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One of the key variables involved in the understanding of deformation processes of 
the crust is stress. Because stresses are an essential boundary condition to many an 
applied engineering problem, be it mining, civil or petroleum, most techniques for 
determining stresses at depth have involved measurements in boreholes. But deformation 
processes in the crust involve depths that are generally not accessible to boreholes. 
Hence, methods based on remote observations are being developed for determining the 
stress field at depths greater than a few kilometers. Presently two methods are being used 
routinely, the analysis of shear wave polarization (shear wave splitting analysis) and the 
inversion of double couple focal mechanisms. 

This presentation first recalls some elementary principles for rock mass stability 
analysis. Then two methods of fault plane solution inversions are presented. Examples 
where they have been applied are discussed. They help precise conditions that must be 
satisfied for the methods to be valid.  
 
1. Some Elementary Rock Mechanics Principles  
 
 (Typing convention: bold letters are vectors, bold italic letters are tensors) 
 
1.1 The stress vector and the Mohr representation 
 

The stress vector is defined by: 
 
 t = σ n,  (1) 
 

 t is the stress vector acting on a surface element S, with normal n and unit area, on which 
exists at all points the stress tensor σ. In this expression, the unit area is assumed to be 
small as compared to distances for which stress variations are significant so that stress 
gradients may be neglected. Hence, all components of the stress tensor are constant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The stress vector has a normal component, (called the normal stress (scalar)) : 
 
 σn = σ n . n (2) 
 
and a shear component (vector): 
 
 τ = σ n – (σ n . n ) n (3) 
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The stress tensor σ is symmetrical when there exists no moment in any small volume 
of the body under consideration. Hence it is characterized by six components, i.e. σij , 
with i, j = 1,2,3, the components in any frame of reference, or its eigen values ( σ1 , σ2 , 
σ3 , with the classical convention σ3 < σ2 < σ1  ) and its eigen vectors e1, e2, e3 . The eigen 
vectors are defined by three independent angles, called the Euler angles, namely ψ , ϕ 
and θ. ψ and ϕ correspond to the azimuth and dip of e1  in the frame of reference (defined 
by the unit vectors I1, I2, I3 , which may be the geographical frame of reference so that 
North is I1, East is I2 , and I3 is vertical positive downward). Once the frame of reference 
has been rotated so that I1 becomes e1 and I2 becomes I2’ ,  θ  is the rotation about e1  
which brings I2’ parallel to  e2 . 

 
 
 
 
 
 
 
 
 
 
 
 
 
For n  parallel to any eigen vector, τ = 0 . Given that  σn  and ⏐τ ⏐ vary with the 

orientation of n, the set of all couples of values σn  and ⏐τ ⏐ corresponds to the area 
limited by the three Mohr circles as shown on figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 : The Mohr Circles. Each circle corresponds to the set of values for σn  and ⏐τ ⏐ 
when n is perpendicular to either e1, e2 or e3. 

 
When n is perpendicular to e2 , the values for  σn  and ⏐τ ⏐ are : 

 
 σn = (σ1 + σ3 ) / 2  +  [(σ1 -  σ3 ) / 2 ] cos ( 2 β) (4) 
 
 ⏐τ ⏐ = [(σ1 -  σ3 ) / 2]  sin ( 2 β) (5) 
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where β is the angle between the normal n  and e1  (see figure 1) 

 
The rock mass is globally in equilibrium (i.e. in between slip events, whether seismic 

or aseismic), so that the stress components must satisfy the equilibrium equation: 
  
 σij,i  +  ρ bj  = 0 ; i, j = 1,3 (6) 
 

with b = - gδj3 Ij, the gravity, and ρ the rock density. Typically, for rocks, the vertical 
component of the vertical stress gradient is of the order of 2 to 3 mPa per 100 meters. 
 
The concept of Elementary Representative Volume for the definition of Stress in 
geomechanics. 

 
The Elementary Representative Volume must be small enough for the stress gradient 

to be neglected so that forces on opposed faces are equal in magnitude. 
 

1.2 Griffith Fracture criterion and Irwin’s basic fracture modes 
 

Fracture always corresponds to the extension of a pre-existing surface of discontinuity 
in a material called a microcrack. This extension implies the formation of a surface 
increment that requires a quantity of energy, called surface energy, proportional to the 
area of the newly created surface (Griffith, 1921). The extension ds (ds = n da, where n is 
the unit normal to the surface ds of area da) of a fracture with surface s, implies an 
increment of surface energy for the rock ∆D (ds) such that : 
 
 ∆D (ds) = 2 γ da, (7) 
 
γ is the surface energy of the material per unit area. The quantity 2 in equation (7) reflects 
the fact that the surface increment ds exhibits two sides, each with an area da. 
 
During fracturing, conservation of energy implies (when neglecting thermal effects): 
 
 ∆W(ds) = ∆E(ds) + ∆T(ds) + ∆D(ds) (8) 
 
Where ∆W(ds), ∆E(ds) and ∆T(ds), are respectively the work of external forces , the 
change in elastic energy and the change in Kinetic energy during the formation of ds. 
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Before crack extension, the body is assumed to be at rest so that there is no kinetic energy 
and the criterion for fracture e initiation is :  
 ∆W(ds) - ∆E(ds) = ∆D(ds) (9) 
 
One defines the quantity [ ] dadsEdsWG

da
 ∆−∆=

→
)()(lim

0
 as the Strain Energy Release 

Rate.  
Evaluating G is an elasticity problem. Fracture occurs when G reaches the critical 

value 2 γ. If it increases with fracture propagation, the fracturing process is unstable, 
while if it decreases, the fracturing process is stable and work must be supplied to the 
system in order to extend further the fracture. When G remains constant during fracture 
propagation, the fracturing is called quasistatic. A typical example of quasistatic fracture 
propagation is hydraulic fracturing, as discussed here after. 
 

Because the variation in elastic energy ∆E(ds) is entirely dominated by stress 
concentration close to the fracture tip, it can be evaluated by analyzing the stress field 
only close to this fracture tip. For this purpose, Irwin (1958) defines a local frame of 
reference for analyzing the surface discontinuity ds (see fig.). The 1 axis is in the plane of 
the fracture and is normal to the fracture front. The 2 axis is also in the fracture plane but 
is parallel to the fracture tip. The 3 axis is normal to both previous axes and therefore is 
normal to the fracture plane. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Within this local frame of reference, Irwin defines three basic modes of failure. 
Mode 1, in which ds has zero components along the 1 and 2 axis. It corresponds to a pure 
tension. Mode 2 has zero components along axes 2 and 3 and is called in plane shear. 
Mode 3 has zero components along axis 1 and 3 and is anti plane shear. 
 
1.3 Principle of hydraulic fracturing 

Hydraulic fracturing occurs when the fluid pressure that is applied in a cavity, 
whether a borehole, a magmatic chamber or the pore space of rock, exceeds the tensile 
strength of the rock. Hydraulic fractures are “mode 1” fractures and it can be shown from 
the principal of minimum potential energy that they develop normal to the minimum 
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principal stress direction. We describe as an example the development of hydraulic 
fracturing in a vertical borehole. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The stress field at distance ρ from the borehole axis, expressed in cylindrical coordinates 
as a function of the far field stress state is : 

 
( )( ) ( ) ( )[ ]θσθσσρρσσρσ ρρ 2sin2cos2/1/3/412//1 122211

4422
2211

22 +−+−++−= rrr

 ( )( ) ( ) ( )[ ]θσθσσρσσρσ θθ 2sin2cos2/1/312//1 122211
44

2211
22 +−+−++= rr  

( ) ( )[ ]θσθσσρνσσ 2sin2cos2/1/4 122211
22

33 +−−= rzz  (10) 
( )( )θσθσρσ θ sincos/1 3123

22 −+= rz  
( )( )θσθσρσ

ρ
sincos/1 3231

22 +−= r
z

 

( ) ( )[ ]θσθσσρρσ
θρ

2cos2sin2/1/3/21 121122
4422 +−−+= rr  

  
Given that the borehole pressure Pw generates a tensile stress σθθ = -Pw at the borehole 
wall, the pressure required to induce a hydraulic fracture is : 
 
 σθθ = - σH + 3 σh -Pw + σT (11) 
 
Where, σH  and σh are respectively the far field maximum and minimum horizontal 
principal stress components and σT  is the rock tensile strength. 
 
From equation (10) it ma be observed that the tangential stress component reaches its 
maximum value at the angular coordinate π/2 from the direction of the hydraulic 
initiation. This is further discussed in field examples described in the later part of the 
lecture.  
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1.4. Stress failure in rock masses under compressive stress fields 
A rock mass involves both, intact rock volumes and preexisting fractures and faults. 

Hence failure criteria must address both the failure of intact rocks and that of preexisting 
weakness planes.  
 
1.4.1 Criteria of failure for intact rocks  

Once the minimum principal stress gets larger than 2 to 5 mPa, failure in 
compression involves the formation of macroscopic shear zones. Various stress criteria 
have been proposed to characterize the stress condition that must be met for these shear 
zones to appear. 

 
The Tresca criterion. 

 
 (σ1 - σ3 ) =  K (12) 
 
The Tresca criterion assumes that failure occurs when the maximum differential 

stress in the material reaches a critical value, which is independent of the minimum 
principal stress magnitude. Note (see the Mohr representation on figure 2) that this 
assumes that the corresponding shear zone is inclined 45 o to the maximum stress 
orientation. Laboratory work has shown that for rock, this is valid only for very soft 
material like clay or salt, or for stress and temperature conditions which, for most rocks, 
correspond to depths greater than 20 km. It is not valid for seismicity observed in the 
upper 10 to 15 km. 

 
The Coulomb criterion and the Mohr envelope 

 
 ⏐τ ⏐ = µ σn  +  C0 (13) 
 

µ is called the internal friction angle and  C0  is called the cohesion. This criterion has 
been found to be valid for limited stress domains.  For large stress domains the so-called 
friction angle decreases as the minimum principal stress increases. It gets close to 0 when 
both the minimum principal stress and the temperature gets large so that the criterion of 
failure gets close to the Tresca criterion (see figure 2). Hence the failure criterion is not 
represented by the simple linear law proposed by Coulomb but may be approached by a 
parameterization of the so-called Mohr envelope. This envelope corresponds to the set of 
values for  ⏐τ ⏐  and  σn  for which failure occurs. It is often assumed to be independent 
of the intermediate principal stress magnitude, so that failure surfaces are assumed to be 
parallel to the intermediate principal stress direction. However recent laboratory work, in 
particular by Haimson et al.(1997), has shown this not always to be valid. This will not 
be discussed further here for it has no incidence for our discussion 

 
The effective stress principle 

 
When the rock mass is saturated with a fluid under pressure, experiments show that, 

under compressive conditions, failure is controlled by so-called effective stresses rather 
than by total stresses. The effective stress tensor  σ’  is defined as : 

 
 σ’  =  σ  -  P I (14) 
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where I is the unit tensor and P is pore pressure. Note that, on the Mohr diagram, 
subtracting P to all diagonal terms of the stress tensor matrix corresponds to shifting all 
Mohr circles to the left, leaving unchanged their radius. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
1.4.2. Failure along preexisting weakness planes 
 
It is generally accepted that failure along preexisting planes is well represented by 
Coulomb’s friction law, expressed in terms of effective stresses : 
 
 ⏐τ ⏐ = µ (σn – P)  +  C0 (15) 
 

Byerlee (1978) has shown that for most rocks the friction coefficient ranges from 0.6 
to 0.9. For wet rocks, most field data point out to values for the friction coefficient 
ranging from 0.6 to 0.8 and negligible cohesion, so that the failure along preexisting 
weakness planes at depths greater than a few hundred meters is well represented by 
Byerlee’s law : 

 
 ⏐τ ⏐ = µ (σn – P);  0.6≤ µ ≤  0.8 (16) 
 
It may be noted that ⏐τ ⏐ and σn are computed for the corresponding weakness 

plane. Hence, it is possible for the Mohr circles to intersect the line which corresponds to 
Byerlee’s law and yet to observe stability. This is possible if there is no preexisting plane 
in the critical orientation domain. However, it has been argued that fractured rock masses 
have a long enough tectonic history that there always exists a plane with critical 
orientation. Hence it is often considered that the Mohr circle representing the stress at any 
point in the rock mass is at most tangent to the straight line which corresponds to 
Byerlee’s law.  

Let us observe that, because sliding depends on effective stresses, planes with a great 
variety of orientations may slip if the local pore pressure becomes large enough, as 
pointed out by McKenzie (1969). 

The equilibrium of rock masses is classically analyzed with a Mohr diagram as 
shown on figure 2. Note that failure along preexisting weakness planes is the controlling 
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phenomenon in most cases. An important difference between the development of new 
shear zones and the slipping along preexisting weakness planes, is that the orientation of 
new shear planes may be determined from the principal stress directions, if the 
corresponding internal friction coefficient is known (the Mohr circle at rupture is tangent 
to he Mohr envelope), but this is not true for preexisting weakness planes, given the role 
of pore pressure. 

 
Because pore pressure is unknown, tt is concluded that seismicity occurring in 

the upper 15 to 20 km of the crust involves fracture planes that make an unknown 
angle with respect to the principal stress directions.  

 
In the above discussion, the friction angle and the cohesion are isotropic so that, if 

slip occurs, it will occur in the direction of the resolved shear stress (τ ) in the plane 
(Bott, 1959). But this direction of resolved shear stress depends on the relative orientation 
of the slip plane with respect to the principal directions as well as on the relative 
magnitude of principal stress components. This is the basic principle underlying stress 
determinations from a collection of fault planes solutions. 

 
2. Inversion of double couple focal mechanisms for stress determination 
 
2.1 data produced by Fault plane solutions 
 

Focal mechanisms of pure shear faults (pure double couples, no significant 
dilatancy), yield for both nodal planes the dip and azimuth of the plane (d and a) as well 
as the slip direction in the plane (rake angle r of slip vector s) when it corresponds to the 
fault plane. 

 
 
 
 
 
 
 
 
 
 
 
 
As may be observed in figure 2, during a fluid injection, the pore pressure rises may 

induce some seismic activity. Preexisting fracture planes that were at equilibrium before 
the fluid injection may get unstable if the corresponding effective normal stress is 
lowered enough that the shear stress supported by the plane becomes larger or equal to 
the shear strength supported by the plane (taken generally equal to friction). Hereafter are 
typical focal mechanisms observed during a large scale fluid injection.. Because the 
monitoring seismic network exhibits a limited number of stations, many a nodal plane is 
ill defined. 
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For many of the focal mechanisms;  it is impossible to identify which of the two 

nodal planes is the actual fault plane, if only the polarity of P waves is considered. The 
method proposed by Zollo and Bernard (1989, 1991) for determining focal plane 
solutions conducts an exhaustive search of all possible solutions and each solution is 
associated with a probability. Hence solutions with 60 %, 90 % and 99 % confidence 
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levels are determined. These confidence level domains are used then to determine the 
corresponding uncertainty associated with the various angles determination.  

Note that when enough three components stations are being used, the radiation 
pattern for S waves help identify the fault plane. In the following, it is considered that the 
fault plane has not been identified so that both nodal planes are equally likely to be the 
fault plane. Hence for each focal mechanism, 

 
 a set of 12 values is identified : (a1, d1, r1, εa1, εd1, εr1 , a2, d2, r2, εa2, εd2 , εr2).  
 
It is customary to identify P and T axis with focal mechanisms. These are inclined 

45o with respect to the nodal planes. It has been proposed sometimes to associate these 
axes respectively with the maximum and minimum principal stress direction. It should be 
noted here that, only when failure occurs according to the Tresca failure criterion (i.e. for 
very deep earthquakes) is this proposition valid. Hence this proposition is erroneous for 
most seismic events of the upper crust since either these correspond to the reactivation of 
preexisting weakness planes, or the newly formed shear zones are inclined by less than 
45o with respect to the maximum principal stress orientation. 

 
2.2 Determination of the regional stress field from focal mechanisms  
 
Gephart and Forsyth’s approximate method 
 

The method (Gephart and Forsyth, 1984) is based on the following assumptions : 
 

1. Slip occurs parallel to the direction of the resolved shear stress; 
 
2. All seismic events are distant enough from each other that the stress 

perturbation induced by each event does not alter the stress field for other 
events; 

 
3. The original stress field is uniform within the volume sampled by the various 

events. 
 
Validity of hypothesis 1 implies that the shear strength in all planes is isotropic while 

hypothesis 3 implies that events are not too distant from each other so that stress 
gradients may be neglected. This has implication for the depth ranges of events 
considered for a single inversion. 

Because focal mechanisms yield only the direction (and sense) of slip and not the 
magnitude, the stress tensor cannot be fully determined.  

 
Only four parameters are determined : the three Euler angles and an aspect ratio R 

defined as : 
 
 R = (σ2 -  σ1 ) / (σ3 -  σ1 ) (12) 
 

So that 0 ≤ R ≤ 1 . Indeed, the stress at any point may be rewritten : 
 
 σ  = σ1  I + (σ3 -  σ1 ) T  (13) 
 
with : 
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so that T is characterized by 4 parameters (ψ , ϕ , θ , R ). Note that ψ ranges from 0 to 
360 o, while the range for ϕ is 90o  and that for  θ  is 180o. Hence, the complete set of 
solutions for T is fairly limited and it can be fully explored with a grid search method. 
The solution is that which fits best the collection of focal mechanisms. 
 

Let us determine now the condition for T to be consistent with a given focal 
mechanism, i.e. the tensor T for which the resolved shear stress τ0 on a fault plane is 
parallel to the observed slip vector s. First it will be noted that  τ0 . s > 0 . 

We consider now two frames of reference : the first one ( Q ) is associated with the 
eigen vectors of T. The second one ( Q’ ) is associated with the fault plane ( n , s ∧ n , s ). 

Let β be the orthogonal tensor which rotates Q to Q’. It may be observed that in Q’, 
the stress component σ’12 is null. Hence, given the definition of Q, we obtain : 

 
 σ’12 = σ1 β11 β21 +  σ2 β12 β22  + σ3 β13 β23  = 0 (14) 
 
so that  
 R = (σ2 -  σ1 ) / (σ3 -  σ1 ) = - β13 β23  /  β12 β22    (15) 
 
For a given fault plane defined by the triplet (a, d, r ), and given a tensor T with Euler 

angles ψ , ϕ , θ, there is a unique value of R which fits the direction of slip in the 
corresponding plane. This is taken to advantage for identifying both the best solution Ts 
for the given set of focal mechanisms and its domains of confidence level. 

The idea is to explore the set of all possible solutions and to identify 
that which fits best observations, namely the tensor, which yields 
resolved shear stress directions closest to observed slip vector directions.  

 
The problem is three folds : 

1. Identify for each focal mechanism which nodal plane is the fault plane; 
2. For all focal mechanisms define a measure of their misfit with a given tensor T. 
3. Identify the best solution and associated confidence level domains. 

 
The measure of misfit and the identification of fault planes 
 

It has been proposed sometimes to characterize the misfit between a given fault plane 
and a given tensor T by the angle between the shear stress resolved on that plane and the 
observed slip vector. But this assumes that the fault plane is known exactly while in 
reality this is not the case as mentioned here above. Gephart and Forsyth (1984) proposed 
to consider as measure of misfit, for any given plane, the smallest rotation which brings s 
parallel to the resolved shear stress in the plane ( τ ). They observe that this misfit is a 
well behaved function so that it suffices to consider only three rotations axis, namely  n,  
s ∧ n and  s. 

The rotation angles are computed according to equation (15) once Q’ has been 
replaced by the frame of reference Q” that corresponds to the rotated Q’ : 
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  Q” = A(i) Q’ (16) 
 

where A(i) is the orthogonal tensor corresponding to rotations about  n,  s ∧ n or  s  . The 
angles of rotation are given here below : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For any given T and any focal mechanism six rotation angles are computed : 3 for the 

first nodal plane and 3 for the second nodal plane. The nodal plane which yields the 
smallest rotation is chosen as fault plane and the measure of misfit for the corresponding 
plane is the smallest rotation. Hence, the misfit value associated to any given T(i) ,  is the 
sum of the misfit measures for all focal mechanisms. It is given by : 

 

 )6,1,min(
1

== ∑
=

lxm
N

k

l
ki  (17) 

where  xk
l  is the lth rotation for focal plane solution k, 1≤ k ≤ N, for N focal mechanisms. 

 
The solution is the tensor for which mi is minimum. The corresponding value for the 

misfit is noted mmin. Here, the L1 norm has been chosen rather than a least squares norm. 
Indeed, the choice of the nodal plane as fault plane is either right or wrong so that the 
error associated with the rotation angle determination does not obey a Gaussian law. 

It has been proposed (Julien and Cornet, 1987) to introduce weight factors in the misfit 
function by dividing the minimum rotation angle by the uncertainty on the orientation of 
the nodal plane as defined by the focal mechanism determination. Also, when the rotation 
angle is larger than the solid angle that corresponds to the 90 % confidence level for the 
fault plane orientation, the focal mechanism is considered to be heterogeneous with the 
corresponding tensor. Then the quality of the solution is defined not only by the misfit 
value but also by the number of inconsistent data. Indeed, it may be argued that a solution 
which requires very small rotation angles but is heterogeneous with more than 50 % of 
the data is not satisfactory.  
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Let m50 and m90 be the values for the bounds of the misfit function which characterize 
respectively the 50 % and the 90 % confidence levels. For the L1 norm, Parker and 
McNutt (1980) have showed that these bounds may be defined with respect to the best 
solution as : 

 
 m90 = { [1.645(π/2-1)1/2 N1/2   + N ] / (N-k)} mmin (18) 
 
and 
 m50 = { [0.676(π/2-1)1/2 N1/2   + N ] / (N-k)} mmin (19) 
 

where k is the number of parameters in the model (here k= 4) and N is the total number 
of focal mechanisms. 

Hence, all solutions for which the misfit mi is found to be smaller than either m50 or 
m90 are plotted on a stereo net. The contour plot of these solutions identifies the 50 and 
90 % confidence levels. 

Once the approximate solution and its associated confidence levels are known, fault 
planes have been identified for each focal mechanism. Cornet and Julien (1987) have 
proposed a method based on a least squares method for identifying the best solution, once 
the approximate solution is known. However, experience has shown that this refining of 
the solution is not necessary for the solution remains within the 50 % confidence level 
domain. It suffices to run the approximate method with a finer grid restricted to the 90 % 
confidence level domain. 

 
Stress determination in large volumes 
 

When inverting for tensor T, it is assumed that the stress is uniform throughout the 
volume sampled by the various focal mechanisms. But, if only because of gravity, it is 
known that the stresses vary with depth and possibly also laterally. Hence the question 
arises as to the validity of this hypothesis.  

Interestingly, most stress field measurements have shown that the stress varies linearly 
with depth. Further, as shown by Mc Garr (1980), when there is no lateral stress 
variation, the vertical direction is principal. Hence, in many a situation, the stress field 
may be written : 

 
 σ(x3) = σ(xc) + (x3 – x3c) α (20) 
 

where σ(x3)  is the stress at depth x3, σ(xc) is the stress at the reference depth xc (6 
independent components) and  α is the vertical stress gradient (six independent 
components which reduce to 4 independent components, namely the three eigen values 
and the orientation of one of the horizontal eigen vectors, when there is no lateral stress 
variation).  
 

Equation (20) has revealed very useful for interpreting direct stress measurements in 
boreholes. Indeed, it is usually found that close to ground surface many perturbations of 
the stress field exist which nay be lumped as a fixed term for a given depth interval. But, 
as depth gets larger, the gradient term becomes more significant so that, when depth gets 
greater than 1 km, it may be considered that the vertical stress gradient dominates the 
stress field and that the constant term may be neglected. When this is the case, then the 
stress field can again be simplified so as to be characterized by only four parameters, 
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namely the three Euler angles and the R aspect ratio. However, now, R describes the 
aspect ratio of the vertical stress gradient and not the complete stress tensor at depth z ; 

 
 R = (α2 -  α1 ) / (α3 -  α1 ) (21) 
 
Given that usually the rock mass density α3, is rather well known, the determination 

of the ratio R provides constraints on the relative variations of both horizontal stress 
components when there is no lateral stress variation.  

This observation opens the door now to a possibility of extrapolating borehole stress 
determinations, which are usually conducted in the upper kilometer of the crust, down to 
depths of natural microseismic activity. This is possible provided the stress gradient is 
continuous and stable for the complete depth interval. Hence the mapping of the complete 
stress field at the scale of the crust may become realistic, when combining borehole data 
and focal mechanisms of natural seismicity. 

 
3. Other methods for stress determination at great depth : Borehole breakouts,  
drilling induced fractures, Hydraulic Fracturing and HTPF 
 

• Tangential stress at the borehole 
wall

σθθ = (σh + σH ) – 2 ( σH – σh ) cos 2θ -
Pb –
f(P0) - αE∆θ / (1-ν) - 3/8 ∆αE/(1-ν) ∆θ

Where ∆α is the mismatch between 
thermal expansion coefficients 
(solution for square inclusion in an 
homogeneous matrix)

• Time dependency of cooling : 
– Slow cooling yields borehole 

elongation (thermal breakouts), 
– fast cooling yields macroscopic 

thermal cracking

 
 
 
Breakouts and tensile 
induced fractures are well 
detected with borehole 
imaging tools such as the  
Ultrasonic borehole imager 
or the Electrical Formation 
Imager. 
 
 
 
 
 
 
 
 
 
 

Ultrasonic imaging (UBI)
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Hydraulic Fracturing (HF). When the borehole is parallel to a principal stress direction 
(vertical borehole in a rock mass in which the vertical direction is a principal stress 
direction), the Hydraulic Fracturing method discussed in section 1.3 yields a very reliable 
method for measuring the in situ stress field. Indeed, because the fracture is normal to the 
horizontal minimum principal stress direction, identification of its image, at the wellbore 
provides a direct measurement of the Maximum Horizontal principal stress direction. 
Analysis of the breakdown pressure yields a first relationship between the horizontal 
principal stress magnitudes and the rock tensile strength (supposed to be known from 
laboratory tests). After propagating the fracture outside the domain of influence of the 
well bore, the normal stress acting onto the fracture is the natural minimum principal 
stress Hence, when pumping is stopped, the fracture stops propagating till the fluid 
pressure, inside the fracture, is equal to the normal stress acting on the fracture, i.e. the 
minimum principal stress magnitude.  This is called the shut in pressure and is taken as 
equal to the minimum principal stress magnitude. Thereafter, the maximum principal 
stress magnitude may be derived from the breakdown pressure equation. 
 
HTPF method; the Hydraulic Tests on Preexisting Fractures (HTPF)  method is 
somewhat similar to Hydraulic Fracturing, except that the injection flow rate is adjusted 
so as to reopen preexisting fractures that have been identified before hand by an electrical 
borehole imaging technique. Electrical imaging is chosen rather than acoustic imaging for 
it yields some qualitative information on the hydraulic conductivity of the fracture. 
Analysing relationship between injected flow rate and borehole pressure provides means 
to identify the pressure required to just open the fracture, i.e. the pressure value that is 
just equal o the normal stress acting onto the fracture. In principle, when fractures with at 
least six different orientations are tested, the relationships provided by equation (2) are 
inverted for getting all six stress components.  In practice , generally only two or 
thressmain fracture orientations are observed and inversion is conducted with the 
additional hypothesis that the vertical direction is principle.. 
 
Typical hydraulic fracture records, for the HTPF method. 
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