresnel radius. The modulus of this fumcti® shown

below.
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1/2
/

Thus, under the edg&<0) the amplitude of the transmitted wave is twaseless of
the amplitude of the incident wave. When the sciesemoved to the left{>0) the
amplitude increases and exceeds that of the incidawe. If the screen is moved to
the right, the amplitude decreases gradually to.zer

It is also possible to estimate a phase of ¢ked transmitted wave. The total field
may be represented as a superposition of ‘purestnitted wave and diffracted wave.
If the transmitted field is deducted from the totilld, we obtain a field of the
diffracted wave. It can be shown that a phaseisffave is approximately equal to
kR+774, whereR is a distance from the poiM to the edge of the screen. Thus the
edge of the screen may be regarded as a sourice diffracted wave.

o \
o

/

U=Ugit = Y=UinctUdiff

5.5. Application of the representation theorem to excitation of the
waves by seismic sources

A source of waves in the elastodynamic theony rhe described in two ways:
either by a body force in the right-hand side oé thquation of motion, or by
displacement / traction at a closed surface bogndirvolume where a solution is
looked for. In both cases we can construct a soiuising the representation theorem.

In case of body force in unbounded medium théaee integral in (47) vanishes,
because the ‘surface’ is moved to infinity, whene tvave field tends to zero. The
result is the same as in section 5.1 (formula (43)g Green function is given in 5.2.
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If the source is a movement of the fault edges @ rupture along the fault, the
medium is bounded by two surfaces — d8gié at the infinity, and the other consists
of two edges of the fault at which the tractionegual to zero, and the relative
displacement of the edgéxt) is assumed to be known. To obtain the wavel fikle
to such a source we may apply the representat@ordin (47), in which the volume
integral is zero,S=%, +%_, in the integrand of the surface integig] = afd

relative displacement of the edges of the faudgisal toU; -U; .

S

This approach is valid for faults of different sideis well known that a far field
generated by a slip along the fault is the samgeagrated by double couple point
force. If the distance from the fault is compaweith the fault size, formula (47)
allows a near field to be calculated.



