

H4.SMR/1775-21

"8th Workshop on Three-Dimensional Modelling of Seismic Waves Generation, Propagation and their Inversion"

25 September - 7 October 2006

Focal mechanisms from fluid induced seismicity

F. H. Cornet

Institute de Physique du Globe de Paris France

Focal mechanisms from fluid induced seismicity

The borehole site configuration

Stress field determination from hydraulic testing

Location of induced microseismicity

Observed focal mechanisms

Joint inversion of focal mechanisms and hydraulic tests

Definition of the Problem

For all focal plane solutions , the resolved shear stress on fault plane (τ) is assumed parallel to the unit slip vector (s) : s. $\tau/|\tau| = 1$

HTPF data provides direct measurement of normal stress σ_n supported by pre-existing fractures of known orientation **n** : $\sigma_n = \sigma(x) \mathbf{n.n}$

Find stress field σ (x) which varies linearly with depth and which fits best both sets of data ;

 $\sigma(\mathbf{x}) = \mathbf{S} + \mathbf{z}\alpha$

S defined by 6 components, α defined by 4 components.

Integrated inversion

Using induced seismic events as pressure gauges

Coulomb's friction law: $\tau = \mu (\sigma_n - \alpha P) + C$ P=Po+dP, C#0 α = pore pressure coefficient P=pore pressure, Po=hydrostatic pressure, dP = overpressure increment $dP = \frac{\sigma n - \alpha P^{o} [1 - \frac{\tau}{\mu (\sigma_{n} - \alpha P^{o})}]$

Calibrating the friction law parameters

Calibrating the friction law parameters

Mapping the pore pressure

A simple explanation

Flow through two parallel plates :

$$Q = \frac{e^3 w}{12m} \frac{dP}{dl}$$

Q	 flow rate
е	 hydraulic aperture
W	 fracture width
dP/dl	 pressure gradient
m	 fluid viscosity

Identifying flow zones from spinner logs

Conclusions from le Mayet de Montagne borehole tests

- Existence of stress heterogeneity, especially where flow occurs;
- Need to combine focal plane solutions with other data
- Induced seismicity maps high pore pressure, not high flow rate;
- All porous fracture zones may not be significant at the pluri hectometric scale

Philippine Fault on Leyte island

Tongonan geothermal field

- GPS measurement 91-94-95
- 3.5 cm/y of creeping displacement

Seismicity

Displacement along the fault at Tongonan

• Branches of Philippine Fault

2.4 cm/y of creep displacement

Injection experiment (1)

Injection experiment (2)

Injection experiment (3)

Summary of the observations:

- Water injected at the bottom of the well
- Well head pressure: up to 9 MPa
- Increase of microseismicity
- Injected volume: 36 000 m3 (Other wells: 327 000 m3)

Seismicity acquisition

• Feb. – Aug. 96 (Period 1) and Nov. – May 97 (Period 3): 7 stations

• Oct. – Nov. 96 (Period 2) and Jun. – Jul. 97 (Period 4): 18 stations (Four 3-C)

Tomographic inversion (1)

- Simultaneous determination of relocation and velocity model (Thurber, 1983)
- P and S traveltimes, 3-D grid with linear interpolation
- Iterative least squares inversion

Period 2: 141 ev. (1743 P, 1394 S) Period 4: 292 ev. (3939 P, 1352 S) Grille Tomographie 11' 30' 11' 00' 10 20/ 125 00 124' 30'

Induced microseismicity locations

Seismicity relocations Period 1+3 and 2

Vp velocity model (1)

Before injection

After injection

Vp velocity model (2) -before and during injection-

Focal mechanisms

Focal mechanisms inversion -first trial by zones-

Best solution compatible with 83 % of the data

Zone 4: no solution

Principle of shear wave splitting

- In anisotropic materials shear wave velocity varies with direction leading to shear wave splitting.
- In planar isotropy, 5 elastic constants.
- waved polarized parallel to plane are faster.

Fast S- wave polarisations

-Period 2 and 4 -

- Shear wave splitting
- G1, G2, G4: parallel to fault
- G3: orthogonal to fault

Stress heterogeneity in the seismicity cloud?

New data selection:

- Definition of a sphere for each event with radius~rupture dimension
- Successive events with intersecting spheres are excluded

Focal mechanisms inversion -new data selection-

Fast S- wave polarisations Inversion focal mechanisms -east of the Central Fault (G1, G2, G4) -

G1_97, 22 S NORTH WEST EAST 0.2 SOUTH

Fast polarisation ~ 145 deg.

-new selection-

 $\sigma 1$ and $\sigma 2$ ~ 110-150 deg.

Observations compatibility in regional context

- Minimum principal stress orthogonal to fault
- GPS data show extention orthogonal to fault ~0.6-1.8 cm/y

Extension basins along the fault

Conclusions from Tongonan experiment

- Effect of interactions between events, but once independent events are selected, results are consistent with shear wave splitting conclusions
- Shear wave splitting yields consistent results
- Fault is normal to principal stress direction and therefore does not support, locally, any shear stress component