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I. Formal description of seismic source 
 

The description of seismic source we will consider is based on the formalism developed 
by Backus and Mulcahy, 1976. 
 
Statement of the problem.  
Motion equation 
ρ σ&& ,u fi i j j i= +          (1.1) 
Hook’s law for isotropic medium 

ijkkijij µεελδσ 2+=         (1.2)   
Initial conditions 
& ,u u≡ ≡ <0 0t          (1.3) 

Boundary conditions 
0|

0
=Sjij nσ          (1.4) 

Here u – displacement vector; σij – elements of symmetric 3x3 stress tensor; i,j=1,2,3 and the 

summation convention for repeated subscripts is used; ∑
= ∂

∂
=

3

1
,

j j

ij
jij x

σ
σ  ; εij – elements of 

symmetric 3x3 strain tensor and )(5.0 ,, ijjiij uu +=ε ;  ρ - density; fi – components of 
external force; nj – components of the normal to the free surface S0.  
 
Solution of the problem (1.1)-(1.4) can be given by formula 

yjij

T

i dVftGdtu ),(),,(),(
0

τττ yyxx ∫∫
Ω

−=       (1.5) 

or 

u t d H t f dVi

T

ij j y( , ) ( , , ) & ( , )x x y y= −∫ ∫τ τ τ
0 Ω

      (1.6) 

Here  Gij is the Green’s function,  

H t G dij ij

t

( , , ) ( , , )x y x y= ∫ τ τ
0

,         (1.7) 

x ∈ Ω and 0 < t < T are the space region and time interval where  &f is not identically zero. 
 

Sources of seismic disturbances  
 We will consider internal sources only (earthquakes). In this case any external forces 
are absent. We must then set 0≡f in equation (1.1), so that the only solution that satisfies 
the homogeneous initial (1.3) and boundary (1.4) conditions, as well as Hook’s law (1.2) will 
be 0≡u .  Non-zero displacements cannot arise in the medium, unless at least one of the 
above conditions is not true. 
Following Backus and Mulcahy, 1976, we assume seismic motion to be caused by a departure 
from ideal elasticity (from Hook’s law) within some volume of the medium Ω at some time 
interval 0 < t < T. 

Let u(x,t) be the actual displacements, σ(x,t) - correspondent stresses, if Hook’s law is 
valid, s(x,t) - actual stresses. 
Let the difference  
Γ(x,t) = σ(x,t) - s(x,t),         (1.8) 
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called the stress glut tensor or moment tensor density, is not identically zero for 0 < t < T  and 
x ∈ Ω.  
Τ  we define as source duration, and Ω - source region. Within this region and time interval 
(and only there) the tensor ),( txΓ& is not identically zero as well. 

Replacing σ(x,t) by s(x,t) in equation (1.1), using definition (1.8) and the absence of 
external forces ( 0≡f ) we can rewrite the motion equation (1.1) in form 
ρ && ,u si i j j=  
or 
ρ σ&& ,u gi i j j i= +          (1.9) 
where 
g i i j j= − Γ ,  .         (1.10) 

 
Equation (1.10) defines the equivalent force g.  Using formula (1.6) with fi replaced by gi , 
definition (1.10) and Gauss theorem we have for displacements 

u t d H t dVi

T

ij k jk y( , ) ( , , )& ( , ),x x y y= −∫ ∫τ τ τ
0 Ω

Γ ,      (1.11) 

where Hij  is differentiated with respect to yk . 
If the inelastic motions are concentrated at a surface Σ, then 

u t d H t di

T

ij k jk y( , ) ( , , )& ( , ),x x y y= −∫ ∫τ τ τ
0 Σ

Γ Σ .      (1.12) 

 
Relation of stress glut (moment tensor density) with classic definition of moment tensor M : 

y

T

dVtdt∫∫
Ω

= ),(
0

yΓM &  .        (1.13) 

Normalizing moment tensor we define seismic moment M0 :  

M=M0m , where tensor m is normalized by condition ∑
=

==
3

1,

2T 2)tr(
ji

ijmmm , mT is transposed 

tensor m.  
 
Stress glut moment for special types of seismic sources 
1. Discontinuity of displacement ∆u at a surface Σ  in isotropic medium (stress is continuous): 

)].,()(),()([
)(),(),(

tuntun
ntut

ijji

ijkkij

xxxx
xxx

∆+∆+

∆=Γ

µ
δλ

     (1.14) 

Here n(x) is the normal to the surface Σ, and seismic disturbances are given by formula 
(1.12). 
2. In the case of tangential (shear) dislocation we have 

0≡∆ kk nu and formula (1.14) takes form 
)].,()(),()([),( tuntunt ijjiij xxxxx ∆+∆=Γ µ     (1.15) 

3. Instant point tangential dislocation occurred in the point x=0 at time t=0: 
),()(),( 0 xx δδ tmMt ijij =Γ&        (1.16) 

where ijjiij ananm +=  , a u u= ∆ ∆/| |  and  .||0 u∆= µM  
Phenomena of matrix m 
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Trm = 0. The eigenvalues of matrix m are: 1, -1 and 0. The eigenvector correspondent to 1 
defines the direction of maximum extension, and the eigenvector correspondent to -1 defines 
the direction of maximum compression. Such a source is called double couple. 

 
As it follows from formula (1.12) an instant point double couple excites a 

displacement field of the form 
klliki mtHMtu ),,(),( ,0 0xx = .        (1.17) 

We have for Fourier transforms H(x,y,ω) and G(x,y,ω) from equation (1.7): 

ω),,(
iω
1ω),,( yxGyxH = ,        (1.18) 

where i is the imaginary unit, and ω is angular frequency. 
As result the spectrum of displacements is given by formula 

ω),,(
iω
1ω),( ,0 0xx likkli GmMu = .       (1.19) 

 
Relation between the displacement field and stress glut moments 
 We assume that following product can represent the time derivative of stress glut tensor: 

mxx ),(),( tft =Γ& ,         (1.20) 
where f t( , )x  is non-negative function and m is a uniform normalized moment tensor.  
The moment ),(),(

...1
τqnl

kk l
f  of spatial degree l and temporal degree n with respect to point q and 

instant of time τ is a tensor of order l and is given by formula 

∫∫
∞

τ−−⋅⋅⋅−=τ
0

),(
... ))(())(,(),(

111
dttqxqxtfdVf n

kkkk
V

nl
kk lll

xq ,    (1.21) 

k1,…,kl=1,2,3. 
Replacing Hij(x,y,t-τ) in equation (1.11) by its Taylor series in powers of y and in powers of 
τ, we get: 

 0yyx0x =

∞

=

∞

= ∂
∂

∂
∂⋅⋅⋅

∂
∂

∂
∂−=∑∑ ),,()0,(

!!
)1(),(

1

1

),(
...

0 0

tH
t

fm
nl

tu ij
kkk

n

n
nl
kk

l n
jk

n

i
l

l yyy
 .  (1.22) 

Using formulae (1.18) and (1.22) we have following equation for the spectrum of 
displacements: 

0yyx0x =
−

∞

=

∞

= ∂
∂

∂
∂⋅⋅⋅

∂
∂−=∑∑ ω),,(ω))(i0,(

!!
)1(ω),(

1

1

1),(
...

0 0
ij

kkk

nnl
kk

l n
jk

n

i Gfm
nl

u
l

l yyy
.  (1.23) 

Here we assume that the point y=0 and the instant t=0 belong to the source region and the 
time of the source activity respectively. 
 When the spectra of displacements ui(x,ω) and Green’s function Gij(x,y,ω) have been 
low pass filtered, the terms in equation (1.23) start to decrease with l and n increasing at least 
as rapidly as (ωT)l+n  (T is the source duration, and ωT<1), and one might then restrict to 
considering finite sums only. 
 We will take into account in the following sections only the first terms in formula 
(1.23) for 2≤+ nl . 
 
II. Source inversion in moment tensor approximation 
 

The first term in (1.23) corresponding to l=0, n=0, describes the spectra of displacements 
ui(x,ω) excited by an instant point source (compare with formula (1.19) taking into account 
that seismic moment is equal to zero moment of function f(x,t):  M0=f(0,0)). For a source with 
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nonzero size and duration this term approximates ui(x,ω) with high accuracy for  periods 
much longer then source duration. Performing the inversion of long period seismic waves we 
describe the earthquake by an instant point source. As it was mentioned in previous section, 
an instant point source can be given by moment tensor - a symmetric 3x3 matrix M . Seismic 

moment M0  is defined by equation M0
1

2= tr( )TM M , where MT  is transposed moment 

tensor M , and tr( )T

,
M M =

=
∑Mij
i j

2

1

3

.  Moment tensor of any event can be presented in the 

form  M m= M0 , where matrix m  is normalized by condition tr( )Tm m = 2 . 
We’ll consider a double couple instant point source (a pure tangential dislocation) at a 

depth h. Such a source can be given by 5 parameters: double couple depth, its focal 
mechanism which is characterizing by three angles: strike, dip and slip or by two unit vectors 
(direction of principal tension T and direction of principal compression P) and seismic 
moment M0 . Four of these parameters we determine by a systematic exploration of the four 
dimensional parametric space, and the 5-th parameter M0  - solving the problem of 
minimization of the misfit between observed and calculated surface wave amplitude spectra 
for every current combination of all other parameters. 

Under assumptions mentioned above the relation between the spectrum of  displacements 
ui ( , )x ω  and moment tensor M  can be  expressed  by formula (1.19) rewritten below in 
slightly different form:  

)],,([
i
1),( ω

∂
∂

ω
=ω yxx ij

l
jli GMu

y
                               (2.1) 

i,j = 1,2,3 and the  summation  convention for repeated subscripts is used. Gij ( , , )x y ω  in 
equation (2.1) is the spectrum of Green function for the chosen model of medium and wave 
type (see Levshin, 1985; Bukchin, 1990), y - source location. We will discuss the inversion of 
surface wave spectra, so Gij ( , , )x y ω is the spectrum of surface wave Green function. We 
assume that the paths from the earthquake source to seismic stations are relatively simple and 
are well approximated by weak laterally inhomogeneous model (Woodhouse, 1974; Babich et 
al., 1976). The surface wave Green function in this approximation is determined by the near 
source and near receiver velocity structure, by the mean phase velocity of wave, and by 
geometrical spreading. We assume that waves propagate from the source to station along 
great circles. Under these assumptions the amplitude spectrum | ui ( , )x ω | defined by formula 
(2.1) does not depend on the average phase velocity of the wave. In such a model the errors in 
source location do not affect the amplitude spectrum (Bukchin, 1990). The average phase 
velocities of surface waves are usually not well known. For this reason as a rule we use only 
amplitude spectra of surface waves for determining source parameters under consideration. 
We use observed surface wave phase spectra only for very long periods. Correcting the 
spectra for attenuation we use laterally homogeneous model for quality factor. At the end of 
this lecture we will consider the effects related to surface wave focusing caused by rays 
deviation from great circle, and to laterally inhomogeneity of attenuation model. 
 
Surface wave amplitude spectra inversion 
     If all characteristics of the medium are known, the representation (2.1) gives us a system of 
equations for parameters defined above. Let us consider now a grid in the space of these 4 
parameters. Let the models of the media be given. Using formula (2.1)  we  can  calculate  the  
amplitude spectra of surface waves at the points of  observation for every possible 
combination of values of the varying  parameters.  Comparison of calculated and observed 
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amplitude spectra give us a residual ε ( )i for every point of observation, every wave and every 
frequency ω . Let u i( ) ( , )x ω  be any observed value of the spectrum, i = 1,…,N; ε amp

( )i -   

corresponding residual of | u i( ) ( , )x ω |. We define the normalized amplitude residual by 
formula  

2/1N

1

2
N

1

2

ampamp |,(), ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ ω|⎟
⎠

⎞
⎜
⎝

⎛ ε=,(ε ∑∑
=

)(

=

)(

i

i

i

uh
i

xPT .  (2.2) 

 
The optimal values of the parameters that minimize εamp we consider as estimates of these 
parameters. We search them by a systematic exploration of the four-dimensional parameter 
space. To characterize the degree of resolution of every of these source characteristics we 
calculate partial residual functions. Fixing the value of one of varying parameters we put in 
correspondence to it a minimal value of the residual εamp on the set of all possible values of 
the other parameters. In this way we define one residual function on scalar argument and two 
residual functions on vector argument corresponding to the scalar and two vector varying 
parameters: ε (h h ) , ε (T T ) and ε (P P ) . The value of the parameter for which the 
corresponding function of the residual attains its minimum we define as estimate of this 
parameter. At the same time these functions characterize the degree of resolution of the 
corresponding parameters. From geometrical point of view these functions describe the lower 
boundaries of projections of the 4-D surface of functional ε on the coordinate planes. A 
sketch illustrating the definition of partial residual functions is given in figure 1.  
Here one of 4 parameters is picked out as ‘parameter 1’, and one of coordinate axis 
corresponds to this parameter. Another coordinate axis we consider formally as 3-D space of 
the rest 3 parameters. Plane Σ is orthogonal to the axis ‘parameter 1’ and cross it in a point p0 
. Curve L is the intersection of the plane Σ and the surface of functional ε. As one can see 
from the figure the point ε1(p0) belong to the boundary of projection of the surface of 
functional ε, and at the same time it corresponds to a minimal value of the residual ε on the 
set of all possible values of the other 3 parameters while ‘parameter 1’ is equal to the value p0. 
So, as it is accepted in engineering we characterize our surface by its 4 projections on 
coordinate planes. 
    It is well known that the focal mechanism cannot be uniquely determined from surface 
wave amplitude spectra. There are four different focal mechanisms radiating the same surface 
wave amplitude spectra. These four equivalent solutions represent two pairs of mechanisms 
symmetric with respect to the vertical axis, and within the pair differ from each other by the 
opposite direction of slip.  
     To get a unique solution for the focal mechanism we have to use in the inversion additional 
observations. For these purpose we use very long period phase spectra of surface waves or 
polarities of P wave first arrivals. 
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Joint inversion of surface wave amplitude and phase spectra 
   Using  formula (2.1) we can calculate for chosen frequency range the phase spectra of 
surface waves at the points of observation for every possible combination of values of the 
varying  parameters. Comparison of calculated and observed phase spectra give us a residual 
ε ph

( )i

for every point of observation, every wave and every frequency ω . We define the 
normalized phase residual by formula  

ε ( ϕ , ε
( )

p h p hh
i

i
, , ) / N

N /

T P =
⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

=
∑1 2

1

1 2

π
.      (2.3) 

 
We determine the joint residual ε by formula 
ε ε ε= − − −1 1 1( ) ( )p h a m p .        (2.4) 
To characterize the resolution of source characteristics we calculate partial residual functions 
in the same way as was described above. 
 
Joint inversion of surface wave amplitude spectra and P wave polarities 

Calculating radiation pattern of P waves for every current combination of parameters we 
compare it with observed polarities. The misfit obtained from this comparison we use to 
calculate a joint residual of surface wave amplitude spectra and polarities of P wave first 
arrivals. Let ε a m p be the residual of surface wave amplitude spectra, ε p - the residual of P 
wave first arrival polarities (the number of wrong polarities divided by the full number of 
observed polarities), then we determine the joint residual ε by formula 
ε ε ε= − − −1 1 1( ) ( )p a m p .       (2.5) 
For this type of inversion we calculate partial residual functions to characterize the resolution 
of parameters under determination in the same way as it was described for two first types. 
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Before inversion we apply to observed polarities a smoothing procedure (see Lasserre et 
al., 2001), which we will describe here briefly. 

Let us consider a group of observed polarities (+1 for compression and -1 for dilatation) 
radiated in directions deviating from any medium one by a small angle. This group is 
presented in the inversion procedure by one polarity prescribing to this medium direction. If 
the number of one of two types of polarities from this group is significantly larger then the 
number of opposite polarities, then we prescribe this polarity to this medium direction. If no 
one of two polarity types can be considered as preferable, then all these polarities will not be 
used in the inversion. To make a decision for any group of n observed polarities we calculate 
the sum m n n= −+ − , where n+ is the number of compressions and n n n− += −  is the number 
of dilatations. We consider one of polarity types as preferable if |m| is larger then its standard 
deviation in the case when +1 and -1 appear randomly with this same probability 0.5. In this 
case n+ is a random value distributed following the binomial low. For its average we have 
M n n( ) .+ = 05 , and for dispersion D n n( ) .+ = 0 25 . Random value m is a linear function of n+ 

such that m n n= −+2 . So following equations are valid for the average, for the dispersion, 
and for the standard deviation σ of value m  
M m M n n n n( ) ( )= − = − =+2 0 ,   D m D n n( ) ( )= =+4 ,   and  σ( )m n= . 

As a result, if the inequality | m n|≥  is valid then we prescribe +1 to the medium direction if 
m > 0 , and -1 if m < 0 . 
 
III. Second moments approximation. Characteristics of source shape and evolution in 
time. 
 
     We present here a technique based on the description of seismic source distribution in 
space and in time by integral moments (see Bukchin et al., 1994; Bukchin, 1995; Gomez, 
1997 a, b). We assume that the time derivative of stress glut tensor &Γ can be represented in 
form (1.20). Following Backus and Mulcahy, 1976 we will define the source region by the 
condition that function f t( , )x  is not identically zero and the source duration is the time 
during which nonelastic motion occurs at various points within the source region, i.e., f t( , )x  
is different from zero. 
     Spatial and temporal integral characteristics of the source can be expressed by 
corresponding moments of the function f t( , )x  (Backus, 1977a; Bukchin et al., 1994). These 
moments can be estimated from the seismic records using the relation between them and the 
displacements in seismic waves, which we will consider later. In general case stress glut rate 
moments of spatial degree 2 and higher are not uniquely determined by the displacement field 
(Pavlov, 1994; Das & Kostrov, 1997). But in the case when equation (1.20) is valid such 
uniqueness takes place (Backus, 1977b; Bukchin, 1995). 
    Following equations define the spatio-temporal moments of function f t( , )x of total degree 
(both in space and time) 0, 1, and 2 with respect to point q and instant of time τ. 

f dV f t dt
V

( , ) ( , )0 0

0

= ∫ ∫
∞

x ,    f dV f t x q dti
V

i i
( , ) ( ) ( , )( )1 0

0

q x= −∫ ∫
∞

, 

f dV f t t dt
V

( , ) ( ) ( , )( )0 1

0

τ τ= −∫ ∫
∞

x ,   f dV f t t dt
V

( , ) ( ) ( , )( )0 2 2

0

τ τ= −∫ ∫
∞

x ,

f dV f t x q t dti
V

i i
( , ) ( , ) ( , )( )( )1 1

0

q xτ τ= − −∫ ∫
∞

,      (3.1) 
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 f dV f t x q x q dtij
V

i i j j
( , ) ( ) ( , )( )( )2 0

0

q x= − −∫ ∫
∞

 

     Using these moments we will define integral characteristics of the source. Source location 
is estimated by the spatial centroid qc  of the field f t( , )x  defined as 
q f 0c

( ) ( ) /= 1 0
0

, M  ,           (3.2) 
where M f0

0 0= ( , )  is the scalar seismic moment. 
Similarly, the temporal centroid τ c  is estimated by the formula 
τ c

( ) ( ) /= f M,0 1
00  .                                    (3.3) 

The source duration is ∆ t estimated by 2 ∆ τ , where 
( τ2∆τ) = f M,( )

c( ) /0 2
0  .                                 (3.4) 

The spatial extent of the source is described by matrix W, 
W f q= ( )

c( ) /2 0
0

, M  .                                   (3.5) 
The mean source size in the direction of unit vector r is estimated by value 2lr , defined by 
formula 
lr

2 = r WrT ,                                           (3.6) 
where r T is the transposed vector. From (3.5) and (3.6) we can estimate the principal axes of 
the source. There directions are given by the eigenvectors of the matrix W, and the lengths are 
defined by correspondent eigenvalues: the length of the minor semi-axis is equal to the least 
eigenvalue, and the length of the major semi-axis is equal to the greatest eigenvalue. 
     In the same way, from the coupled space time moment of order (1,1) the mean velocity v 
of the instant spatial centroid (Bukchin, 1989) is estimated as 
v w= / ( 2∆τ)  ,                                        (3.7) 
where  w f q= ( )

c c( , ) /1 1
0

, Mτ  . 
     The relation between integral estimates and real characteristics of source duration and 
spatial extent depends on the distribution of moment rate density in time and over the fault. 
Figure 2 illustrates this relation in the case of Gaussian distributions. In this case 99% 
confidence duration is 2.5 times larger then the integral estimate, and 99% confidence axis 
length is 3 times larger then correspondent integral estimate.  
 

 
 

Fig. 2. Relation between integral estimates and real characteristics of source duration and 
spatial extent. 
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       Now we will consider the low frequency part of the spectra of the ith component of 
displacements in Love or Rayleigh wave ui ( , )x ω . It is assumed that the frequency ω  is 
small, so that the duration of the source is small in comparison with the period of the wave, 
and the source size is small as compared with the wavelength. It is assumed that the origin of 
coordinate system is located in the point of spatial centroid qc (i.e. q 0c = ) and that time is 
measured from the instant of temporal centroid, so that τ c = 0 . With this choice the first 
degree moments with respect to the spatial origin x=0 and to the temporal origin t=0 are zero, 
i.e. f 0 0( ) ( )1 0, =  and f ,( ) ( )0 1 0 0= .  
      Under this assumptions, taking into account in formula (1.23) only the first terms for 

2≤+ nl  we can express the relation between the spectrum of displacements ui ( , )x ω  and the 
spatio-temporal moments of the function f t( , )x by following formula (Bukchin,1995) 

u M M G f M Gi jl
l

ij mn jl
m n l

ij( , )
i

( , , )
i

( ) ( , , )( , )x x 0 0 x 0ω
ω

ω
ω

ω=
∂

∂
+

∂
∂

∂
∂

∂
∂

1 1
20

2 0

y y y y
 

−
∂

∂
∂

∂
+

∂
∂

f M G f M Gm jl
m l

ij jl
l

ij
( , ) ( , )( , ) ( , , )

i
( ) ( , , )1 1 0 20

2
00 x 0 x 0

y y y
ω

ω
ω ,    (3.8) 

i,j,l,m,n = 1,2,3 and the  summation  convention for repeated subscripts is used.  Gij ( , , )x y ω  
in equation (3.8) is the spectrum of Green function for the chosen model of medium and wave 
type. We assume that the paths from the earthquake source to seismic stations are well 
approximated by weak laterally inhomogeneous model. Under this assumption, as it was 
mentioned above, the amplitude spectrum | ui ( , )x ω | defined by formula (3.8) does not depend 
on the average phase velocity of the wave, and the errors in source location do not affect the 
amplitude spectrum. 
     If all characteristics of the medium, depth of the best point source and seismic moment 
tensor are known (determined, for example, using the spectral domain of longer periods) the 
representation (3.8) gives us a system of linear equations for moments of the function 
f t( , )x of total degree 2. But as we mentioned considering moment tensor approximation the 

average phase velocities of surface waves are usually not well known. For this reason, we use 
only amplitude spectrum of surface waves for determining these moments, in spite of non-
linear relation between them. 
     Let us consider a plane source. All moments of the function f t( , )x of total degree 2 can be 
expressed in this case by formulas (3.2)-(3.7) in terms of 6 parameters: ∆ t - estimate of 
source duration, lmax - estimate of maximal mean size of the source,  ϕl - estimate  of  the 
angle between the direction  of maximal size and strike axis, lmin - estimate of minimal mean 
size of the source, v - estimate of the absolute value of instant centroid mean velocity v and ϕv 
-  the angle between v and strike axis. 
     Using the Bessel inequality for the moments under discussion we can obtain the following 
constrain for the parameters considered above (Bukchin, 1995): 

1sincos
2
min

2

2
max

2
22 ≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ϕ+ϕ∆
ll

tv ,                             (3.9) 

where ϕ is the angle between major axis of the source and direction of v. 
Assuming that the source is a plane fault and representation (1.20) is valid let us consider a 
rough grid in the space of 6 parameters defined above. These parameters have to follow 
inequality (3.9). Let models of the media be given and the moment tensor be fixed as well as 
the depth of the best point source. Let the fault plane (one of two nodal planes) be identified. 
Using  formula (3.8)  we  can  calculate  the  amplitude spectra of surface waves at the points 
of observation for every possible combination of values of the varying  parameters. 
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Comparison of calculated and observed amplitude spectra give us a residual ε ( )i for every 
point of observation, every wave and every frequency ω . Let u i( ) ( , )r ω  be any observed 
value of the spectrum, i = 1,…,N; ε ( )i - corresponding residual of | u i( ) ( , )r ω |. We define the 
normalized amplitude residual by formula  

2/1N

1

2
N

1

2
minmax |,(),,,, ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ ω|⎟
⎠

⎞
⎜
⎝

⎛ ε=ϕ,ϕ∆ε( ∑∑
=

)(

=

)(

i

i

i

i
l ullt rvv .  (3.10) 

The optimal values of the parameters that minimize ε we consider as estimates of these 
parameters. We search them by a systematic exploration of the six dimensional parameter 
space. To characterize the degree of resolution of every of these source characteristics we 
calculate partial residual functions in the same way as was described in previous section. We 
define 6 functions of the residual corresponding to the 6 varying parameters: ε (∆ ∆t t ) , 
ε (l l

m a x m a x ) , ε (l l
m in m in ) , ε ( ϕϕ l l ) , )vv (ε and )vv

(ϕε ϕ . The value of the parameter 
for which the corresponding function of the residual attains its minimum we define as 
estimate of this parameter. At the same time these functions characterize the degree of 
resolution of the corresponding parameters.  
 
IV. Example of application 
We illustrate the technique by results of its application for a study of two largest earthquakes 
in the last four decades: Sumatra-Andaman earthquake occurred on 26 December 2004 and 
Nias earthquake occurred on 28 March 2003. 
 
(a) Sumatra-Andaman earthquake 26 December 2004. 
To estimate the best double couple, duration and geometry of the source we have used 
amplitude spectra of second and third orbits of fundamental Love and Rayleigh modes in 
spectral range from 500 to 650 seconds. The records were processed by frequency-time and 
polarization analysis package. We selected 24 Love wave records and 22 Rayleigh wave 
records from IRIS and GEOSCOPE stations. Their azimuthal distribution is given in figure 3.  
 

 
 

Fig. 3 Azimuthal distribution of radiation of waves used for inversion. 
L and R after the name of station denotes Love and Rayleigh wave correspondingly. 

 
In the source region and under the receivers, we used the 3SMAC model (Ricard et al. 1996) 
for the crust and the PREM model below. We used the quality factor given by the PREM 
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model for attenuation correction. The moment tensor describing the source in instant point 
source approximation is obtained by joint inversion of surface wave amplitude spectra and 
first arrival polarities at worldwide stations (Lasserre et al. 2001). The solution gives a 
mechanism described by the following values of strike, dip and slip: 330°, 8°, 105° 
respectively (see figure 5). The estimate of source depth is equal to 13 km. The estimated 
value of seismic moment is 0.52·1023 N·m. 
 
 

 
 

Fig. 4. Double couple solution and source depth resolution curve. 
P1: 330°, 8°, 105°; P2: 135°, 82°, 88°. M0 = 0.52·1023 N·m  

 
Determining 2-nd moments of moment tensor density we consider the nodal plane dipping to 
the northeast as a fault plane. We fixed source depth (13km) and focal mechanism obtained in 
instant point source approximation. Usually when double couple parameters are obtained 
from periods long enough to consider the source as an instant and point, we fix seismic 
moment as well. But in this case the periods are not sufficiently long, so we recalculated 
seismic moment determining source 2nd moments. As it was mentioned above we estimate 
the duration and the geometry of the source from the same amplitude spectra of fundamental 
Love and Rayleigh modes in the same spectral band (from 500 to 650 seconds) that was used 
for inversion in instant point source approximation.  
Our final estimate of seismic moment is equal to 0.84·1023 Nm. The residual functions for 
integral estimates are given in figure 5. The inversion yields the integral estimate of duration 
being about 160 s, a characteristic source length (major axis length) of 300 - 400 km. The 
minor axis length is poorly resolved, lying between 0 and 200 km. The average instant 
centroid velocity estimate is about 2 km/s. The angles giving the major axis and velocity 
vector orientations are measured clockwise on the footwall starting from the strike axis. They 
are consistent with each other and correspondent residual functions attain their minimum 
values at 15°. 
The propagation of rupture may be characterized by directivity ratio d proposed by McGuire 
(2002). This parameter is defined as the ratio of the average velocity of the instant centroid 
over the apparent rupture velocity equal to lmax/∆t. For a unilateral rupture where slip 
nucleates at one end of a rectangular fault and propagates to the other at a uniform rupture 
velocity with a uniform slip distribution, d = 1. For a symmetric bilateral rupture  
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Fig. 5. Residual functions for source integral characteristics. 
 
that initiates in the middle and propagates to both ends of a fault at uniform rupture velocity 
with uniform slip distribution, d = 0. Predominantly bilateral ruptures correspond to 

5.00 <≤ d  while predominantly unilateral ruptures correspond to 15.0 ≤< d . We find             
d = 0.9 for our model.  This value shows unilateral (northward) rupture propagation. 
Multiplying the integral estimate of duration by factor 2.5 (see figure 2) we get for source 
process duration the value being equal to 400s. Multiplying the integral estimates for principal 
axes length by factor 3 we get for maximum size 1050 km, and for minor axis 300km. 
We compared our estimate of source duration with similar integral estimate calculated 
directly as second moment of moment-rate function shown in figure 6, reported by (Ammon 
et al. 2005). The value obtained for this estimate is equal to 187 s, which is not so different 
from our integral estimate 160s. 



 14

 

 
 

Fig. 6. Moment-rate function 
 
The efficiency of second moments approximation is illustrated by figure 7, showing observed 
surface wave amplitude spectra and synthetic spectra calculated in two approximations: in 
instant point source approximation and in 2-nd moments approximation. As on can see from 
the figure the misfit between observations and synthetics is significantly less when synthetic 
spectra is calculated in 2-nd moments approximation.  
 

 
 

Fig. 7. Radiation patterns of fundamental (a) Love and (b) Rayleigh  
modes and observed amplitudes at T=550s. 

 
 

(b) Nias  earthquake 28 March 2005. 
To obtain the moment tensor describing the source in instant point source approximation we 
used amplitude spectra of second and third orbits of fundamental Love and Rayleigh modes in 
spectral range from 250 to 500 seconds. The modes were isolated by frequency-time analysis 
approach. We selected 26 Love wave records and 29 Rayleigh wave records from IRIS and 
GEOSCOPE stations. Their azimuthal distribution is given in figure 8.  
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Fig. 8. Azimuthal distribution of radiation of waves used for inversion. 
L and R after the name of station denotes Love and Rayleigh wave correspondingly. 

 
In the source region and under the receivers, we used the 3SMAC model (Ricard et al. 1996) 
for the crust and the PREM model below. We used the quality factor given by the PREM 
model for attenuation correction. The best double couple for this event and its depth were 
estimated by joint inversion of surface wave amplitude spectra and first arrival polarities. The 
solution gives following focal mechanism: 315°, 10°, 90° for values of strike, dip and slip 
angles correspondingly (see figure 9). The estimate of source depth is equal to 8-10 km. The 
estimated value of seismic moment is   0.85·1022 N·m.  
 
 

 
 

Fig. 9. Double couple solution and source depth resolution curve. 
P1: 315°, 10°, 90°; P2: 135°, 80°, 90°. M0 = 0.81·1022 N·m  

 
Determining 2-nd moments of moment tensor density we consider the nodal plane dipping to 
the northeast as a fault plane. We fixed source depth, focal mechanism and seismic moment 



 16

obtained in instant point source approximation. The 2-nd moment determination was 
performed in period band from 175 to 300s using 1-st orbits only, and using two higher orbits. 
The results for these two data samples are very similar. The integral estimates obtained from 
complete data set using Love and Rayleigh fundamental modes are poor resolved. The 
inversion of Rayleigh wave spectra only give similar optimum values, but their resolution is 
much better. The residual functions for integral estimates are given in figure 10. The integral 
estimate of duration is equal to 40 s, the integral estimate of major axis length is about        
150 km. The minor axis length is poorly resolved, lying between 0 and 50 km. The average 
instant centroid velocity estimate is about 3 km/s. The angles giving the major axis and 
velocity vector orientations are equal to 30° and 195° correspondingly. 
 

 
 

Fig. 10. Residual functions for source integral characteristics. 
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The directivity ratio d for this event is equal to 0.8, which means that rupture propagation is 
predominantly unilateral to the south-south-east.  
Multiplying the integral estimate of duration by factor 2.5 we get for source process duration 
the value being equal to 100s. Multiplying the integral estimates for principal axes length by 
factor 3 we get for maximum size 450km, and for minimum size up to150 km.  
We compared our estimate of source duration with similar integral estimate calculated as 
second moment of moment-rate function (see figure 11), reported by Yamanaka (2005). The 
value obtained for this estimate is equal to 46.5s, which is comparable with our integral 
estimate equal to 40s. 

 
 

Fig. 11. Moment-rate function 
 
Observed Rayleigh wave amplitude spectra and synthetic spectra calculated in instant point 
source approximation and in 2-nd moments approximation are presented in figure 13. The 
misfit between observations and synthetics is less when synthetic spectra is calculated in 2-nd 
moments approximation.  
 
 

 
 

Fig.12. Radiation patterns of fundamental Rayleigh  
mode and observed amplitudes at T=254s. 

 
Ellipses characterizing the spatial extension of the sources over the aftershocks for both 
considered earthquakes are shown in the figure 13. The arrows show the directions of rupture 
propagation. The axes of ellipses are obtained by multiplication of integral estimates by factor 
3 corresponding to 2D Gaussian distribution of moment-rate.  
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Fig. 13. Ellipses characterizing the spatial extension of the sources over the aftershock clouds 
for (a) 26.12.2004 earthquake and for (b) 28.03.2005 earthquake. The arrows show the 
directions of rupture propagation. 
 
As one can see from the figure 13 b the size of the major ellipse axis is in a good agreement 
with the distribution of aftershocks of the 28.03.2005 event. Similar ellipse characterizing the 
shape of the source region for Sumatra-Andaman earthquake (figure 13 a) doesn’t cover the 
Northern segment of the aftershock cloud. But GPS observations (Vigny et al. 2005) show 
significant deformations in this region. At the same time tomographic source models based on 
analysis of different seismological observations (Lay et al. 2005, Ammon et al. 2005) suggest 
weak deformations in this region. This contradiction can be explained (Lay et al. 2005, 
Ammon et al. 2005) by slow deformations occurred in the Northern segment of the fault, 
which were not registered by seismic instruments. 
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