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Preface

This compendium is a concise version of a course of lectures on wave prop-
agation in random media that was given by the author at the University of
Uppsala, Sweden few years ago . The full version of the course was published
by the presenting author in co-authorship with Dr. Bengt Lundborg [ZERNOV
AND LUNDBORG 1993]. Dr. Lundborg prepared the initial English draft version
of the compendium. The draft was subsequently elaborated by both authors to
its final form. Full course of lectures is regularly delivered by Prof. N.N.Zernov
at the University of St.Petersburg, Russia to the students specializing in radio
wave propagation. It gives main notions, definitions and basic ideas of a series
of methods employed in the theory of wave propagation in random media. In
the present version all the methods are discussed in their most simple form,
i.e., when the background medium is assumed to be homogeneous. This makes
description of the methods more transparent and less overloaded by (sometimes
boring) transformations and manipulations. At the same time it should be men-
tioned that in the works of numerous authors (including the presenting author)
methods have been extended to the more practical and important case of the
inhomogeneous background media. The full version of the course outlines many
of these extensions.

The widely known books by TATARSKI [1961; 1967], RyTov [1976], RyTOV,
KRrAvVTSOV and TATARSKI [1978; 1987; 1988; 1989], ISHIMARU [1978], YEH and
Liu [1972], BUDDEN [1985] and KrRAVTSOV and ORLOV [1980] have been used
for the basic contents of the lectures, without giving specific references to these
books.

Along with the basic items, the author additionally included in the list of
references a series of papers pertinent to the subject under consideration, which
reflect to some extent the up-to-date status of the theory of wave propagation in
random media. Among others the papers written by the author in co-authorship
with his colleagues are also presented in the List of References, which are de-
voted to the problems of propagation of the high frequency wave fields in the
ionospheric reflection and transionospheric fluctuation channels of propagation
(the copies of some of those papers are also applied). In these papers one can
additionally find numerous references to the papers of many other authors , who
worked into similar problems.
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Chapter 1

Introduction to the theory
of random functions

In many cases wave propagation through the ionosphere can be described by
the Helmholtz’ equation for a component of the electromagnetic field:

V2E + ke(r,w,t)E =0 (1.1)

supplemented by appropriate boundary conditions. The isotropic approxima-
tion (no geomagnetic field) is quite sufficient to describe the essential effects
of the fluctuations of the ionosphere, at least neglecting the effects of ordinary-
extraordinary wave coupling. By this we avoid a lot of mathematical complexity,
since we can use instead of the permittivity tensor the scalar dielectric permit-
tivity

e?N(r,t)

e(ryw,t) =1 p—

(1.2)

Here N(r,t) is the electron density as a function of space and time coordinates.
This may be a smooth and slowly varying regular function, in which case we have
a deterministic wave propagation problem which can be treated with traditional
methods such as ray tracing. In more realistic models of the ionosphere N(r,t)
includes local inhomogeneities and fluctuations. When we describe the influence
of fluctuations we can write

N(r,t) = (N(r)) + AN(r,t) (1.3)

The function (N(r)) is a regular function which represents the background, the
average large-scale density of the ionosphere, and is assumed independent of
time. The fluctuations are expressed by the quantity AN(r,t), which is a zero-
mean random function, i.e. it fulfils

(AN(r,t)) =0 (1.4)

With (1.3) the wave equation (1.1) is a stochastic differential equation. This
is the topic of the present course and to solve (1.1) we therefore need some



tools from this branch of mathematics. Hence we devote this Chapter to an
introduction to the theory of random functions.

1.1 Random values

We denote a random wvalue by the symbol £. If we restrict the treatment to
the case of continuous random variables, the probability that & takes a value in
the interval (z,z + dz) is expressed by means of the probability density function
(PDF) w(x) as follows:

Pz <¢{<z+dr) =w(x)de (1.5)
The interval of £ may be finite, £ € [a, b], or infinite, £ € (—o0, +00).

By means of the probability density function, moments of & can be con-
structed:

&) = /xw(x) dx (1.6a)
(&%) = /x2 w(z) do (1.6b)

and so on. In fact, for any deterministic function f(z), its average is given by

() = / f(@) w(z) dz (1.6¢)

An alternative approach to the description using the probability density
function is the characteristic function for &:

pe(u) = () (1.7)

where u is a deterministic variable. If the domain of definition for £ is infinite,
the characteristic function obviously forms a Fourier transform pair with the
probability density function:

—+oo

pe(u) = /w(x) e dx (1.7d)

— 00

+oo

/ ©e(u) e du (1.70")

— 00

1

T o

1.2 The definition of probability

In order to be a probability, P must possess the following three properties.
1. The property of positive-definiteness:

P>0 (1.8a)



2. Probabilities of mutually excluding events A are additive:

P (U Ak> => P(Ay) (1.8b)
k k

3. The deterministic event D has probability unity:
P(D)=1 (1.8¢)

The last property leads to the normalization property of the probability density
function:

[wie)az=1 (19)

1.3 Random functions

&(Q) is a random function if for every value @ of the independent variable, £(Q)
is a random value. In the most general case & is a function of space and time:
Q = {r,t}. In special cases we may have Q = {r} or Q = {t}. The case {(r) is
called a random field and the case £(t) is called a random process.

1.4 Probability density functions

With random functions the concept of probability density is much more com-
plicated than for random values. Since @) may take a continuum of values it is
now necessary to describe how the probabilities for neighbouring ()’s are related
to each other.

We now have the first-order probability density function

wi(§,Q) d§ = P(§ < £(Q) < £ +dE) (1.10a)

which corresponds to the definition (1.5). Furthermore we have a set of higher-
order probability density functions:

wa(€1,Q1,82,Q2) d&1dés = P(&1 < &(Q1) < & +déi5 6 <€(Q2) < &+ d&s)
(1.100)

wn (€1, Q1, -y &ny Q) d€1..dEn = P(§1 < E(Q1) < §1+dEy; 580 < E(Qn) < &+dEy)
(1.10¢)
For a rigorous and complete description of the random function, the entire
infinite set of multi-dimensional PDF’s is reqired.
The following are necessary properties of probability density functions.
1. They are invariant for permutations of each pair of arguments:

wn(flana "'gia Qi) gja Q_]7 "'agna Qn) = wn(€17 Q17 575 Q]a -~-£ia Qia 75717@71)
(1.11a)



2. The PDF’s of lower order can be obtained from those of higher order:

wk(glanv"'£k7Qk) = /wn(gtha"'6k7Qk7£k+l7Qk+17"'7€7L7Qn) d§k+1~--d§n

(1.110)
3. Normalization property (note that the dependencies on all @); vanish in the
integration):

/wn(&,Ql, bny Qn) d&..dE, =1 (1.11c)

1.5 Moments of random functions

Corresponding to the set of PDF’s we may also construct moments of £(Q) of
arbitrary orders. To start with we have the first-order moment

Mi(Q) = (£(Q)) = / Cun(£,Q) de (1.12a)

The second-order moment is defined by

By(Q1,Q2) = (§(Q1) &(Q2)) = /5152 wa (&1, Q1, 62, Qo) d§1d& (1.12b)

In describing energy level fluctuations of ionospheric signals, fourth-order mo-
ments are employed.

Because of the property (1.11b) we may also obtain M; from the second-
order PDF as follows:

M (Q1) = /51 wa (&1, Q1, &2, Q2) d&1dé, (1.13)

Similarly each moment of a lower order can in general be calculated using a
higher-order PDF with integration over the extra variables.

1.6 Correlation functions and their properties

An important second-order moment is the correlation function

$e(Q1,Q2) = ([E(@1) — (€(Q) [6(@2) — (€(@Q2)])

= /[5(@1) — (€(Q1)] [€(Q2) — (€(Q2))] w2(&1, @1, &2, Q2) d§1dEe  (1.14)
It is easy to show that this definition is equivalent to

Ye(Q1,Q2) = B2(Q1,Q2) — (£(Q1)) (£(Q2)) (1.15)

In particular, the second term in (1.15) vanishes when the regular part has been
subtracted so that £(Q) is a zero-mean random function.



When we deal with complex random functions

Q) =¢(Q) +in(Q) (1.16)

where £(Q) and 7(Q) both are real random functions, the 2n-dimensional PDF’s
must be introduced way, (&1, Q1, s &ny @M, Q1 -y i, @n) for each n to get a
complete description. All properties introduced above for the random functions
apply also for the complex random functions. It is convenient to have a special
notation for the zero-mean random part of a random function ¢(Q). Hence we
put a tilde above such quantities:

Q) = ¢(Q) = ((Q)) (1.17)

In the complex case we are now dealing with two correlation functions, de-
fined as follows:

Ye(Qr,Q2) = <C~(Q1)§* (Q2)> , first correlation function (1.18a)

Ve(Q1,Q2) = <§(Q1)§(Q2)> ) second correlation function (1.18b)

The first correlation function has three important properties.
1. Hermitean property:

Ve(Q1, Q2) = ¥ (Q2, Q1) (1.19a)
2. It fulfils the inequality
(@1, Q) < o2(@Q1) 03(Q2) (1.199)

where the variance or statistical dispersion 0‘2 (Q) is a real quantity:

72(Q) = 0¢(Q) + 03(Q) = ¥ (Q, Q) (1.20)
Introducing the correlation coefficient

Pe(Q1,Q2)
0¢(Q1) 0¢(Q2)

we may use the property (1.19b) to obtain the following property of the corre-
lation coefficient:

Kc(Q1,Q2) = (1.21)

1K (Q1,Q2) <1 (1.19)

3. For an arbitrary deterministic function u(Q), the following inequality holds:

[ 4c(@1.@2) w(@)u* (@2) Qi >0 (1190

(property of positive definiteness).



1.7 Statistical homogeneity

We have two forms of statistical homogeneity for a random function £(Q), viz.
in the strict and in the wide or weak sense. The corresponding terms for random
processes are stationarity in the strict and in the weak sense.

Statistical homogeneity in the strict sense amounts to the property of trans-
lational invariance for arbitrary-order PDF’s, i.e. for any AQ, any Q1,...,Qn
and any w,, one has

wn(é-h Q17 "'7£na Qn) = wn(é-l, Ql + AQ7 "'7§n7 Qn + AQ) (122)

When (1.22) pertains it is easily shown that (1.12a,b) simplifies to

M(Q) = /fwl(g,O) d¢ = M1(0) = const. (1.23a)

By (Q1,Q2) = /5152 w2(&1,0,82,Q2—Q1) d§1dés = B (0,Q2—Q1) = B2(Q2—Q1)

(1.23b)
Egs. (1.23a,b) are, in fact, the conditions for statistical homogeneity in the wider
sense. These conditions can hold even if (1.22) is not known to hold, and hence
the conditions (1.23a,b) are weaker than (1.22).
We can now reformulate the properties (1.19a—c) for the correlation function
in the case of statistical homogeneity as follows:
1. The Hermiticity gives in this case

Ye(Q) = vi(-Q) (1.24a)

This can also be expressed
Ye(Q) = ac(Q) +1i be(Q) (1.24a')
V(—Q) = ac(—Q) — i be(—Q) (1.24a")

where ac(Q) is an even function and b¢(Q) is an odd function.
2. The inequality
[c(Q)| < ¢ = 1¢(0) = const. (1.24b)

3. The positive-definiteness is the same as (1.19¢) with obvious changes in
arguments.

As illustrations of statistical homogeneity, let us consider a few examples
of random fields, where the correlation function

Ye(r1 — 1) = e (r) (1.25)

in general depends on all spatial coordinates, 1¢(x,y, z) . This function can be
anisotropic, e.g.

1‘2 y2 22
Pe(r) = of exp (—2a2 — o 262) (1.26)



with three spatial scales a, b and c¢ along the arbitrarily oriented -, y- and
z-axes. A more general case of this can be written ¢ (r) = v¢(z/a,y/b, z/c)
which is typical in the case of ionospheric field-aligned irregularities.

As examples of statistically homogeneous isotropic random fields,

Ve (r) = te(r) (1.27)
we may consider, e.g.
Ye(r) = of exp (—;;> (1.28)
or

l) (1.29)

ve(r) = o exp (— -

We may define an effective scale size {5 through

02 by = /wg(r) dr (1.30)
0

if this integral converges (convergence is not always the case).

1.8 Spectra of random functions

We can formally write for the random function the Fourier representation

C(r,t) = ////Z(k;,w) exp[+i(k - r — wt)] dr dw (1.31a)

and its Fourier transform

C(r,w) = ﬁ //// C(r, ) exp[—i(k - T — wit)] dr dt (1.315)

In these expressions r = {z,y,2} = {x1,29,23} and the spatial frequency is
Kk = {K1, ko, k3} . Elements of volume integration are written in the usual way,
i.e. dr denotes dz dy dz and dk denotes dk; dko dks . The overlining is used to
denote the Fourier conjugate of the random function. We shall in most of the
following simplify the notations by writing many-dimensional integrals with only
one integral sign, the dimension of an integral being obvious from the element
of integration.

However, the integrals (1.31a,b) are in practice not always convergent. For
example if £(r, ) is statistically homogeneous, its spectrum is a delta function.
In contrast, correlation function spectra are in general convergent in the mean-
square sense. Hence the Fourier transform pair involving the first correlation
function is in most cases well-defined:

(he(ri,ti,ro,to) =



/<Z(R17w1) Z*(H27w2)>

expli(k1 - T1 — w1ty — K2 - Ty + wats)] dridkedwidws (1.32a)

<Z(H1,w1)z*(l€2,w2)> :ﬁ/ﬂ)c(rl,tl,rmb)

exp[fi(nl ry — w1t1 — Ko "Iy + wgtg)] drldrgdtldtg (132b)

When speaking about random function spectra, we shall therefore understand
the Fourier transform pairs for correlation functions.

1.9 Spatial spectral expansions for homogeneous
random fields

When the correlation function for a random field has the simpler form for sta-
tistical homogeneity, the transform corresponding to (1.32b) is

<C(K,1) ¢ (m2)> = @) /wg(rl —ra9)exp[—i(Ky - T1 — Kg - T2)] dridre (1.33)
Performing in this integral the change of variables
r, —ry, ry—ro—p (1.34)

with the Jacobian having a determinant of absolute value unity,

Ory  Ory
dry dry = 22 gg dry dp = dry dp (1.35)
dp Op

we can simplify the correlation function spectrum (1.33) as follows

(Ce) T (m2)) = 5z [ vcto)explina - o] ap

1
2n) /exp[*i(m — K2) -r1] dry = ¢¢(K2) 6(k1 — K2) (1.36)
where 0(k) is the Dirac delta function of a vector argument
(k) = ﬁ /exp[—in -r] dr (1.37)
and )
bc(k) = W/@bc(p) exp[—ik - p] dp (1.38b)



The inverse of (1.38b) is

velp) = [ oclm)explin - pl de (1.380)

Taking the complex conjugate of (1.38b), changing then the sign of the
variable, p — —p, and using finally the property (1.24a), we find

¢c(k) = ¢ (k) (1.39)

i.e. ¢¢c(k) is a real function.
An interesting special case is when also 9. (r) is real. Then (1.38a,b) can be
evaluated with the cosine transform:

Pe(r) = /¢C(H) cos(k -r) dr (1.40a)

0clw) = gz [ Velpheost - p) dp (1.406)

Hence ¢ (r) and ¢¢(k) are then even functions of their arguments.

As another special case we shall also consider the isotropic case ¢¢(r) =
t¢(r). In spherical coordinates (r,6,¢) with x as polar axis we then have
dr = r?sin @ dr dfde . Then (1.38b) yields

dc(k) = 271'1214 /r Ye(r) sin(kr) dr (1.41b)
0

This expression involves the sine transform, and hence, by using the formula for
the inverse sine transform, we find

Ye(r) = 4—7T/I<; ¢¢(k)sin(kr) dr (141a)

r
0

We shall conclude this section by pointing out a consequence of the fact that
the arguments of the correlation functions must be dimensionless. If the typical
characteristic scale in ordinary space is £¢, then the spatial spectrum has the
typical scale size k¢ ~ Ec_l , as can be seen from

dc(K) = ﬁ /1/Jg (;;) exp [—ng : ;C] dr =

(2%)3/%(0‘) exp[—iri l¢ - of dov ~ ¢¢(kle) (1.42)

so that k¢ ¢¢ ~ 1. The quantity o is the dimensionless space variable r/¢ .



1.10 Spatial and frequency expansions

When the correlation function is homogeneous in time as well as in position,
e(r1 —ro,t; —ta), we find as a natural generalization of the spatially homo-
geneous case the correlation function spectrum

<E(H17w1) C*("éz,wz)> = ¢c(K2,w2) 0(K1 — Ka) 6(w1 — w2) (1.43)

where

dc(k,w) = ﬁ /wg(r,t) exp[—i(k - r — wt)] dr dt (1.44)

Integrating this over frequency and using the d-function (1.37), we find the
pure spatial spectrum of the homogeneous correlation function:

¢ (k) = /gb((fi,w) dw = ﬁ /wc(r,O)exp[—iﬂ -r] dr (1.45)

Integrating over the spatial variable we find, instead, the pure frequency spec-
trum:

¢ (w) = /¢<(n,w) dk = % /1/1((0,75) exp|+iwt] dt (1.46)

1.11 The model of frozen drift

This model is useful when there is a macroscopic velocity v involved, which
dominates over the internal isotropically fluctuating velocities of the medium
as for, e.g. the transionospheric signal from a satellite moving with high speed.
Then the correlation function can be written

he(r,t) = e(r — vit) (1.47)

The spectrum of this function is expressed by (1.44). Introducing there the
variable transformation

t—t, r—vt—p (1.48)

and noting that the determinant modulus of the Jacobian here, as with (1.34),
is unity, we obtain the correlation function spectrum

b, w) = (2}T>4/w<<p> expl—i(rs- p+r-vi—wt)] dp dt = b () 5w — K -V)

(1.49)
with ¢¢ (k) given by (1.38b).
To express the pure frequency spectrum (1.46), which now is
61" (w) = /¢<(m) 5w — k- v) dss (1.50)

10



we split kK into its parallel and perpendicular components:
k={K, KL} ; where k| =kK-V/v, KL =K—KV/v (1.51)

Hence we obtain the result

ol"(w) = /q}c(nH,K,J_) d(w—rpv) dry dey = %/qﬁc (%,FLJ_) dky (1.52)

1.12 Quasi-homogeneous fields

To define the concept of quasi-homogeneity we consider again the general spatial
correlation function

P¢(r1,r2) = 0¢(r1) o¢(rz) Ke(ry,ra) (1.53)
In the special case of statistical homogeneity (1.53) can be written
Pe(ry —ra) = ag K¢(rqy —r2) (1.54)
If, on the other hand, we introduce the new spatial variables:
R=1(r;+12), r=r;—rp (1.55)
the general correlation function (1.53) can be written
U¢(R.r) =o¢ (R+3r) o¢ (R—51) Kc(R,1) (1.56)

Quasi-homogeneity implies that two spatial scales are involved, one scale £, ¢
for the relative variable r and another L.; for the central variable R, and that

fgef < Lef (157)
Homogeneity, in particular, is the limiting case when L.y = oo and then £,y is

the only spatial scale.
In the quasi-homogeneous case we may approximate (1.56) as follows:

Ye(R,r) = O'?(R) K:R,r) (1.58)

The Fourier transform pair in the fast variable corresponding to (1.38a,b) is now

Ye(R,r) = /¢<(R, K)exp[+ik - r] dk (1.59a)

6 (R.K) = @ / Ve (R, 1) exp|—ir - 1] dr (1.500)

The function ¢¢(R, k) signifies a local spectrum, which depends slowly on R.
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1.13 The concept of ergodicity

The theoretical introduction in this Chapter is based upon averaging over sta-
tistical ensembles, expressed by the angular brackets ( ). Experimentally we
are confined to measurements on a concrete realization of the ensemble. Then
the averages of any deterministic function F[¢(r,t)], e.g. the mean value, must
be formed by time averaging

FE® D] = L / Fle(r,1)] dt (1.60)

The important principle of ergodicity implies that ensemble averages are
equal to time averages as T — o0, i.e.

lim FIE(r,0)] = (Flé(r. 1)) (L61)

T—o0

A necessary condition for a stationary process to be ergodic is that
T
lim & t) dt = 1.62
Jim 4 [ve(t)dt=0 (1.62)
0

1.14 The structure functions and random fields
with stationary increments

The correlation function for the real random field £(r) is according to (1.18)
given by

be(r1,r2) = (£(r1) &(r2)) (1.63)

Another commonly used second-order moment is the structure function, which
in the general case is defined by

De(r1,12) = ([€rr) — &) ) = (E(r1)) +{€(r2)) ~2 (€(r1) é(r2)) (1.64)

In the situation of statistical homogeneity (Section 1.7) the structure function
depends only on the difference variable r = r; — ro. From (1.64) we easily find

De(r) = 2 [0F — e(r)] = 2 [t(0) — v ()] (1.65)

Since the random functions considered in this Section are real, the Fourier
transform pair ¢ (r) , ¢¢(k) can be expressed by the cosine transform, (1.40a,b).
It is interesting to obtain a transform pair relating D¢(r) and ¢¢(k) to each
other. Using (1.40a), we can express (1.65) as follows:

De(r) = 2/(;5&(&) [1 —cos(k-r)] dk (1.66a)

12



The gradient of this formula is
VD¢(r) = 2/111 ¢¢(k1) sin(ky - )] dky (1.67)

Multiplying on both sides by exp[—ik - r], expressing the sine with exponential
functions and integrating over r, we obtain as the next step

/[VDg (r)] exp[—ik - r] dr =
—i / K1 ¢e(k1) {exp[+i(k1 — K) - 1] —exp[—i(k1 + k) - 1]} dridr =

—i (27‘()3/&1 pe(K1) [0(k1 — K) — d(k1 + k)] dry = —2i (27)%k ¢ (k)
(1.68)
After scalar multiplication with & in the above, we may write the result

de(k) = W /n - VDg¢(r) exp|—ik - r] dr (1.69)

Since ¢ is an even function, VD¢ must be odd, and hence we arrive at the
following form:

de(K) /n -VDg(r)sink - r dr (1.66b)

~ 16m3k2
which we shall adopt as the inverse of (1.66a). We point out that when ¢¢(k)
has a singularity ~ 1/k“ as k — 0, it may happen that D¢(r) exists but ¢¢(r)
cannot be constructed because of the singularity; cf. (1.40a) and (1.66a). For
the convergence of (1.40a) the singularity of ¢¢(x) must fulfil o < 3, but for
the convergence of (1.66a) it is sufficient that o < 5.

Egs. (1.66a,b) have been obtained formally for the case of statistical homo-
geneity, when
Ye(r1,12) = Yhe(r1 — 12) (1.70)

It can be shown that they remain valid for the more general case when the
structure function D¢ obeys the corresponding relation

Dg(rl, 1'2) = Dg(l‘l - 1‘2) (171)

but nothing is stated about 1 . We remark that a necessary condition for (1.71)
is that

(€(r1)) = (€(r2)) = a (ry —ra) (1.72)

where a is a constant. This means that £(r) has a stationary increment, so
(1.71) is the definition of the random fields with stationary increments.

13



Chapter 2

Statement of the problems
in the statistical theory of
wave propagation

2.1 Stationary and quasi-stationary forms of Max-
well’s equations

We shall denote the arbitrary time-dependent fields by calligraphic letters;
E(r,t), H(r,t), D(r,t) and B(r,t) = po H(r,?).

Maxwell’s equations for the electromagnetic field (without outer sources,
currents and magnetic polarization) are

V- D=0 (2.1a)
V-B=0 (2.1b)
oD
OH

Eliminating H between (2.1c) and (2.1d) and using a well-known formula from
vector analysis, we easily obtain the wave equation
0*D
o2
To develop this equation further, we need the constitutive relation between
€ and D. In its most general form for a cold plasma, involving temporal
dispersion but being local in space, it is given by the linear functional

VV-E-V2E=—pu (2.2)

t

D(r,t) = / e(r,t,t') E(r,t') dt’ (2.3)

—00
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For a nondispersive medium we have locality also in time, and the permit-
tivity is given by the expression

e(r,t,t') =elr, 2t +t)] 6t —t') =e(r,t) 5(t —t) (2.4)
so that (2.3) simply becomes
D(r,t) =e(r,t) E(r,t) (2.5)

This form is, however, not applicable to a plasma.
The fields of a harmonic process are characterized by the simple time-dependence

E(r,t) = E(r) e~ ™! (2.6)

Here E is the complex amplitude of the field. For such fields time derivatives
can be obtained by replacement with a simple multiplication:

0
— = —lw 2.7
ot 2.7)
However, in quasi-harmonic processes, where the medium is slowly changing
its properties with time, we have time-dependent amplitudes, i.e. instead of
(2.6) we have to work with

E(r,t,at) = E(r,at) e ™! (2.8)

where the slowness of the time-dependence in E is indicated by the smallness
of the formal parameter oo. The rule (2.7) is still valid for fields like (2.8) if
a<Kw,ie. if

wl'>1 (2.9)

1

where T = a~" is the characteristic time-scale of the slow changes of the

medium.
For a stationary plasma the permittivity depends only on the difference
between the time arguments and the constitutive relation (2.3) then takes the

form
t

Dir,t) = / (.t — ) E(r, ) At (2.10)

For a harmonic process in this dispersive medium the fields are
E(r,t) = E(r,w) e ™* (2.11a)

D(r,t) = D(r,w) e ™! (2.11b)
Using (2.10), one finds then the following relation between the amplitudes

D(r,w) = &(r,w) E(r,w) (2.12)

15



where £(r,w), i.e. the dielectric permittivity of the frequency component w,
is the Fourier transform of the permittivity function e(r,t —¢'). For causality
reasons we then put

e(r,t—t), t <t
e(rt— 1) = {o( ) Lol (2.13)

In order to simplify our notations we shall work with the relative dielectric
permittivity €(r,w) , defined through [cf. (1.2)]

E(r,w) =gp €(r,w) (2.14)

We now put (2.12) and (2.14) into (2.2) and use also (2.7) to obtain the wave
equation

VV-E - V?E = peow? €(r,w) E (2.15)

We rewrite the factor in front of ¢ by means of the vacuum wave number & as

follows:

pogow? = w—z = k? (2.16)
c

The wave equation, valid for a Fourier component of the field in the stationary
plasma, may hence be written

VV-E-V?E - k? e(r,w) E=0 (2.15")

The general case of a non-stationary plasma with constitutive relation of
type (2.3) is much more difficult. We shall treat this case in the quasi-harmonic
approzimation, i.e. we assume that the non-stationary time dependence of ¢ is
slow enough so that we can write the relation (2.3) on the form

+oo
D(r,t) = / et —t', sa(t+t)] E(r,t') dt’ (2.17)

Consequently we shall introduce a slow time dependence also into the fields [cf.
(2.11a,b)] _
E(r,t,at) = E(r,w,at) e ™! (2.18a)

D(r,t,at) = D(r,w,at) e~ ! (2.18b)

With (2.18a) and the introduction of a new integration variable, t —t' — 7,
(2.17) can be written

+oo
D(r,t) = / elr, 7, a(t — 37)] Elr,w,a(t — 7)] exp[+iw(r —t)] dr  (2.19)
Neglecting 7 beside ¢ in the slow argument of E and ¢, we get

+oo
D(r,t) = E(r,w,at) e " / e(r,7,at) 7 dr (2.20)

—00
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Hence we find in the slowly non-stationary case the same constitutive relation
(2.12) as for the strictly stationary case, i.e.

D(r,w,at) = &(r,w, at) E(r,w, of) (2.21)

where £(r,w, at) is the Fourier transform of € over the fast time variable. This
kind of transform is justified if the time-scale T' of change of the medium intro-
duced earlier is much larger than some characteristic internal time-scale ty of
the dispersive plasma, i.e. T > t;.

What is this characteristic time ty? We have already introduced the con-
dition (2.9) justifying the rule (2.7) for replacing time derivatives by multipli-
cation. This condition is, however, not sufficient here. Instead we consider the
relative permittivity for a cold plasma with collision frequency v :

B e? N(r)
meow?(1 + iv/w)

e(w)=1 (2.22)

We shall use this expression to get a qualitative estimate of the response of the
plasma to an impulse (é-function, which has spectrum of amplitude unity):

+oo

e(r) = / goe(w) e ™7 dw (2.23)

— 00

We note that the integrand through (2.22) has two poles, one at w = 0 and
the other at w = —iv. To get the physically acceptable solution the integration
must pass below the pole at the origin of the complex w-plane. We may then
close the path of integration across w — —ico, so that it circumvents the other
pole at w = —iv. Residue evaluation then shows that (1) ~ e™*7, i.e. the
plasma response time-scale is ty ~ v~ . Hence we conclude that the condition
of validity of the quasi-stationary constitutive relation (2.21) is

v > 1 (2.24)

This is a much stronger condition than (2.9) and it must be valid also at the
peak of the ray where v has its minimum. When (2.24) is fufilled we have, in
consequence of (2.21), the same wave equation (2.15) as in the stationary case,
with the relative dielectric permittivity now slowly time-dependent, e(r,w, at) .
We have still not made use of the first Maxwell equation (2.1a) in our wave
equation. With (2.11a,b), (2.12) and (2.14), eq. (2.1a) takes the form

eV-E+Ve-E=0 (2.25)
By means of this relation, eq. (2.15’) can be written

V2E +V <VGG~E)+I£26EO (2.26)
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To get a final formula we shall further split the dielectric permittivity into a
static regular background part and the superimposed quasi-stationary fluctua-
tions:

€ =eo(r,w) + e(r,w,t) (2.27)
Hence we arrive at
VZE+V (W-E)Jer(eoJre)E:o (2.28)
€0 €

which is our main stochastic wave equation. The middle term in this equation
is the depolarization term. It can be neglected in many cases so that we have a
simpler form of (2.28):

VEZE+k* (eg+€¢) E=0 (2.29)

This is essentially (1.1).

2.2 Two approaches in the statistical theory of
wave propagation

2.2.1 Construction of the solution for a particular realiza-
tion

The first, and in this report the major, approach for obtaining a solution of
the wave propagation problem is the direct solving of the wave equation for a
realization of the fluctuations. Different approaches to this are employed for
different regimes in Chapters 3-6. In one particular case only, can we give an
exact representation of the field. This is the case treated in Chapter 3, when
the wave is propagating in a regular homogeneous half-space, bounded by an
infinite random screen where the initial stochastic field is given at the boundary.

When the field has been constructed for a realization, moments of the field
can be obtained by averaging.

2.2.2 Direct construction of the equations for the mo-
ments

Another approach is to construct equations for the propagation of the moments,
i.e. wave equations directly governing quantities such as (E), (E - E*) etc. For
example, from (2.29) we directly can write down the equation for the mean field:

V2 (E)+ k% (E) +k* (¢E)=0 (2.30)

We see that in this equation there appears a new unknown quantity, the moment
(e E), which cannot be split into the component parts of its argument. In order
to treat this kind of equation we must therefore find a way to handle such
quantities. This is difficult in general, but can be done in some special cases. It
is the subject of the later chapters of these notes.
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2.3 Plane waves in homogeneous media

The Helmholtz’ equation (2.29) for a component of the electric field in the
regular homogeneous medium (ey = constant) is given by

VZE+ k> E=0 (2.31)

Substituting a solution on the form of an exponential function exp(ik - r) into
(2.31), we find that the spatial frequency x must fulfil a dispersion relation of
the form k2 — k? ¢y = 0. Hence the solutions can be written

E=A exp(ik-r) = A exp(icf - r) = Aexplik(lzx + Lyy + (. 2)) (2.32)

with the wave number
k= ky/€o (2.33a)

the wave vector
K=kt (2.33b)

and
£={ly, 0, 0.} (2.33¢)

being the unit vector in the direction of propagation: [£| =1, ¢2 +€§ +02=1.
We also remark that the wavelength is A = 27/k .

2.4 Plane wave expansion of a spherical wave

The Green’s function for the wave equation in vacuum is the solution of the
wave equation for a point source in an arbitrary point rg :

V2G+k* G =6(r—r) =d(x—x0) 6(y —v0) 6(2 — 20) (2.34)

with the necessary boundary condition at infinity. With the time-dependence
on the form exp(—iwt), outgoing spherical waves increase their phase with the
distance from the source. Since the Green’s function shall be a purely outgoing
wave, we then have the well-known solution

1 exp(ik|r —ro|)
G(r—rg) = n r—ro (2.35)

We want to obtain an expansion of this solution in terms of plane waves
(2.32). To this end we attempt a solution on the form

G(r—rg) = // 9(z, a, B) expli(az + By)] dadf (2.36)

When we introduce this expansion into (2.34), we also replace the o-functions
of z and y by their Fourier integrals:

O0(x —xo) = % /exp[ia(m — zp)] da (2.37a)
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1
27
In this way we get the following ordinary differential equation for the function
g:

5y — yo) = / explif(y — yo)] 4B (2.370)

d2g

(et ) g = L explmi(amo + Byo)] 52— z0)  (2.38)

472

The solution of this equation which is continuous at zy and the derivative of
which has a step equal to the coefficient of the J-function at zg , is given by

9(z,20) = 4761_}2(1)2[2 \;% exp [Jri k2 —a?—02(z— Zo)i| , z> 2
(2.39a)

exp[—i(azo + Byo)] ,
9(z,20) = 7 2; \/07052 exp [71 k2 —a?—02(z— Zo)i| , z < 29
(2.39b)

In conclusion, the Green’s function (2.35) with (2.36) and (2.39a,b) can be
written
1 exp(iklr —ro|)

G(riro):747r |r — ro|

i //exp{+z'[a(m—zo>+ﬂ<y—y0>i P —a? = (: - )| }

Hence the expansion of the spherical wave in plane waves is

da df

= 8%
(2.40)

exp(ik|r —ro|)
‘I‘—I‘0|

exp +z ol —x0)+ By —yo) £ VK2 —a?— 5% (z— 2)
S ) +56 M goas

VE —a? -2
(2.41)

where the plus and minus signs pertain to z > 25 and z < zy, respectively.
Later we will also need the derivative

0 exp(ik|r —rol)

0z |r — o]

::F%//QXP{H [O‘(iE*Io)WLﬁ(y*yO)i kQ*Oﬂ*ﬂQ(Z*ZO)H dadf
(2.42)
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We introduce in these expansions some simplifying notations:

r={p,z}, where p={z,y} (2.43)
ro = {pg. %0}, where  py = {zo,y0} (2.44)
k= {«, [} (2.45)

Then we obtain from (2.41), (2.42)

dr

(2.41")
(2.42")
The integration is to be performed over the entire k-surface, but the partial
waves are oscillatory in z only when x < k. Note that the integrand of (2.41")
has a weak singularity at x = +k; these two points are also branch points of
the integrand. To do a correct evaluation of the integral with the integrand as
an analytic function, it is therefore necessary to define branch cuts from these
points and to keep to those definitions. In order to get the correct solution it is
necessary to fix these branches so that Im vk2 — k2 > 0.
The partial waves with x > k are evanescent and sometimes do not influence
the solution at a distance from zg .

exp(ik|r — ro|) _ 1 // exp{+i [k (p—po) VK> — K2 (2 — 20)] }
2w

|r — rof k2 — K2
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Chapter 3

Boundary given as an
infinite stochastic screen

Consider a satellite emitting a VHF signal which passes through the ionosphere
down to earth. Due to the irregularities of the ionosphere this signal has stochas-
tic features when it reaches the bottom of the ionized layers. If we treat the
wave propagation problem below the ionosphere as a free-space problem, we
may consider the bottom ionosphere as an infinite screen where the stochastic
field is given as a boundary condition.

Given this boundary field we are, in fact, able to obtain an exact representa-
tion for the field in the half-space below the ionosphere. However, the problem
how the ionospheric fluctuations act to set up the field at the boundary then
still remains.

3.1 Field representation in the half-space

We let the boundary be at z = 0 and assume that the complex amplitude of the
monochromatic (possibly slowly time-varying) field is given there on the form

E(p,0) = Ey(p) (3.1)

With this boundary condition we shall construct the field in the half-space z > 0
as the solution to the wave equation

VEE+K*E=0 (3.2)

We shall proceed similarly as in Section 2.5 and write the solution as an expan-
sion of plane waves:

E(p,z) = /f(z,a,ﬁ) exp[+i(az + By)] da df = /f(z,n) expl+ik - p] dr
(3.3)
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Then (3.2) is transformed into an ordinary differential equation for f:

L= 1 =0 (34

Our boundary condition at z = 400 is that the waves there be purely out-
going, and hence the acceptable solutions of (3.4) have the form

f(z,k) = A(K) exp (—l—i\/ k2 — k2 z) (3.5)

The boundary condition (3.1) on the screen at z = 0 gives the coefficient function
as the Fourier transform of the boundary field:

A(r) = f(0, k) = Eo(k) (3.6)

Eo(k) = ﬁ /Eo(p) exp(—ik - p) dp (3.7)

When we use (3.6) and (3.5) in (3.3), we get the result

E(p,z) = /Eo(n) exp [Jri (n -p+VEk? — K2 z)} dk (3.8)

Thus we have obtained an exact representation of the field for z > 0 in
terms of an expansion in plane waves over spatial frequencies k. In order to
obtain an alternative representation, in terms of an integral over the boundary,
we introduce the transform (3.7) into (3.8), which yields

E(p,z) = ﬁ //Eo(po) exp{+i {,.;. (p = po) + VK> — K Z}} dw dp,

(3.9)
Replacing the integral of the exponential function over k by the left-hand side
of (2.42"), we arrive at the formula

1 0 |exp(+ik|r —
Bp) =5 [ Boon) - | R0 gy (a0

This is also an exact representation of the field for z > 0, but now in terms of
spherical waves emanating from the source points p .

In Sections 3.2-3.4 we will obtain various approximations of this represen-
tation.

3.2 Far-field (wave) zone

To obtain an approximation of the integral representation, we first calculate the
derivative in (3.10):

2 ot pl] g, (o L) ooty
0z Ir — pol ik [r — py| Ir — pol?

23



The second term within the large brackets can be neglected if k|r — p,| > 1 or,
rather,
kz>1 (3.12)

i.e. for field points many wavelengths away from the screen. We adopt (3.12) as
the definition of the far-field or wave zone and find in this approximation from
(3.10) the integral representation

kz exp(+ik|r — pol)

E(p,Z) = Tﬂ'l EO(pO) |I‘ — p0|2

dp, (3.13)

3.3 The Fresnel approximation

The next step of approximation of our integral representation involves the Taylor
expansion of the distance term

Ir—pol = V(p—po)* + 22 (3.14)
for large z, i.e.
(p—py)° (p— po)*
Ir—py| = 2 {1+ 2220 +0 Z4° (3.15)

The Fresnel approximation amounts to neglecting terms beyond the quadratic
in this expansion when using it in the exponential function in (3.13). This is
justified if the neglected terms introduce phase errors much less than unity in
the integrand. Hence the condition of validity of the Fresnel approximation is
that

kLj < 2° (3.16)

Here we have introduced a characteristic scale Ly = |p — py| of the initial field
distribution, which is related to the size of the illuminated area of the screen.
Later in the random case we will find that it is the characteristic scale of the
correlation function.

It is easily seen that the first term of the Taylor expansion is sufficient in
the denominator in (3.13), i.e. |r — py| & z. Thus we arrive at the following
expansion for the field in the Fresnel approximation:

kemz ik(p — poy)*
E(p,2) = 5 — / Eo(po) eXp{ 5 ] dpy (3.17)

3.4 The Fraunhofer approximation
Finally we expand the square in the argument of the exponential function in
(3.17):

(P—po)*=0"—2ppy+pp (3.18)

We obtain the Fraunhofer approzimation by neglecting p3 in this expression.
This is permissible if the error introduced in the argument is much less than
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unity, i.e. if kp3/(22) < 1 or, if we use the characteristic length Ly introduced
in the previous section,
kLy < 2 (3.19)

Another way to write this condition is
Lo < lyr (3.19))

where

lir=VAz (3.20)

is the size of the main Fresnel zone. The Fraunhofer approximation then turns
out to be

k
Elp.2) =57

exp {—l—ik (z+ ;’i)} /Eo(po) exp [—z‘kp'zpo} dp, (3.21)

We see that this representation is a kind of plane wave expansion. If the inte-
gration is carried out over the entire py-plane, then another way to write the

field is ) ) )
2 -
E(p,2) = 2% exp {ﬂ'k (z + pﬂ Eo <p> (3.21')
1z 2z z

3.5 Mean field and correlation function for the
field in the half-space

When we talk about spectra we usually mean spectra of correlation functions.
As we have already mentioned, the spectrum of the random function itself is
not always defined. To obtain the mean field we shall therefore use the integral
representation (3.9), which involves the initial stochastic field as a function of
the position on the screen. Thus we have

Ep.2) = Gz [ Eae) exp (i [ (o= o)+ V=2 2]} dmap

(3.22)
We shall assume a statistically homogeneous initial field, which means that

<E0(p/)> = EOO = const (323)

With this condition the integration over p’ in (3.22) gives a delta function; d(k).
Hence the result of (3.22) is simply a plane wave of constant amplitude in the
z-direction:

(E(p',2)) = Eg e™* (3.24)
The correlation function for the fluctuating part E of the field is from (3.8)

(Wepr,21p2,22) = (Epy. ) (o)) = [ (Balo) Eja)
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-exp[—H’(nl-pl—ng-pg)—i—iq/kﬂ—n%zl—i—<i k2—n§> zz} dri dro

(3.25)
For the statistically homogeneous initial field considered here we have according
to (1.36)

(Eo(1) Bj(k2)) = by (k1) 61 — hiz) (3.26)
Hence, from (3.25) we get

'(/}E(pla 215 P25 Z2) = /(bED (K’)
exp [—H’n “(p1 — po) +iVEE— K22 + (i\/ k2 — /<;2)* 22} dr (3.27)

The physical solution corresponds to the following branch of the square root:

VEk2 — K2 k <k
2 2 — )
VEkZ—k {z =, o (3.28)

Hence part of the exponent in (3.27) can be written

exp [z\/m 21 + (lm>* 22} _ {eXp [iVE? = K2 (21 — 22)]

exp [f [k2 — k2| (21 + 22)] ,

(3.28)
We see from the lower case of this that the integrand vanishes if k > &k and
z1, 29 lie several wavelengths away from the screen. Thus we may confine the
integration to a circle of radius k in the k-surface:

YE(p1, 21, Py, 22) * / B, (K) exp [—i—i (K -p+ \/Mz)} de  (3.29)

<k
where we have introduced the relative coordinates
pP=p—pPy, Z2=2z1 — 2o (3.30)

This result shows that with Ey(p) statistically homogeneous, also the field in
the half-space is statistically homogeneous in this approximation. Our result
is exact in the transverse p-variable, but an approximation in the longitudinal
variable z. Below we will study special cases of the result (3.29) in more detail.

3.6 Longitudinal and transverse correlation func

tions in the limiting case of small-scale field
fluctuations on the screen

We shall begin by considering small-scale fluctuations, i.e. cases when the spatial
scale ¢, of the fluctuations is small compared to the wavelength. Formally we
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express the condition for this in the following inequality
klg, <1 (3.31)

where k is the wave number of the radiation. We have already seen [eq. (1.42)]
that the spatial spectrum of the initial field has the scale kg, ~ E;J; . Hence the
condition (3.31) can also be written

k< kg, (3.31")

When we now integrate (3.29) over the area x < k, eq. (3.31) shows us that
@ g, is non-zero over a much larger area than that. Hence ¢ g, (k) does not vary
so much over the area of integration and can be approximated by a constant
value :

VYEe(p,2) = ¢E,(0) / exp [Jrz' (n p+ \/mZ)} dk (3.32)
K<k

We shall now study this expression in two special cases. First the case of
purely transverse correlation function, when we put z = 0 (i.e. z; = 22). Then
we have

Vi (p,0) ~ 61, (0) / exp [+ik - p] dss (3.33)
rk<k

With polar coordinates k — K, ¢, this gives
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k
VE(p,0) = ¢5,(0) [ dp [ exp[+irpcosy] kdk =
]

=27 ¢, (0) k J1(kp)/p (3.34)

This result involves the Bessel function of the first order, Ji(z), and denoting
the first zero of the Bessel function by x = d; , we may find an estimate of the
characteristic transverse scale-size g of the field in the half-space through

kilp, =dy ~38 (3.35)

In the other case, the purely longitudinal correlation function, we put p =0
in (3.32) to obtain

V50, 2) ~ ér, (0) / exp [+z’\/k2 — R2 z] dw (3.36)

K<k

When we once again introduce polar coordinates, we can immediately carry out
the ¢-integration so that

k
YE(0,2) = 27 ¢g,(0) /exp [—l—i\/ k2 — K2 z} k dk
0
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k

d K

Sy~ 2 _ .2

=27 ¢, (0 dz/lmexp[ k K :|dl€
0

=27 ¢, (0) d {1 (e — 1)} (3.37)

dz | z

Hence the characteristic longitudinal scale-size KSEZ) is of the order k=1, i.e of the
order \. From these estimates we may conclude that the correlation volume is
several units larger in the transverse directions than in the longitudinal direction.

Finally we shall consider the variance, i.e. the statistical dispersion, for the
case of small-scale fluctuations in the half-space. From (3.32), we get

O'2E =1Yg(0,0) = ¢g,(0) / dr = 7T/€2¢EO (0) (3.38)
<k

Expressing ¢ g, (0) with its Fourier transform, this yields the estimate
4 k2 k? 1 2 2
= o [ Pre) dp = o, 0) = 4 (e )P oh,  (339)

In view of the condition for small-scale fluctuations of the initial field, eq. (3.31),
we hence find that the field fluctuations in the half-space fulfil

op < g, (3.40)

3.7 Longitudinal and transverse correlation func
tions in the limiting case of large-scale field
fluctuations on the screen

In the case of large-scale fluctuations the situation is the opposite of (3.31), i.e
the spatial scale g, of the fluctuations fulfils

klg, >1 (3.41)
Because of kg, ~ fgol this condition can also be written

k> kg, (3.41")
In the integral (3.29), ¢ g, (k) is now non-zero only over a small part of the area

k < k of integration. Under these circumstances we may expand the square
root in the exponent as follows:

N (3.42)
2k
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In this limiting case we may then write the correlation function (3.29), also
extending the integration to infinity,

400
2
. Kz

ostp.2) = e [ om0 o[ i (o= 57 )| ax )
—0o0

This expression may now be used to determine the transverse and longitu-

dinal correlation functions, just as in the previous section. For the transverse

correlation function we find simply

+oo
¢WMz/mwmwmﬂM:mw (3.44)

i.e. it is the same as for the initial field and hence g, ~ fg,. Of course we
then also have
op N oy, (3.45)

The longitudinal correlation function, on the other hand, is given by

+oo
2
. K*z

V50, 2) ~ ¢t / OB, (K) exp [Z%] dr (3.46)

— 00
This integral cannot be solved in the general case, but we shall obtain an esti-
mate of the order of magnitude of the longitudinal scale-size of the field. We
note that the exponent in (3.46) has a stationary point at k = 0. Hence the
main contributions to the integral come from the main Fresnel zone defined by

KQEJS;)
2k

=1 (3.47)

i.e. the correlation function in practice varies only for |z| < ég) , where, accord-
ing to (3.41),
0 ~ k0% > U, (3.48)

To summarize our results (3.44) and (3.48), we can say that it is typical for
the correlation function for fields radiated by large-scale inhomogeneities that it
is non-zero within an elongated volume with transverse dimension equal to the
scale-size of the initial field and longitudinal dimension much larger than that.
This is in contrast to the previous case of small-scale inhomogeneities.

We shall also say a few words about the coherence function for the case
of large-scale inhomogeneities on the screen. It is related to the correlation
function, but not centred on the mean value:

BE(p17p2vzl722) = <E(p1,21) E*(p2,22)>

= Vu(p1, P2, 21, 22) + (E(p1, 21)) (E¥(p2,22)) (3.49)
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For statistically homogeneous fields the mean field has constant amplitude equal
to its initial value [cf. (3.23,24)]; hence

The mean energy of the field is directly obtained from this and it is seen to be
independent of position in space:

W = Bg(0,0) = ¢£(0,0) + |Eg|* = 0%, + |Eool” (3.51)

3.8 The case of a pure phase screen

In some important applications the initial field has constant amplitude, only
the phase is stochastic, i.e.

Ey = A expliS(p)] (3.52)

In the following we shall put the amplitude equal to unity, A = 1. The phase S
is a new zero-mean random field, (S(p)) = 0, which we assume has a Gaussian
probability density function:

w(S) = \/%US exp (—2“2) (3.53)

Using the integral representations (3.8) and (3.9), we obtain the mean field

(B(p,2)) = /<Eo(n)> exp [H- (,g.ph/mz)} dre
= ﬁ /(EO(P/» exp{—!—i {n- (p—p)+ VK2 — K2 z}} dk dp’

(3.54)
Since we know that the average initial field is a constant we can take it outside
the integral. We then obtain a J-function from the integration over p’ so that
(3.54) gives

(E(p,2)) = (expliS(p)]) e** (3.55)

With (3.53), the average of the exponential function is

400 9
(expliS(p)]) = \/%OS / exp (—HS—;%) ds (3.56)

— 00

This is transformed into a standard integral by rewriting the exponent as a
square expression:

—— (2 —2iSok —oktok) = -5 - — (S —io2)® (3.57)
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The result of the evaluation is
(exp[iS(p)]) = exp (—50%) (3.58)
which gives the mean field
(B(p,z)) = exp (—10? + ik2) (3.59)

We remark that (3.58) is a universal result for normally distributed random
functions S'.

Next we consider the second-order moment. Using the integral representa-
tion (3.9), we find

Bg(py, P2y 21, 22) = (E(py, 21) E*(py, 22))
= ﬁ / (exp{+i[S(p') — S(p")]}) dri dks dp’ dp-

exp{ﬂ {"‘1 (P =P+ k=K 21 — k2 (py — ) — \[K? — K3 Z"’H

(3.60)
The integrand contains (exp{+i[S(p’) — S(p”)]}). Since the exponent is nor-
mally distributed, we may again use the property (3.58):

(exp{+i[S(p) — S(p")]}) = exp {—3 ([S(p") — S(p")]*)}

=exp [~3Ds(p' = p")] = fs(p' — p") (3.61)

where Dg is the structure function. Introducing this result into (3.60) togehter
with the change of variables

p// N p// , p/ N p// —p (3.62)

and specializing to the transverse moment by putting z; = 25 = 2z we obtain

1
Br(py, p2,2) = @i / fs(p) dk1 dk2 dp dp”

-exp{+z’ {m-(pl—p”—pH\/ﬂz—nz-(pz—p”)—\/k2—f<32”

(3.63)
Here the integration over p” may be carried out directly; it gives the function
0(k1 — ko). With k1 = ke = K, (3.63) can hence be written

Bg(p1, P2, 2) = ﬁ /fs(p) exp{+i[k-(py —p) — K py]} dedp (3.64)

We see that also the k-integration gives a delta function, 6(p; — p; — p) , so the
final result is

Bg(py, p2,2) = fs(p1 — p2) = exp [—%DS(M - PQ)] (3.65)
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Clearly this transverse coherence function is independent of z. According
to (1.65) we have

Ds(p) = 2[0% — s(p)] (3.66)
with p = p; — p,. Hence we may write the result (3.65) as follows:
Bg(py, P2, 2) = exp {~[0§ — ¥s(p)]} (3.67)

At the same time we have, according to the definitions of the second-order
moments,

BE(p17p27Z) :wE(pvz)—i_EgO (368)

where Eqp is the initial mean field, which is real according to (3.59). Hence the
following relation holds for the correlation functions of the field and the phase
of the field:

$p(p,2) = Br(p, 2) — Eg = exp [s(p) — 0§] —exp [—03] (3.69)

We shall consider this expression in two limiting cases, thereby making use
of the correlation coefficient (1.21):

Vs = 0% Ks(p) (3.70)

In the limiting case of weak fluctuations, 0% < 1, Taylor expansions of the
exponential functions in (3.69) give

)~ 02 Ks(p) = vs(p) (3.71)

The condition for strong fluctuations is 0% > 1. Then the second expo-
nential function in (3.69) vanishes and in the first one we may use the Taylor
expansion of the correlation coefficient:

Ks(p) = 1— L |K4(0)] p? (3.72)
Hence the result is
vy & exp [—5 [K5(0)] 0% p?] = exp [—5 [04(0)] p°] (3.73)

According to (3.67), (3.68) the average energy is

(IBI?) = Bu(0) = 0% + B3y = 1 (3.74)

3.9 Fluctuations of the amplitude and phase of
the field, generated by a phase screen

Sometimes it is of interest to construct the moments for amplitude and phase
separately. To this end we shall use the Fresnel representation (3.17), where we
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separate the fluctuating part of a particular realization of the initial field from
the mean field:

k eikz

2T 2

B(p.2) = 55 [1Bo(py) — Boo + Fo) e [*’“(’"”)} dp (375)

2z

The resulting field is also separated into deterministic and zero-mean fluctuating
parts:

Elp. ) = [Boo + alp, )] ¢** (3.76)
where ) K /)2
_ o (o +ik(p—p /
ap2) = 5o [ Ealp)esp [Qz } dp (3.77)
with the definition }
Eo(po) = Eo(po) — Eoo (3.78)

If we further separate the fluctuating field into its real and imaginary parts,

a(p,z) = a1(p, z) + i az(p, 2) (3.79)

we may write A
E(p,z) = A(p, z) exp|iX(p, z)] ' (3.80)

with the amplitude and phase given by
A= \/(Eoo + a1)2 + a% (3.81a)
as

3 = arct —_— 3.81b
arctan <E00 T al) ( )

Far away from the screen, where the condition (3.19) for the Fraunhofer ap-
proximation applies, many inhomogeneities contribute to the field in any partic-
ular point. Then, according to the central limit theorem, a; and as are normally
distributed and this distribution can be used to construct the moments. In more
general cases the representation (3.77) has to be dealt with, usually in the ap-
proximation of weak fluctuations. Since 0% = o3 + 05, we have from (3.74)

ol tos+ B3 =1 (3.82)

When the o7 and o9 are small we thus can express (3.81a,b) by means of some
terms in their Taylor expansions, thereby making use of (3.82). Hence,

Ax1l+4a —Ld} (3.83a)

Y & a) —ajas (3.83b)

We may now express moments by means of these expressions, e.g. the mean
values

(A) =1-1 (a}) (3.84a)
(%) = —(a102) = Yay4,(0) (3.84b)



and the correlation functions

pa = (a1(py, 21) a1(py, 22)) = Va, (3.85a)
¥y = (a2(py, 21) a2(pa; 22)) = Va, (3.85b)

as well as the cross-correlation function (mutual correlation function)
wAE = 1/1a1a2 (pa Z) (3850)

which also appears in (3.84Db).
The correlation functions (3.85a—c) can be expressed by means of the two
correlation functions (1.18a,b) introduced earlier, i.e.

Yo = <a(p1, 21) a” (p2,22)> (3.86@)
ba = (a(py, 21) a(ps, 2)) (3.86b)
With these we get the relations
Yoy = 1Re [wa n M (3.87a)
w(LQ = %Re |:1/}a - 1;7}0,:| (387b)
¢a1a2 = %Im [% - zzja} (3876)

To construct (3.86a,b) we use the integral representation (3.77). In this way we
get

k2 ik 5 ik 9
Valpr:p2:2) = 55 / Y, (p'—p") exp [+22 (1 =P")" =5 (P2 = p")°| dp" dp”
(3.88a)
~ —k? ~ ik 5 ik 9
Ya(P1:P2:2) = 15 / Y, (p'—p") exp [+22 (1 =P+ 5 (2= P") } dp" dp”
(3.88b)
Performing the integrations possible and putting p = p; — py, we obtain
Ya(p,2) = b, (p, 2) (3.89a)
~ _k ~ ik "o ,
Bl = e [dmp)ew |+ (o= 0] ap (3.890)

With these expressions and (3.87a—c), we finally find the following expressions
for the correlation functions (3.85a,b):

k(p—p')°

/
o ] dp (3.90a, b)

+oo
1 k
Yas(p z) = 3 s F P / Ys(p') sin [
where (—) pertains to ¥4 and (+) to ¢x. Similarly we find for the cross-
correlation function (3.85c¢):

k(p—p')?

+o0o
k
was(o.2) = g [ wsto) [ - }dp' (3.900)
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Chapter 4

Geometrical-optics
approximation for media
with large-scale
inhomogeneities

It is known that large-scale inhomogeneities predominantly scatter radiation in
the forward direction. Appropriate consideration of the differential cross section
of linearly, or elliptically polarized electromagnetic field scattered by the large
scale inhomogeneities shows that the depolarization effects are very small in
these cases. The latter allows, to the zero approximation, confine consideration
of the geometrical optics approximation for electromagnetic field in the scalar
approximation. According to this, one can expect that the dominant terms of
the solutions of the scalar and vector problems differ only insignificantly for
large-scale inhomogeneities, unless, the effects of rotation of the plane of polar-
ization are of interest. This is the case in the geometrical-optics approximation
to be dealt with now. It is one of the methods providing solutions for wave
propagation through media with large-scale inhomogeneities. The solutions are
expressed in terms of rays which are formally similar to particle trajectories in
classical mechanics. We shall confine our consideration by the scalar case for
the Helmholtz’ equation.
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4.1 Asymptotic representation of the solution of
Helmholtz’ equation as a series of inverse
powers of the wave number

We consider the scalar form of the wave equation (2.29), i.e.
V2E 4+ k* e(r,t) E=0 (4.1)

The permittivity e so far contains the overall inhomogeneous background as well
as the fluctuations and may be slowly time-dependent in the quasi-stationary
approximation.

In a homogenous medium, € = const., the solutions of (4.1) are plane waves,
E = A exp(ik -r), as we saw in Section 2.4. If € varies slowly with position
in the medium we can expect the solutions to bear some resemblance to plane
waves, and therefore we shall attempt a solution on a form with amplitude and
phase separated as follows:

E = A(r) explike(r)] (4.2)

From this expression we immediately find the derivatives
VE = VA +ikVp Aet? (4.3)
V2E = V2A e*? 4 2ik VA -V e 1 ik V2p A ™ — k% (Vp)? A % (4.4)

Substituting (4.2) into (4.1) we obtain an equation which is equivalent to Helmholtz’
equation:

k? [e(r) — (Vp)?] A+ik [2VA-Vo+ AV3p] +VZA=0 (4.5)

This is an unseparable equation in the two unknown functions A and .
In order to solve it we expand A in an infinite (asymptotic) series in negative
powers of the wave number:

Afr) = ZO /(11.2)(;) (6.6)

while we assume ¢ to be independent of k. Treating k as a variable, which
formally tends to infinity, we may equate each power of k in (4.5) to zero.
In this way we replace (4.5) by an equation for ¢ and an infinite sequence of
equations for A,, :

(Ve)? = e(r) (4.7a)

2V Ay -V + Ay Vie=0 (4.7b)

2 VAl . VQO + A1 VQQO = —VQAO (476)

2V Ay, Vo + Ay Vi =—-V2A4,, 4 (4.7d)
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4.2 Eikonal and transport equations

The function ¢ determining the phase in (4.2) is also called eikonal and (4.7a)
is known as the eikonal equation. The second equation (4.7b) is called the main
transport equation. Formally the whole series of amplitude terms A,, can be
constructed, but here we shall restrict ourselves to solving the eikonal equation
and the main transport equation for Ag, neglecting all A, with m > 1. Since
the series (4.6) is asymptotic it is in general not convergent. With our truncation
it will, however, accurately represent the solution if k is large enough.

4.2.1 Ray equations as the characteristic equations for the
eikonal equation

First we shall discuss the eikonal equation (4.7a), which we may write in rect-
angular coordinates r = {x1,x9, 3} as

Op 2 Op 2 Op 2
(o) +(32) + (55) =0 )
In the language of the theory of partial differential equations, we can say that
for every first order partial differential equation there can be associated a set of
ordinary differential equations describing trajectories being characteristic for the
solutions of the original equation. These trajectories, the rays, are orthogonal
to the surfaces of constant ¢ . At the same time the eikonal equation (8.8) is the
Hamilton-Jacobi equation for the motion of a classical particle . In accordance
with the methods of classical mechanics (see GOLDSTEIN [1969], Chapter 9;
OrrLov, KravTsov [1980]) the Hamilton equations can hence be written for
the same trajectories.
For the coordinates r = {1, 22,23} we introduce formally the conjugate
momenta

dp )
i = 5 = 1; 27 4.
D oz, i 3 (4.9)
or 9
_ Oy _ /
With the Hamiltonian
H(r,p) = § [p* —e(r)] (4.10)

the eikonal equation then takes the form of the Hamilton-Jacobi equation of a
classical particle at location r with momentum p moving in the potential field

e(r):
H(r,p) =0 (4.11)

or explicitly
pi+ps+p;—e(r) =0 (4.11)
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In the techniques of analytical mechanics surfaces of constant ¢ are obtained and
the particle trajectories are always orthogonal to these surfaces. The trajectories
are the solutions of a set of ordinary differential equations

dw; dp; dep .

DH T T 9H T 33 o =47 1=1,2,3 (4.12)

where 7 is the parameter of location along the trajectories. Eqgs. (4.12) are the
six Hamilton equations for the classical particle

dr OH
— = — 4.13
dr  Jp (4.13a)
dp OH
— = —— 4.13b
dr or ( )
and the equation for Hamilton’s characteristic function
dp <~ OH
- _ i 4.13
dr i:le 8p7; ( C)
with solution
T3
OH
QD:(PO"‘/Zpi 5, A (4.14)
- P
0
Introducing the refractive index n through
n?(r) = e(r) (4.15)

and using our particular Hamiltonian according to (4.10), egs. (4.13a,b) take
the form

dr

- = 4.1

o =P (4.16a)
dp 1 2
— =nVn=35V(n7) (4.16b)
dr

These are our six ray equations, which have to be supplemented by six initial
conditions. We shall assume that these are given through the initial phase
distribution ¢q (&, n) over a boundary surface ro(&, ) , described by the arbitrary
parameters (£,7), together with the initial momenta Oy /0rg defined from
9¢o Oro _ O%o Opo Oro _ Opo (4.17)
Ory O¢ o¢ ’ Org On on '
the third momentum being determined from these through the fulfilment of the
eikonal equation on the boundary surface. With (5.16a,b), we may now, in
principle, construct rays emanating from each point on the boundary. These
rays are in general not perpendicular to the boundary, unless this boundary is a
surface of constant phase. The parameters (£, 7, 7) can be used as new curvlinear
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coordinates, (£,7n) selecting the ray and 7 denoting the position along the ray.
These are orthogonal if the phase is constant over the initial surface.

Instead of the parameter 7 it is convenient to use the length s along the ray.
From (4.16a) we have (ds)? = (dr)? = p? (dr)?. Using also (4.11’) and (4.15)
then obtain

ds=ndr (4.18)

Hence we may write the ray equations:

dr p
— == 4.19
ds n ( @)
dp 1 2
- = 4.19b
1s Vn ™ V (n?) (4.19b)
Introducing instead of p the unit vector along the ray
1%
== 4.20
" (4.20)
the ray equations finally take the form
dr
— =4 4.21
P (4.21a)
d(ne)
=V 4.21b
P n (4.210)

Sometimes one meets, instead of the two first-order (vector) equations (4.21a,b),
a second-order ray equation. This equation is easily derived from (5.21a,b) as
follows:

d(ne)  de dr  d%r B
P —n£+£ (Vnds> —n@—l—@(ﬁ-Vn)—Vn (4.22)

Rearranging the terms we find

ﬁfv —£ (£-Vn)=V (4.23)
nd327 n n)y=vin :

where V) is the part of the gradient transverse to the ray direction. Alterna-
tively we may also write this equation as follows:

2
% =V, Ilnn (4.23")

The solving of the ray equations will be discussed in later Sections.
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4.2.2 The main transport equation and the ray tube di-
vergence

Let us now return to the main transport equation (4.7b). Obviously we can also
write this equation as follows:

V- (AjVe)=0 (4.24)

Integrating this expression over an arbitrary volume V not containing the source
of the waves, we obtain with Gauss’ theorem

/v- (A% Vo) dV:yng Ve-dS =0 (4.25)
1% S

We choose this volume as a ray tube or a ray pencil. Then V¢ is perpendicular
to dS except for the end surfaces. Furthermore |V¢| = n according to the
eikonal equation so that (counting the scalar surface element dS positive in the
direction of the ray) Ve - dS; = —n dS on the end surface towards the source
and Vi - dS2 = +n dS on the other end surface. Then (4.25) gives

/ A2 ndS :/ A2 ndS (4.26)
81 82

If we choose an infinitesimally thin ray tube, we can thus draw the conclusion
that
A2 n dS = const. (4.27)

along the tube. Hence we can express the amplitude for any point along the ray
tube if its initial value is given

A2(ro) n(rg) dSy = AZ(r) n(r) dS (4.27)

i.e. we have
n(ro) dSo

AO(r) = Ao(l‘o) n(r) ds

(4.27")
If we also account for the phase through (4.14) and the ray equations, we
can construct the field in the geometrical-optics approximation:

E(r) = Ay(ro) m exp {zk {¢o(ro)+ / () ds]} (4.28)

Tro

In order to use this expression we first have to know the phase and amplitude
distributions g(rp) and Ap(rp) on the initial surface. Then the rays from each
point, rg — r, must be constructed and from these rays the phase function
p(r). We also have to determine the ray pencil divergence dS/dSy . In the case
of multi-path, rays emanating from several points on the initial surface coincide
in the same point; then also the fields of these have to be added to get the total
field E(r) .
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In the general case of three-dimensional ray pencils we have the cross section

v

dS_E

(4.29)

where dV is the elementary volume in the ray variables (£,7,s), & and 7 being
the variables along the coordinate curves on the reference surface. If the rays
are described through the known functions

z=z(£,7,5)
y=y(&mn,9) (4.30)
z=2(§m,5)
then we have
dV = dxdydz = D(s) d¢ dnds (4.31)
where D(s) is the determinant of the Jacobian:
06 0On Os
dy 9y Oy
Dis)=|—= — = 4.32
=12 9y o5 (4.82)
o0& On Os

Hence the cross section of the ray pencil is given by
dS =D(s) d&dny (4.33)

As a result the single-ray field representation in the three-dimensional geometry
is just (4.28) with the following expression for the ratio of the cross sections:

dSo _ D(so)
dS  D(s)

(4.34)

If we look more closely at the amplitude expression (4.27"), we see that it
has singularities where:
(i) n(r) =0 (plasma resonance),
(i) dS = 0 (near caustics).
These conditions represent breakdowns of geometrical optics. Later we shall
see that there is a third restriction for the validity of the geometrical-optics ap-
proximation which requires the scale-size of the inhomogeneities to be large in
comparison with the main Fresnel zone size. This condition cannot be obtained
within geometrical-optics theory. To derive it more general considerations, in-
volving full-wave type solutions of the Helmholtz’ equation, are necessary.
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4.3 Methods for constructing the solutions of
the geometrical-optics equations

Numerical methods for solving the ray equations are widespread but will not be
dealt with here. One formulation of the ray equations in earth-centered spherical
coordinates is known under the name of Haselgrove’s equations [HASELGROVE,
1954]. A computer program based on these equations has been produced by
Jones and Stephenson [JONES and STEPHENSON, 1975; JONES, 1968]. A modern
computer system for ray tracing, RaTJS, which is based on the same equations
has been developed at the Uppsala division of IRF.

4.3.1 Additive separation of variables for Cartesian geom-
etry

Here we shall study a few cases where an analytical solution can be constructed.
For simplicity we shall assume a two-dimensional geometry, i.e. our point source
at the origin xg, zg is in reality a line source. Consider the 2-dimensional eikonal

equation
dp 2 dp 2 B
(&C) + (az> =€z, z) (4.35)

If we have an ionospheric structure of the particular form

e(z,2) = e1(z) + e2(2) (4.36)
we may attempt a solution with additive separation of variables:

p(z,2) = p1(2) + p2(2) (4.37)

Substitution of this into (4.35) gives

where o2 is the separation constant. The separated equations are consequently

dey

W e1(z) + o2 (4.39a)
% = Ve (z) — a2 (4.39b)

resulting in the following expression for the eikonal:
@:/\/61(.%)-'-0[2 dl’+/\/€2(2)—0[2 dz + ¢o (4.40)
xo Z0

with ¢g being the phase given by the initial condition at the boundary point
(0, 20) -
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If we put @9 = 0 and further specialize to a plane stratified ionosphere,
e(z,z) = e2(2) , e1(x) =0, we find from (4.40)

p=a(r—1x9)+ / Ve(z) —a? dz (4.41)

Earlier we saw that the ray direction is along the gradient of the eikonal, dr =
Vo ds/n; see e.g. (4.9") and (4.19a). With this in mind we can easily express
the local slope of the rays corresponding to the case (4.41)

_dz _dp [Op _ o
tanf(z) = = 0s/ 9. 76(2) — (4.42)

Integrating this differential equation we get the ray curve expressed in the form
of x as a function of z:

o dz

J Ve(z) — a?

Xr —xog =

(4.43)

If we introduce the notation
oz, ) = / Ve(z) —a? dz (4.44)
20

we may write the eikonal (4.41) as follows:
p=a(zx—1x9)+ d(z,) (4.41")

Because of this, and since we have

= ¢l = o dz (4.45)

“ _ZO Ve(z) — a?

it is also possible to write the ray expression (4.43) as follows:

99
Oa

dp /
—=x—29+¢,=0 4.43'
6& 0 ¢OL ( )
We shall illustrate the practical use of these ray expressions in a few cases.
We choose the starting points of the rays on the ground level zg = 0 where
we have free-space propagation, €(0) = 1. Then we see from (4.42) that the
parameter « is determined by 6, the initial angle of the ray with the vertical:

«

tanfy = Wiy = o =sinfy (4.46)
-«
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The situation when « is fixed and the starting point x( of the rays is varied
corresponds to an initial wave which is truly plane if the phase is arranged to
be constant over a surface perpendicular to the incident rays. To the left we
show a case with a rather low frequency where the rays are forming a horizontal
caustic at the height of reflection Z for which the local plasma frequency fulfils
wp(Z) = wcosby. The caustic represents a situation where several rays are
merging and interferring with each other. To the right we show penetrating
rays of a higher frequency; w cos €y > werit , Where wepit is the critical frequency
of the ionosphere.

Now we consider a fixed-frequency point source at the origin, g =0, z9 =0,
while the launching direction « is varied. This is the case of a physical transmit-
ter located to the earth surface. In the upper case we show low-frequency rays
where even the vertical ray is reflected; w < wepjt . There we find a caustic which
is no longer horizontal; hence the formation of caustics depends on the initial
conditions. In the lower case the frequency is higher, w > w¢;; , so that some
rays are penetrating. Besides the exterior caustic seen also in the upper case we
now also have an interior caustic formed by the returning high-elevation rays.
The crossing-point of this caustic with the ground is called the skip distance; no
real rays are reaching the ground at closer distance to the source. The points
defining these caustics are defined by the ray expression (4.43') together with
the condition

¢l =0 (4.47)

as we shall see later on in this Section.

We shall now take a closer look at the amplitude expressions (4.27). At
distances within the free-space area from this source the phase is then constant
over cylindrical surfaces. We choose a reference cylinder of radius ry, where we

put the amplitude
1

AO() = — 4.48

N (4.48)
To determine the amplitude at arbitrary points we have to calculate the ratio
dSy/dS, which is rather simple for the two-dimensional case and central ray
field. We then choose an infinitesimal surface element (or infinitesimal element
of length in our two-dimensional problem) on this cylinder

dS() =70 d90 (449)
The rays bounding this element form a ray pencil through space. Using the ray

expression (4.43"), we may easily express the horizontal distance between these
rays at a fixed height z:

d
de = ¢, | <X 6y = |¢!",| cos by dbo (4.50)
dfy
We then find the following cross-section of the ray pencil at this height:

dS = dx cosf(z) = |¢L,| cosBy cosB dby (4.51)

44



Hence the surface ratio involved in the amplitude expression (4.27") is given by

S _n
dS  |¢”,| cosfy cosf

(4.52)

We shall rewrite the cosines in this expression by means of (4.46):

cosby =1 —a? (5.53a)

and by means of (4.42):

cos 6(2) 6(1)(;) o (4.53b)
obtaining
4 rove (4.54)

A4S gl VI—a? Ve—a?
Putting this, together with (4.48) and (4.15), into (4.27"), the amplitude ex-
pression becomes

1
Ap(x,2) = T T 4.55
o) = e L= o () — o] (459)

According to (4.28), (4.41") we now have the single-ray field representation

exp{ik[ax + ¢(z, o)}
6z, @)} [1 = 2] [e(z) - a2}

E(z, z) = const. (4.56)

with the z-coordinate expressed as a function of z through the ray expression
(4.43'). In connection with this representation we wish to emphasize some im-
portant points:

(i) In the case of multiple rays crossing the same point in space, several expres-
sions like (4.56) have to be superposed (vector addition in the case of electro-
magnetic waves).

(ii) For rays before reflection or penetrating rays the phase function ¢ is given by

(4.44). For rays reflected at height Z, where €(Z) — o = 0, this phase function
has to be generalized to

:jﬁ@—wm+/J—M®— (4.44)
0

The term 7/2k added here is a phase shift —7/2 at reflection from the caustic
which cannot be derived within geometrical optics.

(i7i) The ray expression (4.43), (4.43") similarly after reflection has to be gen-
eralized to

o dz

adz
0/\/6(2)—a2+z e(z) — a?

T —xo = (4.43")
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(iv) The quartic root of €(z) — o in the denominatior of (4.55) has a zero as
z — Z. Simultaneously the square root of |¢! | tends to oo, however, so that
the amplitude is finite through the reflection.
(v) When the observation point is on the ground, we find from (4.43") the
covered distance of the ray
z
a dz

) Ve(z) — a?

From this expression it is possible to draw a D(«)-curve, pertaining to the actual
electron density height profile N.(z). There are two particular example for two
frequencies; one with w > we,i; , where we can see the skip distance, and another
with w < werie , where all distances 0 < D < oo are obtained. In the physical
ionosphere the 1-hop distance is limited by the earth curvature, the height of
the reflecting layer and the absorption of low-elevation rays.

D(a) =2 (4.57)

4.3.2 Perturbation theory in the geometrical-optics ap-
proximation

We now decompose the permittivity into a background term €g(r), for which
we assume the geometrical-optics field representation according to the preced-
ing Sections is known, and a small perturbation term e(r), describing local
inhomogeneities which may be deterministic or random. This is similar to the
decomposition we introduced in the Chapter on single scattering. Then we may
write the total eikonal and main transport equations (4.7a,b) and the corre-
sponding ray equations (4.16a,b) as follows:

(V)% = eo(r) + €(r) (4.58)
2V Ay -Vo+ Ay Vie=0 (4.59)
% = 1V [eo(r) + e(r)] (4.60)

Utilizing the solution of the background problem, we shall in the following in-
troduce perturbation expansions of the unknowns in the above equations and
eventually obtain the first-order corrections due to the perturbations.

The perturbation approach presented in this Section is good for short paths,
e.g. for 1-hop propagation. For long paths such as propagation in ionospheric
ducts more complicated approaches, involving two-scale expansions, are neces-
sary.

Perturbation theory for the eikonal equation

We introduce for the eikonal the following expansion

P =0+ p1+ .. (4.61)
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so that the eikonal equation (4.58) takes the form
(Vo + Vi1 +..)% = eo(r) + €(r) (4.62)

Identifying successive orders of smallness in this equation, we find the back-
ground equation as the 0:th order equation

(Vipo)? = eo(r) (4.63a)
where hence ¢ is assumed known, the first-order equation
2Vp1 - Vipg = €(r) (4.63b)
the second-order equation
2Vpy - Vg = —(Vipr)? (4.63¢)

and so on.
With the variable s denoting distance along the ray we know from (4.9) that

depo
= — 4.64
Vool = (4.64)

Using the unit vector £ along the ray we can then write (4.63a) as follows:
Vo = Veolr(9)] £ (4.65)
Inserting this expression into the first-order equation (4.63b), we get
depy
2 y/eo[r(s)] e e[r(s)] (4.66)

and may hence obtain the first-order correction to the phase along the undis-
turbed ray:

[ ()
©1(r) :/7 ds (4.67)
J 2 \/eo[r(s)]
The parallel component of Ve, is according to (4.66) given by
€
Vi p1= (4.68a)

2/

If we describe the fluctuations by their variance o, , this quantity is ~ %ae /+/€o -
The perpendicular component of Vi, , on the other hand, can to good approx-
imation be obtained from (4.67) as follows:

Vie
2 /e
0

Vigr= ds (4.68b)

47



Assuming that the rays are passing through an area of length L containing many
irregularities of characteristic length /., we may obtain the following estimate
for this component V| ¢ ~ %ae L/(lc \/€o). Putting the above two estimates
together we have
Vier L
VL ®1 L

i.e. after passage through many irregularities the parallel part of the gradient
of the correction is much smaller than the transverse part.

We mention here briefly one application of the result (4.67), viz. as a way
to account for the effect of low absorption, v/w < 1. Let us separate the
permittivity into real and imaginary parts:

<1 (4.69)

e=Ree+ilme (4.70)

and identify the real part of this with the background. The dissipated power is
then expressed by (4.67) through the imaginary part of the phase:

i Im €(s,0)

=- | ————==ds
1T ) VRe €(s,0)

We shall also use the result (4.67) in determining the change of angle of
propagation due to a perturbation. According to (5.20) the unit vector along
the direction of propagation is

(4.71)

Vo  Veoo+Ver Voo Ve Ve € (4.72)

L= ~ ~
Vate vallteo)]  Va  va Ve 2o
With the direction £y = Vo /\/€o of the undisturbed ray and with the use of

the first-order equation (4.63b), we hence we find the first-order correction to
the ray direction

1 Vi e
L—£Ly=—— [V — £y (£y - V1) =
The results of this subsection can be used when ¢ is a local deterministic
inhomogeneity. Later we shall also use them in applications when € is a random
function.

(4.73)

Perturbation theory for the main transport equation

Instead of the amplitude Ag of the wave we shall here introduce the level
x = In Ag (4.74)
With this notation the main transport equation (4.59) can be written

2V -V +Vip=0 (4.75)
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Together with the expansion (4.61) for ¢ we now introduce a corresponding
expansion for the level:
X=Xo+x1+-. (4.76)

In this way we obtain from (4.75) the zero:th- and first-order equations
2 Vxo- Vo + Vi =0 (4.77a)

2Vx0-Vip1 +2Vx1 - Vo + V2g01 =0 (4.77b)

The solution of (4.77a) is already known according to Section 4.2.2. By virtue
of (4.69) we neglect in (4.77b) the parallel component of V; . Since Vg is
mainly parallel to the ray direction we shall, furthermore, neglect the first term
in (4.77b) obtaining the approximate first-order equation

2Vx1- Vo =-Vi @1 (4.78)
Using once again (4.65) we find that this equation can be written
dxa 2
2 /e ds —Vip (4.79)

which leads to the following first-order correction to the level:

)
- Vi e

2 /&
0

x1(s) = ds (4.80)

Perturbation theory for the ray equations

In treating the ray equation (4.60) we now introduce the ray path expansion
r(7) =ro(7) + r1(7) + ... (4.81)

Thereby we must remember that the permittivity terms depend on the per-
turbed positions, eg[ro(7) +r1(7) + ...] and €[ro(7) + r1(7) + ...], so that (4.60)
to the first order can be written

dz(l‘o + 1‘1)

s =1 [Veo(ro) + (r1 - V) Veo(ro) + V e(ro)] (4.82)

Separating the zero:th and first orders we find the equation for the undisturbed
ray
d21'0
dr2

and the equation for the first-order correction

= % VEO(I'O) (483@)

d2r1

T 1 (r1-V)Veo(ro) = & Ve(rg) =Fy (4.83b)
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For each ro (4.83b) is a system of linear second-order differential equations in
the unknown components of r;. The quantity F; is introduced here only to
have a short-hand notation for the right-hand side.

Consider now the known undisturbed rays

rg = ro(7, fm) (4.84)

where the parameters (3,,, are the six initial conditions of the solutions of (4.83a).
If we formally differentiate (4.83a) with respect to these parameters we obtain

d? 0 0
B e

Hence, if we introduce the six new vectors

. 81‘0
pm* aﬁm )

m=1,..,6 (4.86)

we find that they satisfy the differential equation

d*p,,
dr2

~ 5 (P - V) Veo(ro) = 0 (4.87)

i.e. they are solutions of the homogeneous system of equations corresponding
to (4.83Db).

According to a standard procedure called the method with variation of the
parameters we may use these vectors to construct the solutions of the inhomo-
geneous equation by assuming a trial solution on the form

6
r=3 Culr) oy (4.880)
m=1

If we let the functions C,,, be subject to the constraint

dCh,
= 4.88b
> P =0 (4.88b)

m=1
we may write the derivative of (4.88a) in the form as if C,, were constants:

dr; 0 dp,,
T Z Cn(7) v (4.88¢)

Hence the second derivative of (4.88a) is

6
+ 2 Cm(7)
=1

m=

d*p,,
dr?

?r; = dC,, dp,,

dr? _m:1 dr dr

(4.88d)
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Substituting (4.88a,d) into (4.83b), and using thereby also (4.87), we find the

following equation:
6
dc,, d
3 Lo _ g (4.89)

= dr dr

The result of the procedure just carried out is that we have replaced the
second-order differential equation (4.83b) in r; by a system of six linear first-
order equations, (4.88b) and (4.89), in the functions C,, (7). Provided that the
system determinant is non-zero, this system can be inverted to take the form

c,, <
=2 @By m=1..6 (4.90)
j=1

The summation here is only taken up to j = 3 since three components are zero
in the right-hand side column vector of (4.89), (4.88b). The elements @,,; of the
6 X 6 system matrix are, in principle, known expressions of the matrix elements
P, and dp,, /d7 of the system (4.89), (4.88b). Hence (4.90) can be integrated
to yield

T3
Cim(T) =Cm(0)+/ZQmj(T) Fij(r)ydr, m=1,..6 (4.91)
o J=1

When this solution has been obtained the first-order correction to r is expressed
by means of (4.88a). In the same way the first-order correction to the conjugate
momentum, p; = dry/dr, is given by (4.88¢c).

4.4 Geometrical optics for random fluctuations
and homogeneous background

Next we shall use the geometrical-optics technique for describing the statistical
properties of wave propagation through a medium with random fluctuations
of the dielectric permittivity. We shall decompose the medium as in (4.58),
where we assume that the field in the background medium €p(r) is known in
the geometrical-optics approximation and that the fluctuations are zero-mean,
(e(r)) = 0. Our major tool in describing these fluctuations will be the perturba-
tion theory expounded in Section 4.3.2. Hence we shall use the first-order phase
correction (4.67), ray-direction correction (4.73) and level correction (4.80) to in-
vestigate the fluctuations of the corresponding quantities in the random medium.
Throughout this Section we shall adopt the simplifying assumption of ho-
mogeneous background €y = const. and propagation along the z-axis.

o1



4.4.1 Fluctuations of the phase of the field

Since (€) = 0, we can immediately see from (4.67) that the mean of the first-
order phase fluctuations is zero:

(p1)=0 (4.92)

Assuming the fluctuations to be statistically homogeneous the correlation
function of the phase fluctuations is from (4.77) as follows:

Z1 22

1
Volprspyrin) = 1 [ [ elor = po ) 420 (4.93)
00

The integration here is performed over a rectangle in the z’z”-plane. Changing

the variables into
2n=2z2"+2", (=22 (4.94)

and introducing the transverse the difference variable
pP=pi— P> (4.95)

we can write this integral

(s 21, 2) = i /<> elp, €) d¢ dny (4.96)

where the area of integration in the {n-plane is a parallelogram.

Suppose now that we consider the correlation function after propagation
through many irregularities so that ¢, < 21, zo. Then the integrand is non-
zero only close to the n-axis , and we may without introducing significant error
extend the (-integration to +oc and at the same time perform the integration
over 7 from zero to

2« = min(z1, 29) (4.97)

Hence we obtain the result
+oo
z
¢¢(P7 Z]_,ZQ) = ﬁ / we(pa C) dC (498)

This result is statistically homogeneous in the transverse direction, but not
in the z-direction. Indeed, if we vary z; while keeping z; fixed, 1, first increases
linearly until z; = 29 and then remains constant. In particular, we have from
(4.98):

“+o0
02(2) = (0,2, 2) = é / $e(0,¢) d¢ (4.99)
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This integral, as we have mentioned before [eq. (1.30)], is equal to 2/ o2 if it

converges. Then

9,y 2le o
o,(2) = 200 o: (4.100)

We shall use this quantity to express the longitudinal correlation coefficient

_ wtp(oazlaz2) _ { \/Z]_/i'Z'Q 21 < 29
K@(O,Zl,ZQ) - O'4p(21)0'¢(22) = \/22/7 > 2 (4101)

Finally we recall that the physical phase of the wave is ¢ multiplied by the
wave number k£ and hence that the correlation function of the phase is

Ps =k ¥y, (4.102)

4.4.2 Fluctuations of the angle of arrival

We have already considered the deviation £ — £y of the ray direction due to an
inhomogeneity in (4.73). When this deviation is very small the angle ¥ of the
deviation is approximately equal to the length of the difference vector

9~ |8 — £ (4.103)

In this approximation and with the z-axis as the major direction of propagation

we find from (4.73):
1 dp

Wy = — ——

Veo Oz

1 0y

Uy = —= ——

Ve 9y

Because of (4.92) we directly find that the angular fluctuations are zero-mean:
(¥z) =0, (Uy) =0 (4.105)

To construct the correlation functions of the angular fluctuations from (4.104a,b)
we first regard

(4.104a)

(4.104b)

1 0?

Ve el = Gy

p1(r1) p1(ra) (4.106)

We found in the previous Section that if the permittivity fluctuations are statis-
tically homogeneous, then the phase fluctuations are statistically homogeneous
in the transverse direction; cf. (4.98). With p = {x1 — x2,y1 — y2} we hence
obtain from (4.106):

1 02

(Uz(r1) Do (r2)) = e 022 (Vo(p, 21, 22)) (4.106a)
and analogously for the remaining two correlation functions:
1 o
(Fy(r1) Oy(ra2)) = T B (b (p, 21, 22)) (4.106b)
Walr) 0,02)) =~ =L (o) (41060)
z(I1 Yy ra - €0 8.17 6y %] P, 21,22 . C
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4.4.3 Level fluctuations

For statistically homogeneous permittivity fluctuations also the first-order level
fluctuations turn out to be zero-mean from (4.80):

(x1)=0 (4.107)

The transverse correlation function of the level fluctuations is from (4.80)
and (4.98)

1 z z
vlpozz) = 1o V[ [t a2
00

== Vi g ‘ ‘ d//dd“
4WV// d40/¢m m%/¢m o [cara:

(4.108)
The integral over the z’z”-surface can easily be evaluated to yield 23/3 so the
final result for the transverse correlation function is

3v4
bylp.zi2) = %Q/mm (4.100)

In particular the variance of this is given by

02( ) =1y (0, 2, 2) (0,¢) d (4.110)

Sometimes it is convenient to use, instead of (4.98), (4.109), the spectral
representation of the permittivity fluctuations

Ye(p, 2) = / (K, k) expl+i (k- p+ k.2)] dk dk, (4.111)

— 00

With this representation we find from (4.99), (4.102), thereby using also the
é-function, the variance of the phase fluctuations

+oo +oo
2 2
os(z) = Z?j /¢e(n,nz) elr=S dndC:ﬂiZ /@(K,O) dek  (4.112)

In the same way we get from (4.110) the variance of the level fluctuations

—+o0

/ K ¢c(k,0) de (4.113)

— 00

9 nz3

 24e2
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4.4.4 Relative contributions of phase and level fluctua-
tions

We shall now make a qualitative comparison of the orders of magnitude of
the phase fluctuations (4.102) with (4.99) and the level fluctuations (4.110).
To obtain estimates of the orders of magnitude of these quantities we use the
effective scale-size of the irregularities ¢, introduced in (4.100), thereby noting
that the spatial spectrum of the fluctuations has the scale-size /_1. Hence we
get

k%20 .02
~ e 4.114
Os %0 ( a)
3p -2
5 2o
~ 4.144b
7x 48€204 ( )
We now introduce the wave parameter
VA
p=Y* (4.115)
Ce
to describe the relative magnitudes of these fluctuations to obtain
2 ke e \*
SERNREE ( ¢ ) —p—* (4.116)
UX z vV z

In the next Chapter on Rytov’s method we shall obtain the geometrical-
optics approximation as the limiting case

D=0 (4.117)

of that more general method. Hence the practical applicability of the geometrical-
optics method is for small D and there, according to (4.116), the fluctuations
are mainly in the phase and not in the level.

4.4.5 Mean field in the geometrical optics approximation

With propagation along the z-axis through the homogeneous background the
field expression (4.2) in the first approximation takes the form

E(p,z) =exp[x1 +1i (kv/eo z + S1)] = exp [+i (k\/€o z + S1)] (4.118)

where we neglect the level fluctuations by virtue of (4.116).
With propagation through many irregularities the phase correction

2 /e

is a normally distributed random value. Hence the mean field may be calculated
in the same way as we used in Chapter 3, egs. (3.55-59):

(E) = exp (i ky/eg z) (exp (iS1)) = exp (+ik \/eg z — 10%) (4.120)

S1 = K /e(p7 z) dz (4.119)
0
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Substituting also the expression (4.100) for the variance of the phase fluctua-
tions, we get the final result

k2 2£E
(E) = exp (z ky/eoz — 4062 z) (4.121)

As we see from this result the mean field decreases exponentially with propaga-
tion distance in the medium. This is called extinction and is due to redistribu-
tion of the energy into the random component.

That energy is not lost can be seen from the mean energy, which according
to (4.118) is independent of distance:

(EE*) =1 (4.122)

4.4.6 Pulse propagation through the fluctuating ionosphere

Now also some considerations about pulse propagation through the fluctuating
ionosphere. What we have done so far in the geometrical-optics method applies
to a single frequency. Regarding the spectral decomposition of a pulse we thus
have for a Fourier component the representation

E(r,w) = Ef(r,w) exp[+iker(r,w)] (4.123)

where Ef(r,w) is the geometrical-optics representation of the undisturbed field
with its own phase and kyi(r,w) is the phase fluctuation. If we denote the
emitted spectrum of the pulse by p(w), we have for a particular realization of
the field received in the point r:

+oo
B(r.t) = / (@) B (r,w) exp{+iklor (r,w) —wi]} dw (4.124)

— 00

From this we may construct the mean energy of the received pulse

(B(r, ) E*(r,1)) = / / dn dws p(wr) p* (w2) B (r,w1) EL*(r,ws)

~(exp{+ik[p1(r,w1) — 1 (r,w2)]}) exp[—i(w1 —w2)1] (4.125)

The phase term in the exponent of the average is a zero-mean normally dis-
tributed random function, so we may once again make use of the property
(3.58), i.e.

(exp{+ik[p1(r,w1) — p1(r,w2)]}) = exp {_kZ D, (wl,wg)} (4.126)

where D, (w1, ws) is the structure function (1.64):

D, (w1, w2) = ([p1(r,w1) — ¢1(r,w2)]?) (4.127)
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This representation is appropriate when r is far from the caustics and strong
interference between rays can be disregarded. In the next Chapter we shall
consider pulse propagation in the more general case of Rytov’s approximation.
The results to be obtained there will contain those derivable from (4.125) as a
particular case.
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Chapter 5

Rytov’s method (method of
smooth perturbations)

5.1 Equation for the complex phase

As before we consider the scalar Helmholtz’ equation for a point source at the
origin:

V2E 4+ k? [eo(r,w) + €(r,w,t)] E =6(r) (5.1)

where the fluctuations e may be slowly time-dependent in the sense of eq. (2.24).
As before we assume that the solution Ey and the corresponding Green’s func-
tion G of the undisturbed problem are known. We shall now use these to
construct an approximate full-wave solution of (5.1) in the so-called Rytov’s
method. Hence we put

E = Ey(r,w) exp[¥(r,w,t)] (5.2)

where we have introduced the complex phase ¥ to account for the corrections to
the undisturbed field due to the local inhomogeneities. In the forward scattering
approximation, which is appropriate in the case of large-scale inhomogeneitites,
the phase is subject to the boundary condition ¥ — 0 when r — 0. When we
introduce (5.2) into (5.1) we find that outside the source ¥ must fulfil

V23U By e"+2VU-VE, e +(VU)? Ey e +V2Ey eV +k% g By eV +k* e By e¥ =0

(5.3)
The undisturbed field Ey fulfils the undisturbed wave equation [(5.1) with e = 0]
and ensures the correct behaviour of the solution as r — 0 since ¥ — 0 there.
Hence

VAU + (VU)2 +2VInEy - VU = —k? e (5.4)

is an exact equation for the new unknown function ¥ outside the source.

98



5.2 Perturbation series for the complex phase

Next we shall assume that € is a small perturbation, which may be deterministic
or random, and expand the phase in a perturbation series

U =U;+ W+ .. (5.5)
The first-order equation from (5.4) is then given by
V20, +2VInEy - VU, = —k%e (5.6a)
The second-order equation is subsequently obtained as
V23U 4+2VInEy - VU = —(VU,)? (5.6b)

In the following we shall also make use of the average of ¥4 which, according to
(5.6b) obeys the equation

V2 (Ty) +2VInEy -V (Us) = — (VT;)?) (5.6¢)
These three equations are all of the same form:
V2U,, +2VInEy- VU, = fn (5.7)
where the right-hand sides are
fi=—Re.  R=-(VI),  fi=—(V0)?) (58

and where, as a mere notation not to be confused with the third term in the
perturbation expansion, we have introduced

Uy = (T3) (5.9)
To solve (5.7) we now introduce new unknowns w,, through
U, = Byt wy, (5.10)

Since Ej satisfies the undisturbed wave equation, our equation (5.7) is equivalent
to
V2w + k2 €0 Wi = frm Fo (5.11)

i.e. wy, satisfy the “undisturbed equation” with new known right-hand sides.
Hence they can be written

Wy = /G(r,r’) fm(r') Eo(r') dr’ (5.12)

and consequently

U, = E; ' (r) / G(r,r") fin(r') Eo(r") dr’ (5.13)
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The explicit expressions corresponding to (5.8) are then the following:

B Eo_l(r)/G(r, r') e(r') Eo(r') dr’ (5.14a)
Uy = —E; ' (r) / G(r,r') [VU, ()] Eo(x') dr’ (5.14b)
Uy = (Uy) = —E; () / G(r,r') <[vq/1(r')]2> Eo(r') dr’ (5.14¢)

The full-wave solution (5.2) may now be expressed (omitting obvious spatial
arguments)

E = Ey exp {—kQ EO_1 /GeEo dr’ — EO_1 /G (V\IJ1)2 Eydr’ + ] (5.15)

If the corrections are very small we may expand the exponential function as
follows:

E~ E, [1k2Eo—1/GeEodr’+;k‘*Eg?//GeEOGeEOdr/dr”

_B;! /G (V,)? Eydr’ + } (5.16)

We see that this result is the same as the field in the approximation of single-
scattering, plus additional terms corresponding to higher-order scattering. Hence
we may conclude that the solution (5.15) obtained in Rytov’s method contains
a kind of partial (or approximate) summation of the multiple-scattering series.

For the following treatment we now separate ¥ into real and imaginary parts,
i.e. into level and phase fluctuations of the field, as follows:

Ur=x1+iS1, Va=x2+i5 (5.17)

We may then use the statistical properties of x; and .S; to express the statistical
properties of the total field. For the correlation functions

and
Ys = (5151) (5.18b)

it is sufficient to know W, , but for expressing some moments of the entire field
at least the terms including Wy are necessary.
Indeed, for the mean energy we have

(E(r)E*(r)) = |Eol* (exp [¥1 + ¥z + U] + U3]) = [Eo|* (exp[2x1 +2x2])
(5.19)
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Rewriting here x2 = (x2) 4+ X2 — {x2) and noting that y2 — {x2) is a higher-order
correction which may be neglected, we can write this average

(B)E* (1)) ~ | Eol? exp[2 (x2)] (exp [2x1)) = |Eof? exp [2 (x2) +2 (x3)]
(5.20)

where in the last member we have used the property (3.58) for the zero-mean
normally distributed random function y;. Since x2 and x? are both of order
€2 it is obvious that we need ys to express this average. Note that our result
(5.20) differs from the result (|E|?) = |Ey|* of geometrical optics; cf. (4.122).
These two results coincide in the case when (x2) = — (x?) . If they differ, (5.20)
corresponds to redistribution of energy which is not described by the dominant
term in geometrical optics.

The situation is the same for the mean field

(E(r)) = Eo (exp[(x2) +i (S2) +x1 +151])
= exp [(x2) + 1 (S2)] (exp[x1 +1i51])
= Eo exp [(x2) +i (S2) + % <X%> -3 <S%> +i(x151)] (5.21)
Since all terms in the exponent are of order €2 we need ¥y also here.

Let us consider also the coherence function which is necessary for describing
pulse propagation:

[(r,w,wz) = Eo(r,wr) By (r,wa) (exp [¥(r,w;) + U (r,ws)]) = Eo(w1) By (w2)

[
(exp [x1(w1) + i S1(w1) + x2(w1) + i Sa(wr)
+X1(w2) — 115 (u)g) + Xg(wg) —1 SQ(UJQ) > (522)
where we have included terms up to ¥y as in the previous cases. Neglecting
also Uy — (U3) we obtain

Fa(r, wi,wa) = Eo(wi) Eg(ws2) exp{(xa(w1)) + (xa(w2)) + i [(S2(w1)) — (S2(w2))]}
cexp [+3 F(wi,ws)] (5.23)
with
Flonws) = (Dan) +xalen) +i [Si0) - Siw)l}?)  (5.24)

In general ¥y + W, is necessary for constructing this coherence function.

5.3 Forward scattering Fresnel approximation for
the complex phase

We shall consider here the most simple case of a homogeneous background with
fluctuations in the half-plane z > 0 and an incident field in the form of a plane
wave in the z-direction. Hence the incident field is

Ey = et (5.25)
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and the Green’s function is given by (2.35), i.e.

1 expliklr — r'|]

/
=—— 2
Gy = - S (5.26)
The first-order complex phase is then according to (5.14a):
Ko +C>Oexp [ik|lr — 1’| + ik2']
Uy (z,y,2) = — e k= / dz’ dy’ / e(z’,y',2") &’
4 |r — 1’|
—o0 0
(5.27)

For our following discussion we shall denote the entire phase of this expres-
sion by P:

Py, 2" ) =k V(@ =22+ (y—y)P2+ (22— k(z—7) (5.28)

We note that it may sometimes be possible to evaluate the x’y’-integrals by the
method of steepest descents, and then the stationary points of the exponent are
given by

orP k(x—a) B "
A ey e
or _ Ey—y) =0 (5.29b)

W a—oP G-y’ G-

i.e. for a fixed point (z,y,z) of observation these points form a straight line
parallel to the z-axis and ending at (z,y, 2) .

Since rapid spatial phase variations tend to cancel the contributions to inte-
grals of the type (5.27), it is of importance to investigate the regions where P
is constant. We shall consider the surfaces

P=k\V(p—p)2+(z—-2)2—k(z—2)="tr, £=0,1, 2, ... (5.30)

where as before we denote the transverse coordinates by p = {z,y}. Introducing
the wavelength A = 27/k, (5.30) is the same as

(p—p ) =0\(z—2)+ 102N (5.31)

Hence we see that the surfaces of constant phase are rotational paraboloides
around the line through the point of observation and parallel to the z-axis. These
surfaces cross the line 2/ = z at the positions 2’ = z 4+ ¢A\/4. In particular, the
main Fresnel zone is the volume within the surface with £ = 1, i.e. the region
of space where 0 < P < .

We shall obtain the Fresnel approximation of (5.27) by expanding the square
root in the phase P for |p — p'| < |z — 2'|, i.e. we shall make use of

(p=p') (5.32)

N e R ]
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to obtain the phase

1 /\2 / /
sk(p—p)2/(z—7%) 7 <z
= 2 ’
P {2]{(2/—2)+%k(p—pl)Q/(Zl_Z), S (5.33)
In the denominator of (5.27) the approximation |z — 2’| of the square root is
sufficient. We then use the result (5.33) to write (5.27) as a sum of two items:

12 +00 z exp [+ik’ %}
Uy (z,y,2) = / da’ dy’/ e(r') d2’

4m z—2z
—0o 0
12 He tXexp [Qik(z’ —z)+ik %}
- da’ dy’ / pop e(r’) dz2’ (5.34)

— 0o z

It is easily seen that the phase of the second term oscillates much more rapidly
with 2’ than the first term. The volume of integration to the left (for 2’ < 2)
contains the main Fresnel zone, whereas to the right (for 2z’ > z) it crosses into
a new zone for every A/4. Hence it its obvious that if the fluctuations are of
sufficiently large scale so that kf. > 1, the oscillations will almost cancel the
second integral in (5.34). Neglecting this integral we then obtain

z

L 1AY
/exp [+ik %

} e(r') d2’ (5.35)

z—2z

+oo
k2 / /
Vy(z,y,2) = In dz’ dy
—o00 0

This is our desired Rytov’s representation of the first-order complex phase.
Physically this result corresponds to forward scattering where only the points
previously passed by the initial wave contribute to the fluctuating field. It is
an approximate solution of the first-approximation equation (5.6a), which with
the initial field (6.25) has the form

ov
V20 4 2ik — = —k%¢ (5.36)
0z
It can be easily shown that (5.35) is an exact solution of the similar parabolic

equation

o
V2, + 20k 8—; = ke (5.37)

which solution does not contain waves propagating in the direction opposite to
the incident field. The Fresnel propagator

0¥

e (5.38)

exp [—i—ik
appearing in (5.35) is typical for solutions of parabolic equations.
The second-order complex phase W5 is given by (5.14b), which can be treated
to give the same sort of integral as (5.35). However, we shall not here go into
details about this.
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5.4 Geometrical optics as a limiting case of Ry-
tov’s method

We saw in (5.29a,b) that ' = x, 3y’ = y are stationary points of the expo-
nent in (5.27). This is also true for (5.35) and we shall now investigate under
what conditions the z'y’-integrations can be performed by the steepest-descent
method.

As we have already discussed, the major contributions to the z’-integral
come from the main Fresnel zone, i.e. from 2’ which fulfil |x — 2’| < £, , where

g2

or
by =/ A(z—2) (5.39")

For a fixed distance of observation z, this has its maximum for 2’ = 0 and we
hence take

Rp=1{,=V\z (5.40)

as the scale of the main Fresnel zone. It is now clear that the steepest-descent
method can be used in the z’- and 3/-directions when the scale of the irregular-
ities is much larger than this parameter, i.e.

We shall show below that this is, in fact, the third condition of validity for the
geometrical-optics approximation. It may also be expressed in terms of the wave
parameter D introduced in (4.115) as follows:

D:RF:m<1 (5.42)
Le Le
When (5.42) is violated the general integral (5.35) has to be calculated. Next
we shall, however, demonstrate the steepest-descent evaluation of the transverse
integrations and show the limit of geometrical optics. To this end we expand
the relative permittivity of the fluctuations

Oc() Pe)
(@) =e(a)+ = @ —w) + 3 5" (@ —2) + (5.43)
Then we have in this approximation, since the first derivative gives an odd
integrand,
+oo ik (z—a')? +o0 ik (z—a')?
J <) o (S5 >/exp[ ],
Xr) ———————— dxr = x - -
‘ z—2z ¢ z—2z
oo e
| 0%¢(x) i (' —x)? ik (z — 2')?
2 da’ 44
3 B / Y o EXP{Q(Z_z/)} x (5.44)
— 00
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The first integral here may be evaluated by deforming the path of integration
into a line through z tilted an angle 7/4 in the complex a’-plane, i.e. ' — z =
a exp(ir/4). In this way we obtain

+oo kao? .
_ exp [*W} e/t for (2 — 2)
i /4 _
e / po— da o ’ (5.45)

The integration over y’' can be done in the same way, and hence (5.35) with
the first term in the Taylor expansion of e(a’,y’, 2') yields a purely imaginary

result:
z

iS; = %/e(w,y,z') dz’ (5.46)
0

This is exactly the first-order correction to the phase obtained in geometrical
optics aproximation, eq. (4.67). The second integral in (5.44) can easily be
evaluated if we make use of (5.45) as follows:

+oo +oo
/ &% explif€?] dé = —i % / explife?] de = Lie™/ N /m/FB  (547)

Together with the corresponding contribution in the g’-direction this gives the
real-valued result

z

X1 = —% /(z — Y V2e(z,y,2) d2 (5.48)
0

The first-order level-correction in the geometrical-optics approximation is given
by (4.80). If we substitute ¢; according to (4.67)(with the unity background
dielectric permittivity) into this and perform an integration by parts, we obtain
exactly (5.48).

Hence we have verified that the first-order Rytov’s representation (5.35)
really gives the result of geometrical-optics in the limit (5.42) when the steepest-
descent method applies. To summarize, the steepest-descent evaluation of (6.35)
can be written

. z z
Uy = % e(z,y,2') dz’ — i/(z —2") V3 e(z,y,2') d2’ (5.49)
0 0

When (5.42) is violated diffraction effects are essential and then the general
integral (5.35) has to be calculated.
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5.5 Phase and level fluctuations, their mean val-
ues and correlation functions

When we separate the first-order Rytov’s representation (6.35) into real and
imaginary parts we get

+oo z
k‘2 € r’ _ A\2
x1(r) = o / da’ dy// . E i/ cos [k: M} dz’ (5.50a)
—o00 0
BT [ e) (p—p)?
Sl(r) = E / d.’L’/ dy// o sin |::Z€ 2(2_2:/):| dZ/ (550b)
—o00 0

Since these are linear in the zero-mean quantity e, we have (x1) = (S1) =0.

In calculating the correlation functions we shall employ the transverse spatial
spectrum of the fluctuations; é(k, 2’) with K = {kz, K, } . The transverse spatial
Fourier transform of (6.35) takes the form of a convolution integral in the z-
and y-variables which may be considerably simplified by using the convolution
theorem to yield

. ik [ 2+ R2)(z—2
Uy (k,2) = el é(r, 2" ) exp | —i (ka 1) (2 = ) dz’ (5.51)
2 2k
0
The level fluctuations may be expressed
i) = 1 [04(r) + Wi () (5.52a)
where we now shall use
+oo
Uy(r) = / U (K, 2) explik - p] de (5.53)

When we substitute (5.51) and (5.53) into (5.52a), we may also utilize the fact
that for real-valued fluctuations e(r) we have

€ (—k,2) =€k, 2) (5.54)

We then arrive at the following expression:

—+oo z

xi(r) = g / explik - pl dn/e(n,z’)sm {W] dz' (5.55)

—00 0

where the simplifying notation x? = k2 + /ifl has been used. In this result we

can immediately identify the transverse spectrum of the level for a separate
realization of the fluctuations:
z

Xi(k,2) = g/é(n,z’)sin [W] 4z (5.56a)
0
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Analogously we may use the formula

§10) = & [W1(6) — W) (5.52)
to obtain the result
- K. 20, _ o/
Si(k,z) = 2/6(&2’)(}08 [/ﬁ(;kz)] dz’ (5.56b)

0
We shall next use the result (5.56a) together with

“+o0
) = [ Tale.) explin p] de (5.57)

— 00

to construct the transverse correlation function for the level. Assuming statisti-
cal homogeneity in the longitudinal direction and noting that x; is real we have
by definition

+oo
Uy (p1, P2y 2) = /dﬂl dka (X1(k1,2) X1(K2,2)) expli (K1-p;+K2-py)] (5.58)

— 00

Substituting (5.56a) into this, we get

400
k2 .
Ulprop ) =7 [ drr di expli (1 py 4 2 )

// (€(k1,2') €(K2, 2")) sin {H%(Z;Z/)} sin [“5(22; z”)} d2' 2" (5.59)
00

The average appearing in the integrand is the transverse spectrum of the cor-
relation function of the permittivity fluctuations, i.e.

Ve(kr, k2,2, 2") = (E(k1, ') E(K2, 2")) (5.60)

When we have statistical homogeneity this quantity has the form
Ye(K1, k2,2, 2") = Fo(k1,2 — 2") §(Kk1 + K2) (5.61)

Under these conditions (5.59) can be written

+oo
k’2
Ulpropns) = [ s expline (o, ~ py)
// F.(k,2' —2") sin {/{2(;;7;’)} sin [KQ(Z?;ZH)} dz’ dz” (5.62)
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With p = p; — py we finally get the following Fourier representation of the
correlation function

+oo
vlp.2) = [ Byle.z) explin: pl dn (5.63)
with
2 77 YO 20 o
Fy(k,z) = %//Fé(m,z'fz”) sin {H (;k Z)} sin [H (Zka )] dz’ dz”
00

(5.64)
Now we shall treat (5.64) in a similar way as we did with the integral in
Section 4.4.1. Hence we introduce new variables through

2n=2"+2", (=2 -2 (5.65)

so that (5.64) can be written

12 k2 . k2 . e d

Fy(k,z)= 4/OF€(K,C) sin {Qk’ (z —n— 2()] sin {2/@ (z —-n+ 2()] ¢ dn

(5.66)
The symbol { denotes the area of integration in the {n-plane. With the spatial
scale £, of the fluctuations the scale of the spatial spectrum will be /71 as we
have already stressed many times. Since F, is practically zero for || > £, it is
then sufficient to integrate over |¢| smaller than this value if z > ¢, ,. Since also
in practice £ < ¢!, the term k2(/(4k) has a maximum value which is of the
order 1/(kf;) < 1 for the large-scale inhomogeneities considered here. Hence
we can omit this term in both sines obtaining

2

F(k,2) = IZ/OFE(H,C) sin? {"2(;{”)] d¢ dn (5.67)

Because of the restricted area of non-zero F, , the integration over  can without
introducing large error be extended to +oco and then we may also take the
integration over 7 right up to the point z:

2

Folr.2) =& / an sin? {’“@2(;;”)} 7&(&,0 & (568)
0 —00

The three-dimensional spatial spectrum corresponding to Fy is

“+o0
bulr, k) = — / Fu(k,C) explinsC] dC (5.69)

2T

— 00

68



and in particular we have

+oo
0,0 = - [ R0 ¢ (56%)
Hence .
Fy(k,z) = %kz ¢e(K,0) /sin2 {52(;{;—”)] dn (5.70)
0

Carrying out the straight-forward integration over 1, we obtain from this

Fy(k,z) = ﬂ-ka [1 - % sin (sz)] ¢e(k,0) (5.71a)

As our final result, the transverse spatial correlation function for the level is
then given by

“+oo
Uy(p, 2) = 7Tk42 : / [1 - % sin <Z>} ¢c(K,0) explik - p] de  (5.72a)

The calculation of the transverse spatial correlation function for the phase is
completely analogous with the above. Hence we obtain the corresponding result

2 2
Fs(k,z) = 7”1 i {1 + %Sin (“;)] e (K, 0) (5.71b)
nk? 2 i k K2 2

Ys(p,z) = 1 / [1 + @sin (k)} ¢e(K,0) explik - p] de  (5.72)

—00

The results (5.71a,b) and (5.72a,b) are valid generally; not only for very
large-scale inhomogeneities when geometrical optics pertains, but also when £,
is less than the Fresnel zone size so that diffraction effects are essential.

It is now interesting to investigate how the limiting case of geometrical optics
can be obtained from these results. We know that the largest value of « for which
@, is non-zero and which is then necessary in the evaluation of the integrals is of
the order £-! . The argument of the sine function for this x is z/(k 2) ~ X z/(? =
D? . If the wave parameter fulfils D < 1 we may then use the expansion

2 - 2
i sin <M> _ siné %1—§——|—... (5.73)

K2z k

In the case of level fluctuations the first term of this expansion is cancelled in
(5.71a). Hence we have to include the second term which gives

7Tl€4223

Fy(k,2) = 21 be(k,0) (5.74a)
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For the phase fluctuations the first term is sufficient which yields

wk? z
2

Fs(k,z) = (K, 0) (5.74b)

The resulting transverse spatial correlation functions (5.72a,b) are then given
by

+oo
wg(p, z) = / %ZZB ?c(k,0) explik - p| dk (5.75a)
" K%z
™
0§(p.2) = [ T 0u(m.0) explin - p] e (5.75b)

where the superscript G indicates that we have really obtained the geometrical-
optics limit from Chapter 4. Indeed, (5.75a,b) specialized to p = 0 are just egs.
(4.112,113).

The opposite limit, when D > 1, is the Fraunhofer limit of plane wave
diffraction. Then the sine can be omitted in the formulas (5.71a,b) for the main
part of the domain of integration, giving

k%2

F)ZS(p? Z) = 4 ¢6(K70) (576)

As a result we get the same expression for the level and phase fluctuations:

+oo
k.2
WEs(p.2) = [ T 6u(s,0) explin p] de (5.77)

For intermediate values of D the general formulas (5.72a,b) must be used.
We restate them here again in a unified form:

mk* z

9 T 2
veste) =" [ [1:F,j§zsin (k)} be(1,0) explire- p] d (5.72)

— 00

We remark that all these considerations pertain to the case of an incident
plane wave in the z-direction and homogeneous background with fluctuations in
the half-space z > 0. For ionospheric propagation the mean properties of the
fluctuations depend on the height and in the quasi-homogeneous approximation
the fluctuation spectrum will then also be a function of 1, i.e. ¢c(k,k,,7n). In
this case we cannot take this quantity out of the integration in (6.70) and hence
we obtain instead of (5.72a) the expression

z

+oo
wnlo) =T [ elin-plan st (52) oo an (5180

—o00 0
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and instead of (5.72b)

2 4
wk

—+00
vsip) = o [ elin-plas [ ot (57) atmom an (570
0

— 00

Alternatively we may have a slow temporal change of the fluctuations, ¢.(k, K, t),
e.g. in the model of frozen drift. Then we have instead of (5.72’), if we specialize
to the variance with p = 0, the expressions

“+o0
Tk? z E . (K2
oy,s(p,z,t) = 1 / [1 F 5 sin (lc)] ¢e(k,0,t) de (5.79)

The frequency spectra of these slow temporal changes are

+oo
k2 k 2
Gx.5(p,2,82) = TZ / [1 F @sin (szﬂ 0e(K,0,t) exp(it) dr dt

(5.80)

5.6 The moments of the total field

We have already derived the expression (5.20) for the mean energy in Rytov’s
method:

(EE") = |Eo|” exp [2(x2) +2(x?)] (5.81)
as well as (5.21) for the average total field
(E(r)) = Eo exp [(x2) +i (S2) + 5 (xi) — 5 (ST) +i (xa 51)] (5.82)
It can be shown that the particular relations
(x2) = = (x%) (5.83a)
(S2) = —(x151) (5.83b)

are valid when the incident field is a plane wave and the background is homo-
geneous. Then (5.81,82) specialize to

(BE) = |Eyf? (5.84)
(Ew) = By exp [-3 (63) + (52)] (5.55)
We then also easily find from (5.72’) that
mk? 2 i
(xi) +(51) = = / ¢e(k,0) dr (5.86)
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5.7 Range of applicability of Rytov’s method

It is difficult to write down explicit and rigorous conditions for the validity of
the Rytov’s approximation. One condition concerns the validity of the Fresnel
approximation, i.e. our omission of the next higher term in (6.32). This is
justified provided that the phase error in the integrand is much less than unity;

k(p— )

G <! (5.87)

However, the main criteria of the validity of the results predicted in the
scope of Rytov’s approximation is a good fitting the appropriate results of the
experimental observations. In particular, while comparing experimentally ob-
served values of the variance of the log-amplitude (level) fluctuations with those
predicted by Rytov’s approximation, fairly good coincidence is observed up to
values of the variance fulfilling the inequality

(xi) =1 (5.880)

At this, comparison of the experimentally observed values of the scintillation
indes S4 with the same forecasted by Rytov’s approximation results in the range
of the validity of the latter given by the value of the order

(xi) 0.1 (5.88b)

5.8 Simplest relationships for the dielectric per-
mittivity of plasma with the electron density
fluctuations

We already briefly faced this issue in the introductory part of Chapter 1. We

still confine ourselves here by the consideration of a cold collisionless plasma,

which relative dielectric permittivity in full 3-D case is defined by equation

e [No(x) + N(x,1)

e=1 5
meow

(5.89)

where the full electron density is divided into two parts. Density Ny(r)
stands for the slowly varying in space distribution in the background medium
of propagation (ionosphere), and N (r,t) represents fluctuations of the electron
density in space and time (time dependence should be considered in the sense
of the slow time). The fluctuational item N(r,t) in (5.89) cannot be consid-
ered as the statistically homogeneous as the absolute values of fluctuations are
significantly dependant on the electron density of the background plasma. Al-
ternatively we may write

e No(z) €2 Ny(z)

= t)=1-— — N t 5.90
€=eo(z) +e(r,) e R—— (r,t) (5.90)
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where it is realistic and reasonable to assume the relative density fluctuations

N(r,t)
No(z)

Ng(r,t) = (5.91)
to be statistically homogeneous. It is possible to choose this function such that
the relative permittivity fluctuations are zero-mean, (¢) = 0, but the fluctua-
tional part of the relative dielectric permittivity, at best, may only be considered
as quasi-homogeneous so that their correlation function has the form

Ye(r, T2, — t2) = e(ry — ro, a(ry +1ra), 11 — t2) (5.92)

Here « is a small parameter.

According to the experience a significant part of random ionospheric inho-
mogeneities are of the turbulent type. In the inertial interval of wave numbers,
localized between k = 27/L and K = 2w /¢, the spatial spectrum of the iono-
spheric turbulence is characterized by the inverse power law as follows:

Ce(2)
Ge(Kyhizy2) = — (5.93)
L+ % + 7 + 5]

Quantities ¢ and L are the inner and outer scales of a turbulence.

Sometimes an exponential decrease is introduced for fluctuations smaller
than some inner scale or minimum size ¢ of the ionospheric blobs, i.e. for
k > 271 /¢. The spectral index p in (5.93) is generally of the order 3 — 4.

The spatial spectrum of the relative fluctuations of the ionospheric electron
density written like in (5.93) implies that random inhomogeneities are, generally
speaking, 3-D inhomogeneous (anysotropic) bodies, i.e. they may have differ-
ent values of ¢ anf L along different axes of an ortogonal co-ordinate system.
Anysotropy of the ionospheric random inhomogeneities is caused by the Earth’s
magnetic field, so that the inhomogeneities are field-aligned. In mid-latitudes
they have sigar-like shapes with the cylindrical symmetry in the plane orthogo-
nal to the magnetic field lines. However, physically more complicated processes
occuring in high-latitude and low-latitude ionosphere may result in full 3-D
shapes of the ionospheric random inhomogeneities. It should be additionally
pointed out that in some cases the inverse power law spatial spectrum may be
of a more complicated shape with two different values of the spectral index (two
slopes).

5.9 Extension of Rytov’s approximation to the
case of nhomogeneous background media
We have been dealing with the most simple case when the background medium

considered to be homogeneous. However, in the vast majority of the problems of
HF, VHF, UHF wave propagation in the ionospheric with the electron density
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fluctuations one has to treat the case, when the background medium is essen-
tially inhomogeneous. Meeting these needs Rytov’s approximation was gradu-
ally extended, finally, to the case of full 3-D inhomogeneous background medium.
The first extension was performed in [ZERNOV, 1980] in 2-D problem for the case
of plane-layered inhomogeneous background medium. The ray-centres variables
were used to construct the complex phases, where the bent paths of propaga-
tion defined by the inhomogeneous layered background medium were utilized
as reference rays to the appropriate ray-centred co-ordinate system. Further
extension was carried out by [ZERNOV, 1990], [Zernov and Lundborg, 1996].
THEY SUGGESTED THE INTEGRAL REPRESENTATION IN TERMS OF DIFFRACT-
ING COMPONENT WAVES, WHERE EACH DIFFRACTING COMPONENT WAVE WAS
CONSTRUCTED EMPLOYING THE SMOOTH PERTURBATION TECHNIQUE. THIS
ALLOWED INVESTIGATION OF THE EFFECTS OF THE IONOSPHERIC ELECTRON
DENSITY FLUCTUATIONS ON THE FIELDS NEAR CAUSTICS. FURTHER GENER-
ALIZATION OF THE METHOD OF SMOOTH PERTURBATION TO THE LAYERED
MEDIUM FOR THE 3-D CASE MADE IT POSSIBLE SOLVING SOME REALISTIC
PROBLEMS OF HF PROPAGATION IN THE IONOSPHERE WITH THE ELECTRON
DENSITY FLUCTUATIONS [Gherm and Zernov, 1995, 1998], INCLUDING HF
PULSE PROPAGATION [Gherm et al., 1997A,B]. FINNALLY, ONE WILL FIND IN
[Gherm et al., 2005A] THE MOST GENERAL CASE OF RYTOV’S METHOD, WHICH
IS VALID FOR AN ARBITRARY 3-D INHOMOGENEOUS BACKGROUND MEDIUM.

5.10 Pulse propagation

IN TREATING IONOSPHERIC PROPAGATION OF PULSES WE HAVE TO DEAL WITH
A FREQUENCY SPECTRUM OF WAVES, WHERE EACH COMPONENT MAY BE
DESRIBED, E.G., BY THE RYTOV’S SOLUTION, OR MENTIONED ABOVE METHOD
OF THE GEOMETRICAL OPTICS. HERE WE SHALL FOLLOW THE FORMALIZM
OF RYTOV’S METHOD. LATER ON, HOWEVER, WE SHALL SEE THAT THE CASE
OF STRONG SCINTILLATION REQUIRES OTHER ADEQUATE TREATMENT OF THE
FREQUENCY COMPONENT WAVES. IN PARTICULAR, THE TWO-FREQENCY CO-
HERENCE FUNCTION MUST BE CONSTRUCTED BY ONE OF THE METHODS CAPA-
BLE OF DESCRIBING THE CASE OF STRONG AMPLITUDE FLUCTUATIONS. NOwW,
ACCORDING TO THE RYTOV’S APPROXIMATION

E(r,w) = E§ (r,w) exp[¥(r,w)] = fo(z,w) exp{ipo[r,w,a(w)] + ¥(r,w)}
(5.94)
WITH THE GEOMETRICAL-OPTICS REPRESENTATION (456) FOR A PLANE-STRATIFIED
IONOSPHERE AS THE BACKGROUND FIELD. HENCE THE BACKGROUND AMPLI-
TUDE fo IS PROPORTIONAL TO (4.55) AND THE BACKGROUND PHASE IS

wo(r,a) = ka(w)z +k ¢[z,w, a(w)] (5.95)

IT 1S IMPORTANT HERE TO NOTE THE FREQUENCY-DEPENDENCE IN a(w)
WHICH IS THERE TO ENSURE THAT THE UNDISTURBED COMPONENT RAY HAS
AN INITIAL DIRECTION ALLOWING IT TO REACH THE POINT OF OBSERVATION.
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THE TRANSIONOSPHERIC CASE IS THE SIMPLEST TO CONSIDER; THE TREAT-
MENT OF THE IONOSPHERIC REFLECTION CHANNEL REQUIRES SOME EXTRA
PRECAUTIONS.

IF WE ASSUME THE SPECTRUM p(w) OF THE EMITTED PULSE, WE CAN
EXPRESS THE FIELD AT THE POINT OF OBSERVATION AS FOLLOWS:

400
E(r,t) = /p(w) fo(z,w) exp{ipo[r,w, a(w)] + ¥(r,w) —iwt} dw (5.96)

— 00

THE MEAN ENERGY OF THE FIELD IS EXPRESSED BY

+oo
W(r,t) = / dw; dws p(wr) p*(w2) folz,wi) fi(z,w2)T(r, wr, ws)
exp{i wolr, w1, a(wy)] — iwo[r,ws, a(ws)] — i(wy — wg)t} (5.97)

INVOLVING THE TWO-FREQUENCY COHERENCE FUNCTION
I(r,wy,ws) = <exp[\I/(r,w1) + \I/*(r,wg)}> (5.98)

WE MUST ACCOUNT FOR AT LEAST THE FIRST AND SECOND APPROXIMATIONS
OF ¥ IN CONSTRUCTING THIS COHERENCE FUNCTION, I.E.

I ~y(r,wi,ws) = exp [A(r,w1,ws) + i B(r,wy,ws)] (5.99)
WITH
Awr,wz) = (a(@)+0ew2))+3 (Da ) + xu @) )3 (1S1(w1) = Si(w2))?)
(5.100a)
B(wr,wz) = (S2(w1) — (S2(w2)) + (Da(wn) + xa(@2)] [S1(wn) = Si(w2)])
(5.1000)

THESE GENERAL EXPRESSIONS CAN BE SIMPLIFIED IN SOME LIMITING CASES.
IN MOST CASES THE PROBLEM HAS A DOMINANT FREQUENCY w,, E.G. THE
CARRIER FREQUENCY FOR NARROWBAND PULSES OR STATIONARY POINTS,
GIVING THE DOMINANT CONTRIBUTION TO THE INTEGRAL IN (5.97) FOR
WIDEBAND PULSES. EXPANDING THE MOMENTS IN A DOUBLE TAYLOR SE-
RIES AROUND wy AND OMITTING TERMS HIGHER THAN THE QUADRATIC, WE
MAY WRITE THE COHERENCE FUNCTION AS FOLLOWS:

Ty (r,wi,ws) = exp [Bo(wa) + Bi(wa)(wi — w2) — Bo(wa)(wy — w2)?]  (5.101)

IN THE MOST GENERAL CASE THE EXPANSION COEFFICIENTS ARE GIVEN BY

Bo(wa) =2 (x2(wa)) +2 (xi(wa)) (5.102)
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o) = (2220 ) 12 Gt ) oz

Ba(wa) = 3 (851(wd)>2 _1 <82X2(Wd)> _1 <X1(0Jd) 62X1(Wd)>
Oow 4 Ow? 2 w2
(5.102;)
BY OUR WAY OF WRITING THE DERIVATIVES WE UNDERSTAND THAT w IS TO
BE PUT = wy AFTER THE DIFFERENTIATION IS PERFORMED.
IN THE ABSENCE OF CAUSTICS, AS E.G. FOR TRANSIONOSPHERIC PROPA-

GATION, THE RELATIONS (5.83A,B) HOLD. THE EXPRESSIONS 6.1099_3 ARE
THEN SIMPLIFIED TO

0% (wa) =0 (5.1030)
NS () = <X1(wd) aS(;E:Ud)> 3 <8x(19((:ud) 51(wd)> (5.103)
S (wa) = 3 (axé((:)d))Q + <85553’d)>2 (5.1035)

WHERE THE SUPERSCRIPT NS STANDS FOR “NON-SINGULAR”. IN THIS CASE
WE STILL HAVE DIFFRACTION EFFECTS AND PHASE FLUCTUATIONS.

IN THE GEOMETRICAL OPTICS LIMIT WE HAVE Y7 = 0 AND BECAUSE OF
THIS THE FURTHER SIMPLIFICATION

' (wa) =0 (5.1040)
9 (wa) =0 (5.104;)
FO(wa) = 3 (W)Q (5.1045)

AS WE KNOW, WE HAVE IN THIS CASE ONLY PHASE FLUCTUATIONS AND NO
DIFFRACTION EFFECTS.

WE SHALL USE THESE REPRESENTATIONS OF THE COHERENCE FUNCTION IN
THE MEAN-ENERGY INTEGRAL (5.97). FIRST WE NOTE THAT IN THE ABSENCE
OF FLUCTUATIONS, WHEN I' = 1 IN (6.104), WE STILL HAVE THE REGULAR
IONOSPHERIC DISPERSION WITH THE MEAN ENERGY

+oo
Wo(r,t) = / dw; dws p(wr) p*(w2) folz,wr) f5(z,w2)
exp{i wolr, w1, a(wr)] — i wo[r, ws, a(ws)] — i(w — wz)t} (5.105)

WHEN WE INTRODUCE THE FORM (6.108) OF THE COHERENCE FUNCTION
INTO (5.97) IT IS POSSIBLE TO CARRY OUT THE FOURIER TRANSFORMATION
OF THE EXPONENTIAL FUNCTION THERE WITH RESPECT TO THE DIFFERENCE
FREQUENCY (w; — wg). THUS WE MAY USE THE CONVOLUTION THEOREM TO
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OBTAIN THE FOLLOWING EXPRESSION FOR THE MEAN-ENERGY IN THE GEN-
ERAL CASE:

+oo T — 1\W 2
W(r,t) = / exp ¢ Bo(wa) — [ =t % fafwa)] Wo(r,7) dr

2\/7rﬂ2 W) 4 B (wq)

(5.106)
THIS RESULT CONTAINS ALL THE EFFECTS CAUSED BY THE INHOMOGENEITIES
AS DESCRIBED BY THE COEFFICIENTS (3; . THE FORMULA CAN BE SPECIALIZED
TO VARIOUS CASES BY USING THE APPROPRIATE ONE OF THE SETS (5.102—
104) OF THESE COEFFICIENTS. IT CONTAINS ALSO THE LIMITING CASE OF
GEOMETRICAL OPTICS WHEN [y = (J; = 0 AND ONLY (33 IS NON-ZERO.

WHEN 43, < T?, WHERE 7' IS THE LENGTH OF THE PULSE AFTER PASSAGE
THROUGH THE REGULAR IONOSPHERE, THE EXPONENT IN (5.106) VARIES
RAPIDLY COMPARED TO THE REGULAR PULSE Wy AND THEN THE MEAN EN-
ERGY W IS THE SAME AS THE MEAN ENERGY W, OF THE REGULAR IONO-
SPHERE, ONLY DELAYED SOMEWHAT DUE TO THE FLUCTUATIONS AND WITH
AN EXTRA AMPLITUDE FACTOR:

W (r,t) = exp[fo(waq)] Wolr,t — 81 (wa)] (5.107)

IF, IN PARTICULAR, (g = 51 = 2 = 0 THEN THE REGULAR RESULT (5.105) IS
RECOVERED.

THE CONDITION THAT (33 BE SMALL IMPLIES WEAK FLUCTUATIONS. WE
SHALL CONSIDER SOME WAYS OF DIRECTLY CALCULATING THE DOUBLE INTE-
GRAL (5.97) FOR CASES WHEN (33 IS CONSIDERABLE COMPARED TO T72.

THE SIMPLEST CASE IS FOR wideband pulses WHEN THE SPECTRUM p(w)
IS A SLOWLY VARYING FUNCTION OF FREQUENCY. THEN IT IS POSSIBLE TO
OBTAIN THE RESULT BY MEANS OF THE STEEPEST DESCENT METHOD ON THE
FOLLOWING FORM:

T2 o)l (o)
dBl(wo) + dwz [koSDO(WO)]

TIME ENTERS IMPLICITLY INTO THIS EXPRESSION THROUGH wy WHICH IS
GIVEN BY THE EQUATION FOR THE SADDLE POINT

W(r,t) = exp|Bo(wo)] (5.108a)

B1(wo) + % [kos@o(wo)} =t (5.108b)

WE SEE THAT WHEN (6.115A) IS VALID THE MEAN ENERGY IS INDEPENDENT
OF ﬁg . THIS MEANS THAT DIFFRACTION ALONE IS RESPONSIBLE FOR THE
PULSE DISTORTION. IN MORE COMPLICATED CASES OF CALCULATING (6.104)
THE FINAL RESULT DEPENDS ALSO ON f3; SEE [ZERNOV and LUNDBORG,
1993].

In the case of narrowband signals the spectrum p(w) is no longer a slowly
varying function. There is no general way to calculate the integral in this case,
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instead we choose a particular model of the initial pulse, viz. a carrier of center
frequency w,. and a Gaussian amplitude envelope of width T :

2
Ego(t) = exp {QTOQ — zwct] (5.109a)
with the spectrum
T T3 2
p(w) = \/20? exp {—20 (w - wc) ] (5.1090)

Expanding the exponent in the integrand of (5.97) in a double series around w,
it is possible to obtain the following result

T()Qfg (we) exp [Bo(we)]
\/T(;1 + 4T0252(wc) + (% [kc¢0(wc)])2

o { 72(wc)Toj _ } (5.110a)
Td + AT2Ba(we) + (225 [kego(we)])

where 7 is a translated time due to the propagation:

W(r,t) =

T(we) =t —tg4 (5.1100)
with the group delay time

tg = s [kc¢0(wc)] + B (we) (5.110c¢)

dw

In this the regular dispersion is taken into account by the function [keq(we)]”
which is related to the dispersive bandwidth [LIN et al., 1989] of the regular iono-
sphere; essentially the same quantity is denoted by P; in [LUNDBORG, 1990].
The additional dispersive properties, caused by the fluctuations, are represented
by the functions By(w), f1(w.) and f2(w.). By analogy with the regular dis-
persion, the quantity [2(w.) can be used to define a fluctuational bandwidth.
When Fy(w.) # 0 and (1 (w.) # 0, diffraction affects also the amplitude of the
pulse and the group delay time, as is easily seen from (5.110a,c). It is also easy
to see that when all dispersion terms are absent, we recover the energy of the
undisturbed pulse )

W,(r,t) = fa(we) exp{—ztg} (5.111)

which has the same shape as the initial pulse.
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Chapter 6

Diffusive Markov
approximation for the
parabolic equation

All the methods considered previously (except the stochastic screen method)
are based on the assumption that the local inhomogeneities of the dielectric
permittivity are weak. In contrast, the subject of the present Chapter is a
method which does not have this limitation. The small parameter of the problem
will now be the ratio of the correlation radius to the characteristic scale of the
mean field. The equations for the first two moments of the full field will be
derived directly using the smallness of the just-mentioned parameter.

In the subsequent treatment the technique of variational or functional deriva-
tives will be used. Therefore we define first the functional derivative and discuss
some of its applications.

6.1 The notion of variational derivative

We use for functionals, which give a mapping of the space of functions {u(x)}
onto the space of numbers, the notation ¢[u(z)]. Then we may define the
variational derivative of ¢[u(z)] through
Sefu(@)] _ plu(z) + Au(z)] — plu(@)]
= im
du(zo) A0 J Au(z) dz

max |Au(z)|—0

(6.1)

where Au(z) is a local arbitray change of the functional argument which is non-
zero only in a small interval around the point z = x(, for which the derivative
is being calculated, and which has an infinitesimal absolute value.
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6.1.1 Variational derivative for linear functionals

Using the definition given, we shall first find the variational derivative for a
linear functional, which in the most general case may be represented as

)] = / A(@) u(z) de (6.2)

where A(x) is the kernel of the functional. Then, according to the definition
(6.1), we have for the derivative

SL[u(z)] _ i JAu+Auldz — [Audz
du(zo) Az—0 f{xo} Au(x) dz

max [Au(xz)|—0

J Az ydz -
e f{zo} Au ) d-r Elﬂnﬂ}o @) (o) (6.3)

max |Au(z)|—0

The subscript {2} on the integral signs in the denominators indicate that the
integration is to be performed over the interval around zy where Au(z) is non-
zero. The integrals in the numerators, on the other hand, are performed over
the interval stated in (6.2).

6.1.2 Derivative of an arbitrary functional

The last member of (6.3) leads to a rule of great practical importance for cal-
culating the variational derivative of a function u(z) as a particular case of a
linear functional depending on the parameter x :

- / 5(z — y) uly) dy (6.4)

Using the rule (6.3) for the variational derivative, we easily find

du(x)
du(zo)

= d(x — x0) (6.5)

In calculating the variational derivative of an arbitrary functional we may then
use the ordinary rules of derivation with the rule (6.5) in the last step. For
instance:

(i) For the linear functional Lu] we obtain once again

5u o) /A §(z — o) dz = A(xo) (6.6)
(ii) For a quadratic functional Qu(z)] = [ B(z1,x2) u(z1) u(zs) dzy dze we
may obtain
6Q[u]

du(zo) - /B(scl,x2) d(z1 — x0) u(xe) dey dae
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+/B(x17x2) u(xy) 0(x1 — mo) dq dao

= /B(xo,xg) u(xe) dzg + /B(xl,xo) u(zy) doy (6.7)
This gives
0QMu] _
Su(zy) 2/B(x0,x) u(z) dz (6.8)

for a symmetric kernel B(z1, z3).

6.2 Characteristic functional for a random func-
tion

The technique of variational derivatives can be employed in developing an al-
ternative description of random functions. To this end we shall now introduce
the characteristic functional for a random function. For simplicity we shall con-
sider the case of a one-dimensional random function €(z). Then we define the
characteristic functional Q.[u] of this random function through

Qutu(o)] = (exo [i [ ee) ute) as] ) (6.9)

where u(z) is an arbitrary determinitstic function. Keeping (6.6) in mind it is
now easy to see that

_ 1 6Qc[u] .
{e(@o)) = - 5u(zo) | (6.10a)
_ 1 52Qc[u
(e(w1) €(z2)) = G Gu(ey) 0u@a) | (6.100)
and in the general case
_ L Qdu] .
(e(w1) ... exa)) = @ @) - oulmn) . (6.10c)

Hence any moment of the random function can be described by means of the
characteristic functional (6.9).

6.2.1 The connection between the characteristic function
and the probability density function

In the particular case when u(z) has the special form

Un(2) = Zuj 5(x — ;) (6.11)
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we find the following expression for the characteristic functional:

Qe[un(l‘)]=<exp zzuj € > (6.12)

with €; = €(z;). Assuming that the random function e(x) is continuous and
defined over an infinite interval, (6.12) can be rewritten using the PDF’s of € as
follows:

+o00 n
Qelun(x)] = /wn(xl,q,...,xn,en) exp iZuj €| dep...dey, (6.13)
j=1

— 00

From this last equation we understand that for continuous random functions
with infinite domain of definition, the characteristic functionals (6.12) and the
multidimensional PDF’s form Fourier transform pairs.

6.2.2 Characteristic functional for a Gaussian zero-mean
random field

As an example we shall construct the characteristic functional for the zero-mean
normally distributed random function.

Let the one-dimensional random function e(z) be a normally distributed
random field with (e(z)) = 0. Then the quantity

q= /e(x) u(z) do (6.14)
which appears in (7.9) is a normally distributed zero-mean random value and,

as in (3.58), <eiq> = exp [—% <q2>] . Therefore we only have to construct the
variance <q2> for ¢ from (6.14), which is as follows

(¢*) = /we(xl,xz) w(zy) u(zs) doy das (6.15)

As a result the final expression for the characteristic functional can be written
on the form

Qclu] = exp [% /1/)6(931@2) u(zy) u(xz) dzy dxg] (6.16)

We shall now check if (7.16) really gives the correct description of the zero-
mean Gaussian random field. Indeed, let us calculate

= exp [—é /1/)6(5017552) u(z1) u(zz) do dff?] :
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(=1 [We(o, x2) u(w2) dao — § [Ye(w1,20) u(21) daq] u=0(6.17)

While calculating the second derivative, one needs to differentiate only the
second factor in (6.17), since the derivative of the exponent yields zero due to
u = 0. Then we finally get for the second moment the expected result

(e(21) €(z2)) = e(T1, 22) (6.18)

6.3 Parabolic approximation of the Helmholtz’
equation

It appears to be possible to construct closed equations for the moments of the
stochastic differential equation

V2E + k? [eo(r,w) + ¢(r,w,t)] E=0 (6.19)

only in the case when the parabolic approximation can be introduced. We now
consider the simplest case with eo(r,w) = 1. Then, if we again investigate the
large-scale inhomogeneities k€. > 1, we can attempt a solution of (6.19) on the
form

E(r,w,t) = Ey(r,w) v(r,w,t) (6.20)

with Fo(r,w) being the solution of the reduced equation (6.19) for e = 0. We
choose Ej as a plane wave, propagating in the diirection of the z-axis:

Eo(r,w) = ei*? (6.21)

Substituting F in the form of (6.20) with Ey given by (6.21) into eq. (6.19),
we can easily obtain the following exact equation for the new unknown function
v:

0% Ov

49k 22

022 i 0z
Here v = v(p,2), p = {z,y} and V2 = 9%/02 + 9?/0y*. The order of
magnitude of the first two terms in (6.22) can be estimated as follows:

+V3iv+k’ev=0 (6.22)

ov v
2k — ~ 2tk — 2
ik % ik 7 (6.23a)
0%v v
~ .23b
0z2 2 (6:236)
and hence for the sum of these two the estimate
ov 0% ov 1

21k — + — ~2ik — (1 .24
" oz * 0z " oz < + Qikée) (6:24)

This shows that the contribution of the second derivative of v is small for the
large-scale inhomogeneities. Then we finally obtain the approximate parabolic
equation

)
2ik 8—2 + V204 k2ev=0 (6.25)
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for the complex amplitude function v(p, z) of the plane wave (6.21) in the in-
homogeneous medium. We shall also use the integral form of the last equation

v(p,2) = v(p,0) + 37 V3o O+ Bep.Oulp,0)] A (6.26)
where v(p,0) is the given “initial” value of the field v(p, z) in the plane z = 0.
[We again consider the situation when the inhomogeneities €(p, z) occupy the
half-space z > 0].

Eq. (6.26) shows that the field v(p, z) obeys the property of “dynamical
causality”, i.e., the field at the point of observation (p, z) depends on the prop-
erties of the medium €(p, 2’) at the points which lie “before” the point of obser-
vation (2’ < z). This yields the important relation for the functional derivative
of the solution of (6.25) [or (6.26)] with respect to the function e:

dv(p, 2)

de(p’,2')
which will be used later on.

=0, 2>z (6.27)

6.4 Averaging of the parabolic equation

On the basis of eqgs. (6.25,26) we shall now derive the equation for the mean
field (v). Averaging (6.25), we obtain the equation
9 (v)

2k —— + V3 (v) + k* (ev) =0 (7.28)

which is unclosed in the sense that it contains two unknown functions, (v) and
(ev) . The last average is the mutual correlation of the random field € and the
solution v of egs. (6.25,26), which is itself a functional on this random field. For
this sort of correlation the Furutsu-Novikov formula can be used, which has the
form

+oo +

o2y vlp.) = [ 0z 4l o) <‘”’”> (6.29)

de(p’,2')
oo
if e(p, z) is a Gaussian random function with the correlation function ¢.(p, z, p’, 2’) .
In our case with fluctuations in the half-space z > 0 with the property (6.27),

eq. (6.29) yields

(e(p, 2) v(p, 2)) = / 4z +/Oodp' belpozr i) <f(;’”)> (6.30)
0 —00

Using the last expression another “unclosed” equation can be written instead
of (6.28) on the form

z +oo
. a<v> 2 2/ / / / /) (57)(p7 Z) _

2ik 2 +Vi{v)+k dz dp’ Ye(p, 2,0, 2") Se(p,2') =0 (6.31)

0 —o00
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which contains except (v) the unknown function

In the general case another equation has to be derived for the new unknown
function Ty (p, z, p’, z’) and this equation also will be unclosed. In this way one
can construct an infinite chain of equations, which can then be terminated after
an arbitrary number of steps. We can do this just on the first step to obtain the
diffusive Markov approximation, but we shall then need at least one more step
to assess the range of validity for the diffusive Markov approximation. First,
however, we derive the diffusive Markov approximation itself.

) = Tilp.z.0/.) (6.32)

6.4.1 Approximation of J-correlated random field

To close the equation (6.31) directly we assume as a model of the correlation
function . of the dielectric permittivity fluctuations the expression

Ye(p,p'iz—2") = Ac(p,p') 6(2 — 2) (6.33)
with
“+o0
[ vp.6.0) dC = o) (634

This last relation gives the rule for calculating the function A.(p,p’) in the
transversal variables.

The representation (6.33) provides the property of “statistical causality” for
the mean field (v) . With this formula taken into account one finds from (6.31)
the following equation which, as we can see, is local in the longitudinal variable:

+oo

2ik % + V71 (v) + 5 K / dp’ Ac(p, p') <m> =0 (6.35)

The factor % in front of the integral has appeared due to the even property of
the delta function.

To find the quantity (dv(p, z)/de(p’, z)) , we differentiate (6.26) with respect
to the function e(p’, z’). Then we find

5v(p,z) _i r 2 26 5U(P,C) 21) o —Z/
e R / {17242 e(0.0) 5705412 0(6.0) 8o = 1) a1 - 2}

. Z 6 .
- QZT{/ [V + k% elp, Q)] 5:(2?,5,)) ¢ + % v(p,2") 8(p—p) (6.36)
0
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Taking into account the property (6.27) of dynamical causality, we may
finally write

oS = g [ [V R0, 0] 570 d T (o) o) (637

2!

We now put z = 2’ in (6.37) and average to find the quantity

ou(p,z) \ _ ik ,
<56(p’, Z)> = +? (v(p,2)) 6(p—p') (6.38)

When we substitute this into (6.35), we may there perform the integration over
p’ and obtain as our ultimate result the following closed equation for the mean

field
0 (v) ik3

2k —— + V2 (v) + - Adp.p) (v) =0 (6.39)

6.4.2 The solution of the mean field equation

Let us consider a totally statistically homogeneous random field €(p, z) , i.e. we
have A.(p, p') = Ac(p — p') and Ac(p, p) = Ac(0). In this case we can rewrite
(6.39) as follows:

ov) i g k2
_ A = 4
U V) 4 A0) () =0 (6.40)
We shall look for solutions of this equation on the form
(w(p,2)) = /@) w(p, ) (6.41)

with an unknown function f(z) and with w(p, z) satisfying the equation for the
field in the medium without fluctuations:

ow )

5. o Viw=0 (6.42)
Substituting (6.41) into (6.40) we find the equation for f(z):
d k2
d—]zc =3 A(0) (6.43)
which can be easily solved to give
2
f(z) = ) Ac(0) (2 = 20) (6.44)

Obviously we can here put the constant zy to zero corresponding to the begin-
ning of the half-space with fluctuations. Hence

(0(p. 2)) = exp [—’; 4.(0) } w(p,2) (6.45)
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With the incident field given by (7.21), we see that the expression
w(p,z) =1 (6.46)

the differential equation (6.42).
Putting together (6.20), (6.21), (6.41), (6.45) and (6.46), we then find the
mean field

2

(E(p,z)) = exp {ikz - % A(0) 2 (6.47)
Recalling also the definition (7.34) of Ac(p, p’), which now gives us

+oo
A0) = [ v.0.0) dc =202, (6.45)
we finally obtain
) kQUf £,
(E(p,2)) =exp |ikz — g 7 (6.49)

This coincides with the representation of the mean field in geometrical op-
tics, eq. (4.121), for the case of eg = 1, but now the range of validity for (6.49)
is wider than what happened to be the case for the geometrical-optics represen-
tation. Later we shall investigate the range of applicability of (7.47,49) in more
detail.

It is also of interest to point out that in calculating the total scattering
cross-section for large-scale isotropic inhomogeneities, k¢, > 1, one finds

k? A.(0)

o= (6.50)

which is twice the extinction coefficient in (6.47) or the extinction coefficient for
the “intensity of the mean field”. At the same time it can be shown that the
conservation law for the mean energy of the field explikz] v(p, 2):

(") = 1 (6.51)

follows from the parabolic equation approximation (6.25). Therefore the energy
of the fluctuational part of the field ¥ can be expressed as

(55%) = (vo*) = | (v) ” = 1 - exp[~0o2] (6.52)

We see from this expression that for distances z > o, ' the main part of the
wave intensity is connected with the random component.

6.5 Equation for the mean field in the case of
finite correlation radius

To discuss the range of validity for eqs. (6.39,40) and the solution (6.47), we
must derive a more general equation for the mean field, which takes the finite
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longitudinal correlation radius of the dielectric permittivity into account. This
can be done if we could find the function Ti(p, 2, p’, 2’) from (6.32) in some
approximation, i.e. if we could solve at least the second equation in the chain
of unclosed equations for the mean field (v). We need then the function 7 in
the area z > 2'.

First we derive the equation for dv(p,z)/de(p’,2z") in the case z > 2.
We achieve this by taking the variational derivative of (6.25) with respect to
e(p’,z"). Then we get

6v(p, 2)
de(p’,2')

While averaging the last equation we use once again the Furutsu-Novikov for-
mula for the correlation (e(p, z) dv(p, z)/de(p’, 2")) , which gives

2'Lké 6U(p72) +v2 5U(p7z)

2
9z belpl, #) T Loe(p, o) TF €02)

=0 (6.53)

(p',2) de(p”, ")

(6.54)
If we now assume the d-function approximation (7.33,34) in deriving the
equation for T1(p, z, p/, 2') , we then obtain from (6.53,54) the equation

(e(p, z) dv(p, z)/de(p’, ")) = /Zdz” +/oodp// belp, 2o, 2 <5€ v (p, 2) >
0 —o0

“+oo
9 3*v(p, 2)
2ik — T1 + V3T l1~€2/d”AE A : =01
ik 5= T1+ VAT + 3 P AL L)\ 5o ) delpr ey ) = (699)

The second derivative in the integrand can be determined from (6.37) where
the change of variables z’ = z”, p’ = p” has been made and where we have put
2" = z. Then (6.37) gives after averaging

<5e(p’(f2z1j)(€$;?3)’/7z)> = % <m> S(p—p') (6.56)

Finally we then find for the function Ti(p,z, p’,2’) from (6.55), with (6.56)
taken into account, the equation

.kz
2ik % Ty + V3T, + ZT Adp,p) Ty =0 (6.57)

which has the same form as (7.39), or for the totally homogeneous fluctuations

0 j k2
2k — Ty + V2T) + —— A(0) Ty =0 (7.58)
0z 4
The last of these equations must be supplemented by the initial condition at
the point 2/ = z. This is given through (6.38), which we rewrite as
ik

Ti(p,2 ¢, 2) =+ (v(p,2)) 6(p = p') (6.59)

88



Through (6.58,59) we now have a complete formulation of the problem for
the function T} (p, z, p’, 2’) which appears in the equation (6.31) for the mean
field (v) . Its solution can be written on the form

B {imp—p/)? 12 A0)
dm(z — 2') 2(z —2') 8

Ti(p, 2, 7') = (=] e
(6.60)
Using (6.60) we finally find from (6.31) the following integro-differential equation

for the mean field:

z —+o00
0 (v) i o ik3 dz’ ,
= — — d
0z 2k Vi) + 8 / z—2z / P
0 —o0

exp (s - z'ﬂ elp—ps— ) (e ) (6.61)

6.5.1 Range of validity for the diffusive Markov approxi-
mation

In (.61) we have obtained an equation for the mean field (v) which is of a
more general form than the diffusive Markov approximation (6.40). If we now
investigate under what conditions the form (6.61) may be simplified to the form
(6.40), we can therefore describe the range of validity for the diffusive Markov
approximation.

First we have to understand under what conditions all functions under the
integration sign in (6.61) can be considered as slowly varying in the longitu-
dinal variable, in comparison with the longitudinal variation of the correlation
function.

Let the longitudinal correlation radius of 1. be £ . The longitudinal scale
of the other functions is expressed by the quantity [k* A.(0)]~!. Then, if

[]fQ AE(O)]_l > fH or k2 Ae(O) EH = k? 052 63 <1 (6.62)

one can write

z +oo

0 (v) i o

Z—Z
0 —o0

2"
(6.63)
If the exponential function in (7.63) changes fast in p’ compared to the p'-

dependence in 1., we can calculate the integral in p’ by the steepest-descent
method. The condition for this is found to be

kfi > éH (6.64)

for the case of an incident plane wave, and the same condition together with
the condition
ka® > a (6.65)
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for an incident beam wave with beam width a. Condition (6.64) is always
fulfilled for isotropic inhomogeneities ¢ = ¢, , for which (6.64) becomes the
condition of validity kf. > 1 for the initial parabolic equation. With the in-
equalities (6.64,65) the steepest descent method in p’ gives from (6.63)

o=~k Vo kZ ) / Yel02 =) df (6.66)

If we, finally, also require the following inequality to be fulfilled:
z > fH (6.67)

we recover from (6.67) exactly the diffusive Markov approximation. Hence we
conclude that the validity of this approximation is described jointly by the
inequalities (6.62,64,67). In particular (6.67) shows that the small parameter in
the diffusive Markov approximation is the ratio of the longitudinal correlation
radius and the characteristic longitudinal scale of the mean field.

6.6 Diffusive Markov approximation for the co-
herence function

We consider now the transversal coherence function

L(p',p",2) = (v(p',2) v"(p", 2)) (6.68)

To derive the equation for T we recall first that the complex amplitude v(p’, 2)
satisfies the parabolic equation

v

2tk
! 0z

+A'v+ kv =0 (6.69)
where A/ = V2 is the Laplacian in the transversal variables p/. Then the
complex conjugate v*(p”, z) satisfies the equation

ov*
—2ik
! 0z

+ A"v* 4 Erevt =0 (6.70)

Multiplying (6.69) by v*(p”,z), (6.70) by v(p’, z) and subtracting the second
equation from the first, we obtain

2ik % [w(p,z) v (p", 2)] + (A" = A") [v(p', 2) v (p", 2)]
+k2h(p',p", 2) (P’ 2) v* (p",2)] = 0 (6.71)
with
h(p/a pllv z) = 6(p/7 z) — e(p”7 z) (6.72)
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If we try to average (6.71), we face again an unclosed equation

ar
2ik 5 T (A= AT +E* (h(p, p", 2)v(p,2) v (p",2)) =0 (6.73)

z
To calculate the correlation in the last term of this equation we can once again
use the Furutsu-Novikov formula (6.30) and the diffusive Markov approxima-
tion with the correlation function (6.33,34). As a result the diffusive Markov
approximation equation can be derived by analogy with eq. (6.40) on the form

or { / " Tk? / 1/ /] o
5, op QA AT+ == Hl(p' = p") I(p',p",2) =0 (6.74)
where
TH(p' = p") = Ac(0) — Ac(p' — p") (6.75)

6.6.1 Solution of the equation for the coherence function

To solve eq. (6.74) let us introduce the new transverse variables
p=p—-p", 2p.=p+p" (6.76)
Then we have instead of (6.76)

or i 0°T k2
a9, 1 — H r = '
0z k Op aer + 4 G(p) (pa P Z) 0 (6 77)

Let us further represent the solution of (6.77) as a Fourier series in the variable
Py
+oo

L(p,py,2)= / v(p, K, 2) explik - p, ] dK (6.78)
Substitution of (6.78) into eq. (6.77) gives the following equation for the Fourier
conjugate y(p, Kk, z):

—+ - +—+—Hp)y=0 (6.79)

Next we write the sum of the first two items in (6.79) in a symbolical operator
form

Oy K Oy kz 0] 0 Kz O

By means of this operator eq. (6.79) can be rewritten as

0 Kz O k> Kz O
E €xXp |:+k' ap:| ’Y(Pa"ﬁ»z) = ——— €Xp |:+ p:| [He(p) '7(97“72)]
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If we take into account that for an arbitrary function f(p) the relation

F(p+ po) = exp [po Efp} f(p) (6.82)

holds with explp, 0/0p] being the formal notation for the full Taylor series
expansion (translation operator), then we find from (6.81) the equation

Do Bms) = (04 5) 2 (o k) 69

The solution of this equation is easily found to be
K2 [
v (p+ %KZ) =7(p,k,0) exp —%/He <p+ '75) d¢ (6.84)
0
or, if we substitute p — kz/k in the place of p,
C K(z—¢) /
v(p, K, 2) = k‘ K, 0 exp |——— [ H. d¢| (6.84)

Finally, taking the representation (6.78) into account, we obtain

+oo

L(p,py,2) = /fy(p—%,n,z) exp |iK - p+——/H ( O) d¢| de

— 00
(6.85)
We note that v(p, k,0) is the Fourier transform of the initial distribution of the
coherence function

L(p.p;,0) =To(p,py) (7.86)
1 i
Wm0 = 55 [ Talp.py0) expl-in-pl] el (657

Then putting together (6.85) and (6.87), we find the ultimate expression for the
coherence function:

—+oo

1 Kz . 7rk2
L(p,py,2) = 12 /FO (P—?apgr) exp |ik - (py — / /H (

— 0o

dk dpl, (6.88)

This is the most general form of the solution of the equation (6.77) for the initial
distribution of the coherence function I'g(p, p, ) .
In the particular case when the incident field is a plane wave and

Iy = const. = I (6.89)
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eq. (6.81) yields after integration over p/, first and then over & :

2

(p.pyd) = o exp | -7 Hip) (6.90)

In particular, for the mean energy W = I'(0, p_, z) one obtains from (6.90)
W =1I, (6.91)

if we take the expression (6.75) for Hc(p) into account.

6.7 Final remarks on Markov parabolic momenta
equations

In the scientific literature one can find different points of view respectively the
range of validity of the diffusive Markov approximation for the random field co-
herence functions of the different orders. Our derivation of the first two Markov
equations (6.28) and (6.74, 75) was based on the Furustu-Novikov formula in
the form (6.29). This form of the Furutsu-Novikov formula is only valid under
the assumption of the normal (gaussian) distribution of fluctuations of the di-
electric permittivity. This may lead to the conclusion that Markov momenta
equations are only valid for normally distributed fluctuations of the dielectric
permittivity. However, in a series of works, e.g., [LEE,1975], or some papers by
Kljatskin the same form parabolic momenta equations were obtained without
employing the Furutsu-Novikov relationship, which works in favour of a wider
range of validity of the Diffusive Markov parabolic equations.

Furthermore, constructing the spaced position coherence function in the
scope of both the geometrical optics approximation and Markov approximation
gives the same result in the case of the plane incident wave and homogeneous
background medium. This complicates distiguishing the range of validity of per-
turbation theories and Markov approximation in the description of weak and
strong fluctuations. On the other hand, when dealing with the spaced position
and frequency coherence functions, the geometrical optics approximation fails to
properly describe the regime of strong fluctuations, whereas correct solution to
Markov equation for the two-frequency, two-position coherence function (which
is derived in the same fashion as for the single frequency case) shows substantial
reduction of the frequency correlation radius as fluctuations increase.

Numerous attempts have been undertaken to construct the comprehensive
analytical solution to the Markov equation for spaced position and frequency
coherence function. [L1U AND YEH, 1975] solved the equation numerically. One
of the first analytic solution to this equation was constructed by [SREENIVASIAH
ET AL., 1976] for the quadratic model of the structure function of fluctuations.
In [1983] Knepp generalized this solution to the case of the spherical incident
wave written in small angle approximation. Later on, different approaches to
construct the solution to the case of more realistic models of the structure
function of fluctuations of the medium of propagation have been suggested by
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[0z AND HEYMAN, 1996, 1997a, 1997b, 1997¢], by [BRONSTEIN AND MAZAR,
2002]. To our understanding the most general results have been obtained here in
the papers by [BITJUKOV ET AL., 2002, 2003], who developed the quasi-classic
method to solve the equation utilizing complex trajectories.As to our knowledge,
all known earlier results follow from this technique.

The technique of Markov parabolic momenta equations was also extended to
account for the inhomogeneous background channel of propagation. In [MAZAR
ABD BERAN, 1984] the intensity of the fluctuating field in a stratified acoustic
channel of propagation was studied employing the the diffuse Markov equa-
tion for the spaced coherence function written in the rectangular co-ordinates.
Appearance of the work by Hill [1985], who formulated appropriate Markov
equations in courvilinear orthogonal variables of different types, gave rize to
the attempts of solving these equations in ray-centred variables [MAZAR AND
FELSEN, 1987a, 1987b].

Finally, it should be emphasized once again that the comprehensive descrip-
tion of a random function is not confined by the definition of its second order
coherence functions. The fourth moment enables description of the intensity
fluctuations and, in particular, allows obtaining the spectral index, which is
commonly used to quantify the level of scintillation. The Markov parabolic
equations of the fourth order are less studied, and we can address those inter-
ested in more detail regarding the fourth order coherence function to the papers
by Gozani [1985, 1993] and a substantional amount of references available in
these papers.
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Chapter 7

Conclusions

7.1 Remarks on pure numerical treatment in
the problem of wave propagation in random
media

We did not consider as our task discussing in detail pure numerical methods
utilized when treating the problems of wave propagation in random media.
However, it’s of worth to say a few words on this subject. Among many of
thenumerical methods the multiple phase screen technique (MPST) is the most
commonly accepted and widely used by many authors to solve stochastic and
deterministic parabolic equations. Knepp [1983Db] studied the temporal behav-
ior of stochastic waves by MPST. Kiang and Liu [1985] employed MPST to
simulate of HF wave propagation in the turbulent stratified ionosphere. Similar
problems of HF propagation in the ionospheric fluctuating reflection channel
were considered in the scope of MPST by Rand and Yeh [1991], Wagen and Yeh
[1986, 1989a, 1989Db).

MPST has also been widely employed to solve various problems of tran-
sionospheric propagation of the fields of very high frequencies. In particular,
Grimault [1998] essentially modified the classical scheme of MPST writing the
appropriate parabolic equation and solving it by MPST in the spherical vari-
ables. Classical scheme of MPST was used by Beniguel [2002] in his global iono-
spheric propagation model of the field scintillation on transionospheric paths of
propagation.

7.2 About other approaches in the theory of
wave propagation in random media

The time provided for the discussion of the methods in the theory of wave prop-
agation in random media is enormously insufficient even for a very brief review
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of the techniques available in the theory of wave propagation in random me-
dia. We made our choice focussing on the one hand on different perturbation
theories, which obviously do not enable the description of the regime of strong
scintillation, but work well in many cases when the regime of strong scintillation
does not occur. On the other hand we found useful to also briefly outline for-
malizm of diffusive Markov momenta parabolic equations widely utilized in the
problems of high and very high frequency propagation in the fluctuating iono-
sphere, which also enables the description of the regime of strong scintillation.
We also paid special attention to the method of random (stochastic) screen and
its particular case the method of phase screen. This standing alone method is
remarkable in the sense that permits constructing the rigorous solution to the
field generated by the screen for any given distribution of the field on the screen.

At the same time we were forced to leave beyond the scope of present con-
sideration a wide variety of other approaches being also employed in wave prop-
agation in random media. It’s worth pointing out the technique using path
integrals [FLATTE, 1983, DASHEN, 1979]], where Feinman integral [FEYNMAN
AND HiBBs, 1965] is employed to construct the stochastic realizations of the
7‘solutions” of parabolic equation and its moments. Integral representations
of the wave fields are also widely used in the problem of wave propagation
in random media. Among them one will find Maslov’s integral representation
[MasLov, 1965], occillatory integral [ARNOLD, 1992], or interference integral
[TININ ETAL., 1992], integral representing of the wave field in terms of diffracting
component waves [ZERNOV AND LUNDBORG, 1996], or suggested by V.A.Fock
integral representing the solution of the Helmholtz’ equation in terms of the
solutions of the parabolic equation [TININ, 2004].

7.3 Occuring scintillation propagation models

As to our knowledge, at the time being there are two officially distributed scintil-
lation propagation models. One of them is WBMOD, which is the model based
on the theory of the phase screen with the inverse power law spatial spectrum of
the phase fluctuations on the screen [RINO, 1979]. We are not aware of all the
details of this model as having no direct access to its commercially distributed
version. As far as we are aware of the model is valid to describe the case of weak
scintillation, and two modifications of this model are available for the equatorial
ionosphere [SECAN ET AL., 1995] and for the high-latitude ionosphere [SECAN
ET AL., 1997].

Another scintillation propagation model was developed by Beniguel [BE-
NIGUEL, 2002]. It is accepted by ITU as the officially recommended scintillation
propagation model. This model is based on the multiple phase screen numerical
technique. It works in several steps. On the first step the random distribution
of the dielectric permittivity of the ionosphere is generated. Next, the random
phase screen is generated on the Earth’s surface by integrating the eikonal equa-
tion along the paths of propagation connecting the satellite with the points of
observation on the Earth’s surface. While integrating along a particular path
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it is accepted that the contribution into the phase advance along this path is
formed by the layer of the width of 100 km centred respectively the height of
the maximum of the electron density of the ionosphere. Then this phase screen
is conveyed from the Earth’s surface up to the level of the maximum of the elec-
tron density of the ionosphere. At the last step the formalizm of the classical
problem of generating the field in vacuum by a given random phase screen is em-
ployed to obtain the random field on the surface of the Earth. Having random
realizations of the field on the Earth’s surface, different statistical moments of
the field are constructed, e.g., correlation functions, power specrta, probability
density functions, Sy, etc.

Along with the official scintillation propagation models mentioned we would
like to briefly mention another model also based on the multiple phase screen
technique [GRIMAULT, 1998]. In this model the appropriate parabolic equation
for the random field is written and then solved by the multiple phase screen
technique in the spherical co-ordinate system, which is more appropriate for the
real geometry.

Finally, we will briefly describe our own scintillation propagation model,
which was developed in co-operation between the University of St.Petersburg,
St.Petersburg, Russia and the University of Leeds, Leeds, United Kingdom with
the participation of the Abdus Salam ICTP, Trieste, Italy. On the first stage
the model was solely based on the Rytov’s approximation [GHERM ET AL.,
2000]. Statistical moments of the field radiated at the satellite and propagated
through the 3-D inhomogeneous fluctuating ionosphere down to the Earth’s sur-
face were constructed by the Rytov’s method technique, which together with
the fact that Rytov’s phase and log-amplitude fluctuations are normally dis-
tributed enabled also generating the random time series of the field. However,
this model had an essential drawback expressed by the fact that the range of
validity of this model was limited by the case of small values of the variance of
the log-amplitude fluctuations. Alternatively, this meant that the case of strong
fluctuations (scintillation) could not be described by this model. On the other
hand, however, our numerous calculations in the scope of the complex phase
method (Rytov’s method) showed that for observation points lying inside the
ionospheric layer, fluctuations of the field amplitude for frequencies of the order
of 1 GHz and higher always have values which are within the range of valid-
ity of the Rytov’s approximation. This is true even in the case of very large
relative electron density fluctuations (up to 100 per cents) and high values of
TEC. For smaller relative fluctuations and values of TEC this is also true for
lower frequencies. This means that propagation in the ionospheric layer for the
frequencies mentioned may always be well described in the scope of the complex
phase method. In turn, this implies that at L band and higher frequencies the
regime that results in strong scintillation does not normally occur inside the
ionospheric layer, but may be formed in the region where the field propagates
from the ionosphere down to the Earth’s surface. This circumstance permits
utilization of the complex phase method to properly introduce a physically sub-
stantiated random screen below the ionosphere, and then to employ the rigorous
relationships of the random screen theory to correctly propagate the field down
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to the surface of the Earth, over which path the regime producing strong scin-
tillation may well be found. This technique was termed as a hybrid method
for scintillation on the transionospheric paths of propagation [GHERM ET AL.,
2005b]. This technique permits constructing both the statistical characteristics
of the field (correlation functions, probability density functions, power spectra

of phase and amplitude fluctuations, Sy, etc.) and generate random time series
of the field.
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[1] A wideband HF simulator has been constructed on the basis of a detailed physical
model of propagation which can generate a time realization of the HF wideband
channel for any HF carrier frequency, bandwidth, transmitter receiver path and
background, and stochastic (irregularity) ionosphere models. To accomplish this, a
comprehensive solution has been obtained on the basis of the complex phase method
(Rytov’s method) to the problem of HF wave propagation for the most general case of
a three-dimensional (3-D) inhomogeneous ionosphere with time-varying electron
density fluctuations. A simulation is presented for a 1000 km path for which £ and
low- and high-angle F mode paths exist. The time-varying field owing to each of these
paths is summed at the receiving location, enabling the calculation of the scattering
function and also the time realization of the received signal shown as a function

of both fast and slow time.
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1. Introduction

[2] With the advent of digital HF broadcasting (e.g.,
DRM) and communications via the ionosphere, signifi-
cantly higher data rates have become possible. However,
the channel has not yet been well characterized for
wideband (>8 kHz) digital signals. The ionospheric radio
propagation channel is very complex and the ultimate
success of new digital ionospheric radio systems will
depend on a good understanding of important parameters
of the channel such as Doppler shift, Doppler spread and
multipath dispersion. The time variation of these param-
eters is also important, particularly the faster variations
due to fluctuating ionospheric irregularities. Further
complications arise from the geographical variations of
the channel parameters with differences between equa-

Copyright 2005 by the American Geophysical Union.
0048-6604/05/2004RS003093$11.00

RS1001

torial, mid and high latitudes being particularly marked.
To this must be added diurnal, seasonal, solar cycle and
geomagnetic storm time variations. Because of the great
variation of the ionosphere with different times and
locations, it is also more difficult to adequately test out
new HF communication systems. To cover all possible
conditions, even for one fixed path, requires many trials
to be performed. For a system that it is desired to deploy
globally or for varying link distances and path locations,
the necessary trials generally become prohibitively costly
and time-consuming. Thus there is a need for a wideband
simulator able to characterize the ionosphere response
for any conditions, transmitter and receiver locations,
transmission frequencies and bandwidths and taking into
account not only the background ionosphere but all the
fluctuating electron density irregularities. This should be
able not only to generate realistic values of Doppler
spread and delay spread for different paths, but also
produce a time series output representative of the effect
of the medium on the transmitted signal.
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[3] Further, since based purely on physical models and
parameters, the simulator will enable the correspondence
between the characteristics of the received field and the
physical parameters of the model to be investigated. This
permits fine-tuning of the model by comparison of
received field and predicted output for a variety of
conditions as well as providing a way of estimating the
physical parameters from the characteristics of the re-
ceived field. The theoretical basis of such a simulator, as
outlined above, is described in section 2, the necessary
steps and equations to construct it are explained in
section 3 and the production of random time series
employing it and some preliminary results are given in
section 4.

2. Theoretical Basis for the Wideband HF
Simulator

[4] The problem of HF propagation in the ionosphere is
one of the classical issues in the theory of radio wave
propagation in near-Earth space. When treating HF prop-
agation in the real ionosphere, it should be considered that
the medium of propagation is a 3-D smoothly inhomo-
geneous (in terms of wavelengths of the HF band)
anisotropic dispersive background medium, which is
additionally disturbed by local deterministic and random
inhomogeneities of the ionospheric electron density over
a wide range of scales. As far as propagation in the
background smoothly inhomogeneous medium is
concerned, this problem can be considered to be accom-
plished as the methods to construct the high-frequency
asymptotic solutions to this sort of problem are fairly well
known. These are the classical geometrical optics ap-
proximation [Kravtsov and Orlov, 1980] or appropriate
integral representations of the wave field in terms of
geometrical optics type component waves known as the
interference integral [Orlov, 1972], or oscillatory integral
[Arnold, 1982] (see also classical works on high-frequency
asymptotic solutions in mathematical physics [Ludwig,
1966; Maslov, 1965; Kravtsov, 1968)]).

[s] To treat the problem of the effects of local inho-
mogeneities of the ionosphere (including the effects of
random inhomogeneities) on HF propagation, a solution
to the scattering problem for the case of a 3-D inhomo-
geneous, dispersive and, strictly, anisotropic background
medium with local inhomogeneities must be constructed.
If the spatial scales of the local inhomogeneities are
greater than the appropriate main Fresnel zones size, the
scattering problem can still be solved in the geometrical
optics approximation. However, as the ionospheric tur-
bulence has a wide spatial spectrum characterized by an
inverse power law, a reasonable fraction of the random
inhomogeneities has spatial scales less than the appro-
priate Fresnel zone size. This means that the contribution
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of diffraction should be properly accounted for when
treating the scattering problem. This together comprises a
very complicated problem for which a comprehensive
solution should be given for a variety of realistic models
of the ionosphere and geometry of propagation. This
explains why different empirical models have been
developed [Watterson, 1981; Vogler and Hoffmeyer,
1993; Mastrangelo et al., 1997; Sudworth, 1999, see
also Proakis, 1983], which are widely employed
[Angling et al., 1998; Messer, 1999; Nieto and Ely,
1999] to characterize the HF fluctuating channel of
propagation. By contrast to the empirical approach, we
present here a rigorous treatment of the HF propagation
in a 3-D inhomogeneous medium disturbed by fluctua-
tions of the electron density of the ionosphere.

[6] Concerning the way to properly account for the
wave polarization, when dealing with propagation in a
smoothly inhomogeneous isotropic medium without
fluctuations and considering power (quadratic) character-
istics of the field, the wave polarization does not affect
the result. However, when considering the scattering by
local random inhomogeneities, then, for a completely
rigorously treatment, the vector character of the scattered
field should be taken into account. However, there is a
physical reason to remain within the framework of the
scalar approximation. It is well known that the differen-
tial scattering cross section of the same inhomogeneity is
not the same for the scalar and vector field scattering, but
the difference almost vanishes in the case of the scatter-
ing by large-scale inhomogeneities, in other words, in the
case of forward scattering. The complex phase method
we have employed just describes this case. All the
inhomogeneities we consider are large scale in terms of
the wavelength. Thus we consider that it is a reasonable
basis to consider the problem in the scalar approxima-
tion, at least, to the zero-order approximation.

[7] The theoretical consideration of the problem of HF
propagation in the disturbed ionosphere can be split into
two parts. The first part is the HF propagation in the
background 3-D smoothly inhomogeneous medium (sec-
tion 2.1) and the second is the description of the effects
of scattering of the HF field by local random inhomo-
geneities of the ionosphere (section 2.2). We will also
present the description of the software simulator of the
fluctuating channel of propagation, developed on the
basis of rigorous treatment of the appropriate equations
governing the propagation.

2.1. Propagation in the Background Ionosphere

[8] As mentioned above, the description of the HF
propagation in the 3-D smoothly inhomogeneous
medium is the simplest part of the problem. Characteristic
scales of the background ionosphere in all the directions
are sufficiently large to allow the geometrical optics
approximation to be employed to describe the HF field.
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Appropriate codes for calculation of ray paths and ray
pencil divergences are available to enable the construc-
tion of simulated oblique sounding ionograms. These can
then be employed, using the appropriate model of the
background ionosphere, to determine possible paths
(modes) connecting transmitter and receiver locations.
Quantities such as divergences along the paths of prop-
agation are also used when determining the scattering of
the field by local random inhomogeneities along each
actual mode of propagation between a transmitter and
receiver.

2.2. Scattering of HF Field by Random Ionospheric
Inhomogeneities

[o] This is the most complicated part of the propaga-
tion problem. The simultaneous presence of several
scales of ionospheric density variations is very demand-
ing when treating the scattering problem. Generally
speaking, the solution should be obtained for the scat-
tering problem for the case of a 3-D inhomogeneous
dispersive background medium, accounting also for the
contribution of diffraction effects in the scattering by
local random inhomogeneities.

[10] The case of weak or moderate fluctuations of the
amplitude of the field can be treated in the framework of
perturbation theories. Among them the complex phase
method (or the generalized Rytov’s approximation) han-
dles the scattering problem in the most comprehensive
form as it can also account for diffraction by local
random inhomogeneities and partly accounts for multiple
scattering effects. Additionally, it enables construction of
the appropriate two-position, two-frequency correlation
and coherence functions of the random field for the
condition of a strongly inhomogeneous and dispersive
medium; a condition which is fully pertinent to the
ionosphere. These functions are the core quantities when
modeling the fluctuating channel of propagation both in
terms of the statistical moments of the field propagated
through the channel and random time sequences of the
field. The method limitation is determined by the range
of validity of the complex phase method, which can be
roughly stated as that the variance of the fluctuations of
the log-amplitude (level) of the field cannot be large.
This is a well known limitation of the Rytov’s approx-
imation (or the complex phase approximation, which is
its extension). In addition, for our application, puts
certain limitations on the variance of the electron density
fluctuations. The codes are arranged in a way that this is
controlled for any given path and conditions of propa-
gation. In turn, this means that there is no one particular
universal limit for the fractional electron density fluctua-
tions. However, for a typical one-hop path of propaga-
tion for a link distance of the order of 1000 km, it results
in a limit of the order of 1% for the r.m.s. of the fractional
electron density fluctuations. The same criteria needs to
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be applied for high and low latitudes as for midlatitude
paths, but in the former cases the possible occurrence of
strong scintillations can lead to a break down of the
theory’s validity.

[11] For the case of strong scintillation, such methods
as Markov’s parabolic equations for the statistical
moments of the random field [Ishimaru, 1978; Rytov et
al., 1978] and the path integral technique [Dashen, 1979;
Flatte, 1983] should be mentioned, which permit de-
scription of the effects of strong scintillation in some
cases. Many problems of wave propagation in random
media have been considered in the scope of these
methods and we cannot here provide a complete bibli-
ography. However, it is our current conviction that
neither Markov’s approximation, nor the path integral
technique is yet capable of handling the problem of
constructing spaced position and frequency coherency
in the ionosphere-type medium, i.e., for the essentially
inhomogeneous and dispersive background medium with
local random inhomogeneities embedded. This led us to
consider it best to confine the present treatment of the
problem of scattering of the HF waves by local random
ionospheric inhomogeneities within the framework of the
complex phase method, at the same time taking account
of the constraints of this method and its range of its
validity as discussed above. Toward the end of the paper
(in section 4.2) a numerical example is given for an
ionosphere including the effect of the geomagnetic field.
There is additional complexity for this case introduced
by the anisotropy of the medium of propagation. In this
paper we just present the theory for the isotropic case as
we consider that the complexity of the anisotropic case
requires special consideration. We intend to give a full
description of this in a subsequent paper.

3. Complex Phase Method: General Case of
3-D Inhomogeneous Background Medium

[12] The complex phase method is the extension of the
classic Rytov’s approximation [Rytov et al., 1978], dated
back to 40 s, to the case of the point source field and the
inhomogeneous background medium. The first extension
of the method was performed by Zernov [1980], who
considered the HF field in a stratified ionosphere, dis-
turbed by local inhomogeneities. The extended Rytov
approximation was further employed in a series of papers
[Gherm and Zernov, 1995, 1998; Gherm et al., 1997,
2001a] to construct and study the statistical moments of
the random HF field in the plane-stratified ionosphere
disturbed by fluctuations of the electron density.

[13] Obviously, the following extension of the method
must include the general case of a 3-D inhomogeneous
medium. In particular, this is necessary when character-
izing the HF fluctuating ionospheric channel of propa-
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gation, which is horizontally inhomogeneous (i.e., con-
taining horizontal gradients of electron density). The
appropriate generalization has been recently performed
by Gherm et al. [2001b] in a paper written and issued in
Russian. Here we will briefly reproduce the milestones
of this extension.

[14] In the present consideration the scalar equation

V2E + k2[e0(r) + e(r)|E = 45(r — 1), (1)

widely used to describe HF propagation, is employed,
where k is the wave number in vacuum, gy(r) is the
dielectric permittivity of the background medium and
g(r) is the dielectric permittivity of local inhomogene-
ities. r is the point of observation, 1’ the variable of
integration and is the position of the source of the field
(the transmitter). Quantity 4 characterizes, in some
sense, the power of a source. In order to account for
the time dependence of the electron density fluctuations
function (1) is also allowed to be a function of the slow
time in the quasi-stationary approximation.

[15] Depending on the given model of the background
medium €y(r), the undisturbed (incident) field Eo(r),
which satisfies equation (1) with (r) = 0, may have a
multipath structure, i.e., several paths of propagation
may occur, which connect the transmitter and receiver.
The field propagating along each of m paths can be well
described in the geometrical optics approximation, so
that the full undisturbed field is represented by the sum
of the geometrical optics type fields as follows:

ST E)

m

Ey(r) (2)

[16] Acceptance of the representation given by (2) for
the undisturbed field implies limitation to the case
when the observation points are far from any caustic
(far from the skip distance, if the transmitter and receiver
are located on the Earth’s surface). This implies that the
main Fresnel volumes for different paths of propagation
do not overlap. In the same fashion the Green’s function
for the undisturbed equation (1) is also represented in a
form similar to equation (2) by the sum of geometrical
optics contributions

G(r,r') = Z G%(r,1'), (3)

providing 1, ' are not near any caustic.

[17] To account for the effects of local random inho-
mogeneities of the 1onosphere on every geometrical
optics component EG¢ of the undisturbed field, its own
complex phase v, 1s 1ntroduced for each component, so
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that the full field disturbed by local ionospheric inho-
mogeneities is given as follows:

ZE&Z,? r) exp[y,, (1)]. (4)

According to the complex phase method each v, is
represented by the perturbation series in powers of the
disturbances £(r), and the technique of the method
permits solutions to the appropriate equations for
different orders of v, in the following invariant form
[Zernov, 1980]:

Yo (1) = —K(ESO (1)) / () ESO() G v, ¥
(5)

Waat) = — (EG()) " / (T (1)) ESO(F)

- G9O(r,)ar'. (6)

We have presented here only the disturbed complex
phases of the first and second orders, which are
employed in the following treatment.

3.1. Geometrical Optics Field

[18] It is convenient to specify the representations (5)
and (6) in ray-centered variables (s, ¢, ¢»), where the
reference ray is a given m th curvilinear path connecting
the communicating points in the 3-D inhomogeneous
background medium, so that every path gives rise to its
own ray-centered coordinate system. (From now on we
omit subscript m referring to the m th path of propaga-
tion.) In these coordinates variable s is measured along
the reference ray in the direction from the source to the
receiver, and ¢; and ¢, lie in the plane perpendicular to
the reference ray at each point. For this coordinate
system, Lamé coefficients are as follows:

d
he(q1,92,8) =1 —q1=— Inn(s,0,0
(@1.42.5) = 1 = 1 5 nn(.0,0

— qzi Inn(s,0,0); Ay,

= h =
aC[Z q2

(7)

Here nz(s ?1, q2) = €o(s, ¢q1, g2) and n(s, 0, 0) =
[eo(s, 0, 0)]72. In the following we denote n(s, 0, 0) =
no(s). In the introduced ray-centered variables we take
the coordinates (0, 0, 0) for the transmitter and (s, 0, 0)
for the receiver. The variable of integration r' in the
integrals in (5) and (6) is now given by (s, q1, ¢>).

[19] To construct £5S and GS€ in equations (5) and (6)
in the form of the geometrical optics approximation for
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type such as 4, exp (ikyp), the appropriate eikonal
equation

ao\> [(9e\ . (1 09\
(%) +(‘9612> N hos) (s,q1,92)  (8)

for the phase function ¢ and the main transport equation
for the amplitude A,

2V AV + 49V = 0, (9)

must be solved for each path of propagation. The
solutions of equations (8) and (9) locally nearby the
reference ray are sought for in the form of a series in
the transverse variables ¢, and ¢, as follows:

¢(s,91,92) —/no(s)ds

1
+ ) (b1 (5)q; + bxa(s)q5 + 2b12(5)q192)
Ao(s,q1,q2) = Aoo(s) + ... (11)

The representation (10) means that the finite curvature of
the front of the undisturbed (incident) field is accounted
for to the accuracy of the main terms, which are given by
the full quadratic form in the square brackets. The linear
terms vanish here because the medium is isotropic so that
the wave front must be orthogonal to the wave direction.

[20] Performing necessary expansions for n> and A, in
a series in the transverse plane to the reference ray
variables and equating to zero coefficients at different
powers of ¢, g, yields for the amplitude Ago(s)

_ 1 [b b
Aoo(s)= const - n, & (s) - exp [— 3 /st] ,
(12)
where the functions by(s), b2»(s), bia(s) satisfy a set of

differential equations of Riccati type, which may be
conveniently written in the matrix form as follows:

OB . .
—+B-B=C. 1
I’l()aS+ C (3)

[21] In the last equation,

B = {by},i,k =1,2,bs = by, (14)
. 1 9*n?(s,0,0)
C ={cir},ci 27 0qiogr
Odlnn(s,0,0)dInn(s,0,0) |
—37’12S - — 7lak:172‘
0( ) aql 8qk
(15)

When considering the equations in (13), the solution
should reduce to the spherical wave near a source in the
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small-angle approximation (assuming that the source is
in vacuum) as follows:

. A . ik
Eo(7) = i exp[zks—i—zs(q%—i—q%)]. (16)

This is also the recipe as to how to properly choose the
constant and the limits of integration in (12). Then (10)—
(12) finally yield the following expression for the
undisturbed (incident) field

A I [by+b
Ey(r) = ~ n, /z(s) - exp [—2 /“nozzds]

o

S ik
- exp |:ik/ nods + E (bllq% + bzzqg + 2b12q1q2)] ,
0

(17)

where by1(s), b12(s), bao(s) are properly chosen solutions
of equations (13)—(15). Formally this should be
considered in the limit when the small quantity 7, tends
to zero. This equation reduces to the spherical wave (16),
when ng(s) = 1. Small finite values of ry are employed
when numerical solutions of equations are realized to
properly specify equation (13)—(15).

[22] In the same manner, the representation for the
Green’s function G(r, r) with r = (s, 0, 0) and 1’ =
(s, g1, g2) may be written

S0—5
1 B 1 g g
Glrv') = non/z(s),exp[_z / bll”’zzdsl]

41‘(1”0 no
o

S0—S
ik
- exp [lk / nods +5 (bllq% + bzzqg + 2b]2q1q2)] .

0 (18)

Here the variable s; is measured along the same
reference ray, but in the direction from the receiver to
the transmitter. Making use of this variable, the elements
of the matrix B® = {b%}, b =1, 2, i, k = 1, 2 satisfy the
same set of equations (13)—(15) as the matrix B. If the
substitution s = sq — s is performed under the sign of
integration, equation (18) becomes

1 “12 1 / b%l + bgz
_ . Z B >
47ry no () - exp [2 / np y

S0—ro

G(r,Y) =

r ik
- exp |:_ik/n0dsl t3 (bugi + bng + 21912(11(]2)} .

S0

(19)
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When written by means of variable s, matrix B satisfies
the set of equations

ag

—noa—ﬂag B =, (20)

which differs from the set of equations (13)—(15) only by
the sign at the first derivative.
3.2. First-Order Complex Phase

[23] Finally, putting together all the necessary repre-
sentations gives the following equation for the first-order
complex phase from equation (6):

k2 8(576117‘]2>
) =4, /// Bdqidge = )

' hs(sa qlan)

4 (S07 07 07

So—"ro

2

N

.exp{l/ (b —b})) + (b2 = B%,)
no

k
[(bll +b11)‘11 (b22 +b§2)‘]§

zwgqlqz}}.

(21)

To derive the last equation the relationship Ey(sg — 79, 0,
0) =~ Ey(sg, 0, 0) has been used.

[24] To further transform equation (21) some necessary
relationships for the new matrix

A~

B~ =B-B (22)

should be derived. Subtracting equation (20) from (13)
and performing simple transformations yields

1 OB T B~

)

where

=B+ B (24)
Then, the integral expression, which is the first term in
the exponential in equation (21) is just:

] - i 255

0 Bt
= — 5. In[det B (s)]. (25)

GHERM ET AL.: WIDEBAND HF SIMULATOR

RS1001

This allows us to finally write the quantity from equation
(21) in the following form:

L

“hy(s,q1,92) [detBJr (S)] ’

ik
'CXP{ 3 {(bn +b11)Q1 <b22 —|—b‘§2>

(S(), 0 O

g5+ 2(bin + bff’z)qwh} } (26)
To obtain this expression, the relationship
~ 1
lim 7o [det B (so — r9)] "= 1 (27)

r0—>0

was used. Matrix B, involved in calculations according
to (26), is given by equation (24), where, in turn,
elements of matrixes B and B® satisfy sets of differential
equations (13)—(15) and (20) respectively. When and
where it is necessary to have the representation for the
second-order complex phase wy, the quantlty K ¢ in
equation (26) should be replaced by (V)%

[25] Formula (26) is the final result, which extends the
classic Rytov’s method to the case of the point source in
an arbitrary 3-D inhomogeneous medium. It permits
different limiting cases. In particular, when the back-
ground medium is homogeneous it yields the known
result for the complex phase of a spherical wave in a
homogeneous background medium, disturbed by a local
inhomogeneity £(r) [Tatarskn 1971; Ishimaru, 1978]. 1
this case bu—bzz—S l—x b12 0 bgl bzz—(S()—
) =0 —x) " b5 =0, and equation (26) yields:

dxdydz e(x
/// lydze(x,y,2) ——— (xO_x)
2
Xp{zko[y +z ]xo}.
2x(xp — x)

Another limiting case for the general representation (26)
is when the quantities (by; + b%), (b2 + b35), (b1 + b%2)
are large compared to the transversal characteristic
scales of the inhomogeneities ¢ along all the path of
integration in variable s. Then integration in ¢; and g,
in equation (26) may be performed explicitly employing
the steepest descent method to produce, to the first

approximation, the first-order correction of the geome-
trical optics approximation as follows:

zk/
2
0

Vi (x0,0,0) =

(28)

e(s,0,0)

(S(), 0 0) o (S)

ds. (29)
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This is the case of local inhomogeneities with large
spatial scales compared to the main Fresnel zone size
along the path of propagation.

[26] To utilize the generalized complex phase given by
(26), a special numerical code has been produced to
solve the matrix equations (13) and (20), This was
combined with a general ray-tracing code for the 3-D
inhomogeneous background medium.

4. Simulation of Random Time Series and
Statistical Moments of the HF Field

[27] When characterizing the ionospheric fluctuating
HF reflection channel of propagation, both the random
time series and statistical moments of the pulsed signal
propagated through the channel are of interest.

4.1. Random Time Series

[28] A random realization of a pulsed signal propa-
gated through the fluctuating ionosphere can be repre-
sented as the following Fourier integral in the frequency
domain

400
U, T) =Y / P(O)ESO (£, )R (1, 0, T)e ' d

(30)

Here P(w) is the spectrum of a launched pulse, ESS
represents the transfer function for a given m th path
in the undisturbed channel, i.e., the functions from
equation (2). Once the model of the 3-D background
ionosphere is given, the quantities EGq are calculated
employing the appropriate ray-tracing code, which also
permits calculation of the ray tube divergence. A random
phasor R, (1, w, T) is introduced in (30) to account for
the effects of fluctuations of the electron density of the
ionosphere. Variable ¢ is the flight time of a pulse and T
denotes slow time dependence of fluctuations, which can
be treated in the quasi-stationary approximation. The
background channel is assumed to be stationary that is
time-independent. A corollary of this is the absence of
slow time dependence in the transfer functions of the
background channel in (30). The summation in (30) is
performed over all paths of propagation from a
transmitter to a receiver.

[29] According to the complex phase method, de-
scribed above, random phasors R,, (r, w, 7) are repre-
sented utilizing complex phases as follows:

Ry (r,w, T) = e¥nel)

(31)

where the first and second-order complex phases vy, in
powers of the disturbances of the dielectric permittivity
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are given by equations (5) and (6) and specified in ray-
centered variables by equation (26). Complex phases

W, (0,0, T) = X, (r,w, T) + i8S (r,w, T) (32)
are random functions with the real part v, representing
log-amplitude fluctuations and S,, giving the fluctuations
of the phase of the field.

[30] To produce the time series of a pulsed signal given
by the Fourier integral (30) for a point of observation r,
two real random functions ,, and S,, must be generated
in the two-dimensional domain (w, 7) for a given value
of r. This demands knowledge of the probability density
functions for ,, and S,,, as well as their autocorrelation
and cross-correlation functions. In the scope of the
complex phase method, these functions are given as
follows:

By (w1, w2; T, T2) = (X (w1, T1)X (w2, T2)),  (33)
Bs(wi,w2; T1, T) = (Si(wi, T1)S1 (w2, T2)),  (34)
Bys(wi,wo; Tr, Ta) = (X (Wi, T1)S1(w2, T2)). (35)

All these functions can be found making use of the two
main autocorrelation functions of the first-order complex
phase By = (yi(wi, Ty *(w, 7)) and By, =
(Wwi(wi, Twi(wa, T3)). Their explicit expressions will
be presented below.

[31] As far as the probability density functions for
the random functions ¥x,; and S,,; are concerned,
equation (26) shows that x,,; and S,,; are represented
by linear integrals over many random inhomogeneities.
This guarantees, according to the central limit theorem,
that both the random functions x,,; and S,,; are normally
distributed. When averaging in (33)—(35) it is also implied
that the electron density fluctuations along different
paths of propagation are not correlated. This is in a
reasonable agreement with the requirement that the main
Fresnel volumes of the neighboring rays do not overlap.

[32] If, additionally, the hypothesis of the “frozen
drift” of random inhomogeneities in the ionosphere is
adopted, slow time 7'is expressed through the position of
the inhomogeneity structures, so that actually appropriate
two-frequency, two-position autocorrelation and cross-
correlation functions must be constructed. We have
studied in detail these type of functions in the scope of
the complex phase method for the case of a plane-layered
background medium [Gherm et al., 1997; Gherm and
Zernov, 1998]. Having the representation (26), which
extends the complex phase method to the case of a
fully 3-D inhomogeneous medium, appropriate statistical
moments of the complex phase can be constructed
for an arbitrary 3-D inhomogeneous background
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medium. In particular, the abovementioned correlation
functions B,,; and B,,, which permit expressing the
correlations (33)—(35), are of the following form

S0
TYk]kz / ds
By (w,wn, T ) =
Pl ( 1,W2 ) P / £ (S)
. /a’ﬁ,,a’mBE (s; 0, Ky, &T)
- exp [im,,(A,, - v,,T,) + imT(AT - VTT,)]
i(kl — k2) 2 2
- eXp { W [HnDn (S) + IQTDT (S)
4 2Kk Dyr (s)] }, (36)
ks | d
0
'/dﬁndRTBg(S;O,IQn,HT) exp
iRn (A = v T2) + ike (Ar — v T2))
l(kl + kZ) 2
- exp { T ok [K2Da(s)
+K2Dy(s) + 2mnRTDnT(S)]}. (37)

Here k = w/c and B.(s; 0, K,,, k) is the three-dimensional
spatial spectrum of the electron density fluctuations with
zero value of the spectral variable, Fourier-conjugated to
the difference variable along the path. It is also a function
of the central variable along the reference ray. The
spectral variables k,, and k., are Fourier-conjugated to the
spatial variables ¢; and ¢, lying in the plane perpendic-
ular to the reference ray at each point. The quantities A,
and A, are the components of the vector of distance
between the rays corresponding to the frequencies w; and
w,, which also depend on s. Additionally, the hypothesis
of the “frozen drift” of random inhomogeneities is
utilized, so that v, and v. are the components of the
frozen drift velocity also depending on the point along
the reference ray, and 7 = 77 — T, is the difference in
slow time. The central slow time 7’ is not involved in
equations (36) and (37), because of the assumption of the
statistical homogeneity of the fluctuations. The coeffi-
cients Dn, D, and D,,. are the elements of the matrix D=
(B )~!, which is the inverse of the matrix B' (24). These
also depend on the variable s.
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[33] In the numerical calculations, a turbulence model
of the ionospheric fluctuations is considered having an
anisotropic inverse power law spatial spectrum of the
form

P
2

B.(s,k) = C3[1 —go(s))°0 (s)<1 +KI§ +K§> . (38)

Here C% is a known normalization coefficient. Ky, =
Z’Ttltg , where /,, is the outer scale of the turbulence along
the geomagnetic field, and K, = 2xl, !, where [, is the
outer scale of the turbulence across the magnetic field.
Function €y(s) is the distribution of the dielectric
permittivity of the background ionosphere along the
reference ray in the 3-D inhomogeneous background
ionosphere and o (s) is the distribution of the variance
of the relative fluctuations of the electron density of the
ionosphere along the reference ray in the 3-D inhomo-
geneous ionosphere. As a result, functions (36) and (37)
are, with a very high degree of generality, valid for
arbitrary three-dimensional models of the background
ionosphere and fluctuations of the ionospheric electron
density.

[34] All the abovementioned results permit to uniquely
produce random series of functions x,, and S,, in the
domain (w, 7), if, additionally, the cross correlation (35) is
also properly accounted for. To generate the time series,
spectra of the correlation functions of ,, and S, (power
spectra) are calculated in the domain (7, 2), where T is
Fourier-conjugated to w and 2 is Fourier-conjugated to T
correspondingly. Complex valued Fourier spectra of ran-
dom realizations of x,, and S,, are assumed to have their
absolute values equal to the square roots of the appropriate
calculated power spectra and arguments uniformly dis-
tributed in the interval 0—27. A correct cross correlation
of the x,, and §,, realizations is then provided by the
proper choice of two basic sequences of random numbers
having their cross-correlation coefficient defined by the
mutual correlation of x,, and §,, [see, e.g., Devroye,
1986]. In turn, these permit generation of random values
of the phasor R,, (1, w, T') in the same domain, and finally
to generate the random series of a signal that has propa-
gated through the fluctuating ionosphere employing the
appropriate methods of numerical calculation of the inte-
grals in equation (30).

[35] Below we shall present some results of a simula-
tion obtained using the developed technique and simu-
lator. All the results have been calculated for a single-hop
path of length 1000 km oriented to the west from St.
Petersburg, Russia. The IRI model for July at 0700 LT
was chosen for the transmitter site at St. Petersburg and
for the receiver site 1000 km to the west of St. Peters-
burg. For this path, horizontal gradients of the electron
density resulted in a difference of 0.5 MHz in foF2
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Figure 1. Random walk of the phasor R, (r, w, T) for the £ mode. The fluctuations of the field are
weak.

between the transmitter and receiver. The carrier
frequency was 8.1 MHz.

[36] The fluctuations of the ionospheric electron den-
sity were characterized by the inverse power law aniso-
tropic spatial spectrum with the spectral index of 3.7, the
scale of random inhomogeneities across the geomagnetic
field of 3 km and the aspect ratio of 5. The variance of
relative fluctuations of the electron density was assumed
to be uniform along the path of propagation and equal to
3 x 107°. The hypothesis of frozen drift of the random
inhomogeneities was utilized with the same horizontal
longitudinal and latitudinal velocity of 0.5 km/s. The
bandwidth of the rectangular transmitted pulse was
20 kHz.

[37] In the first step, the oblique sounding ionogram
was constructed for the chosen model of the background
ionosphere, which indicated possible high- and low-
angle F and £ mode paths of propagation. In Figure 1,
the random walk as a function of T is shown for the
phasor corresponding to the £ mode propagation path for
a fixed frequency component w, whereas Figure 2
demonstrates the same for the phasor of the high-angle
F mode path. Clearly, the spread of possible random
values of the phasor on the plot of Figure 2 is signifi-

cantly wider due to the higher density of the background
ionosphere at the altitude of the F layer, leading to the
higher values of the absolute fluctuations of the electron
density.

[38] In a similar way, phasors for all possible paths of
propagation, connecting transmitter and receiver for the
given conditions (the model of the background iono-
sphere and geometry), are produced. Then, calculating
numerically the quantity U(r, ¢, 7) according to the
integral (30) random time sequences of a pulsed signal
propagated through the fluctuating ionosphere are gen-
erated for different moments of slow time provided that
the spectrum P(w) of the transmitted signal is specified.
In Figure 3 the results of generating the random sequen-
ces for a transmitted rectangular pulse are presented, as a
function of the flight (fast) time, for different moments of
slow time.

4.2. Scattering Functions

[39] The scattering function of a pulsed signal is
introduced [Proakis, 1983; Vogler and Hoffmeyer,
1993; Mastrangelo et al., 1997; Gherm et al., 2001a]
as the appropriate Fourier transform of the autocorrela-
tion function of the random channel impulse response on
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Figure 2. Random walk of the phasor R, (r, w, T) for the high-angle /' mode. This shows stronger

fluctuations of the field.

the difference slow time variable. Utilizing (30), the
autocorrelation function of a pulsed signal on slow time
T can be written as follows:

Vol 11T = [ Plo)P*e) 3 oo (e2)

W (Wi, wo; T, Ta) explikyp,, (W)
— ikz&pm(wz) — i(w1 — wz)t]dwldwz.
(39)

Here the spatial variable r was suppressed and the
following relationships have been introduced:

Egyy (0) = fun(w) explikep,, ()], (40)

lPR,,,(L.JL)I,L.JL)Q;Tl,Tz) = <Rm(w1,T1)R;‘§(w2,T2)>. (41)
Equation (40) shows explicitly the amplitude and phase
of the field E5S, which are calculated for each possible
mode of propagation, defined by the model of the
background medium. Relationship (41) is the definition
of the two-frequency two-time correlation function of the
random phasor R, (w, T).

[40] Itis convenient to work with the central and differ-
ence variables in the frequency and slow time domains

Wy :E(wl + W), wo = w; — wy, (42)
1
T+:E(T1+T2), T,:T]—Tz. (43)

Utilizing new variables in (39) and performing Fourier
transformation on difference slow time 7_, the following
equation for the scattering function (which is sometimes
termed the wideband scattering function) is obtained:

| . )
S(t, T ywa) = 5 /P(w+ —|—%>P*(w+ —“’7)

S+ e -3)
: \PRm(WJrv w—3 T+7 T,)
~exp[—i(t — tgm(wy) )w + iwgT-]

cdw,dw_dT-. (44)

Here the summation is performed over all paths of
propagation from the source to the receiver. The
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Figure 3. Realization of the received signal plotted in slow time and fast time variables.
scattering function of the channel S(z, 7', w,) depends on 1,
the Doppler variable wy, (Fourier-conjugated to 7"), the V(w) = exp |(yy(w)) + B (Wi(w))|- (47)

group delay ¢ and, generally, on the slow time 7',. The
latter dependence vanishes when the random ionospheric
fluctuations are assumed to be statistically stationary.
Group delay time Zg,(w) is given by the equation

0 w

lgm (W) = BN [Z @'"(w)} w=w,

. (45)

and is calculated for each mode of propagation.

[41] In the framework of the complex phase method,
the frequency and time correlation functions of the
random phasor Wy, in the integral (44) are expressed
through the statistical moments of the complex phase
[Gherm and Zernov, 1998; Gherm et al., 2001a] as
follows:

(s, 03 T, T) = V(w0 +5) V5 (9 = 5)
Aexp [Py (wi,wo; T4, T2)] — 1},
(46)

The function ‘¥, denotes the autocorrelation function of
the complex phase, with the main term being obtained
employing the complex phase method within the
relationship

w_ T_
\PW(UJ+,UJ_;T+,T_): Wl<w++77T++7>

wlw, ——/—. T, ——
Wl( 27 2

The functions (46)—(48) have been studied in detail in the
work of Gherm and Zernov [1998] for the case of plane-
layered background medium. The scattering function (44)
has been studied in the work of Gherm et al. [2001a], also
for the layered background medium. The extension of
the complex phase method obtained above for the case of a
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Figure 4. Scattering function calculated theoretically as a statistical moment of the field.

3-D inhomogeneous background medium (equation (26))
naturally permits the extension of the technique of
calculation of the scattering functions to the general case
of a 3-D background. The statistical moments of the
complex phases involved in equations (44) and (46)—(48)
are given through the representations (36) and (37). They
have all been derived analytically for the general case of
an arbitrary 3-D inhomogeneous background medium.
The derivation is based on the general equation (26) for a
random realization of the complex phase. The calculations
are then performed numerically for a given model of the
background ionosphere. In Figure 4, the scattering
function is presented in the form of a contour plot,
calculated according to the described technique as the
appropriate statistical moment of the signal.

[42] Finally, there is also another possible method of
obtaining the scattering function, namely from the ran-
dom time series as represented in the plot shown in
Figure 3. This is a numerical processing of the simulated
time series of a signal analogous to what is really done to
real experimental data. The result is presented in Figure 5
in the form of a contour plot. In both Figures 4 and 5, the
adjacent contours are separated by 5 dB and range from 0
to —30 dB. Strictly speaking, these plotted values in
Figure 5 are not statistical moments, but a sort of
realization of the scattering function, obtained after
averaging over a finite number of realizations of the
received signal. If the period of this averaging is
increased, then the number of random realizations will

also increase and the resulting plot will converge to the
true scattering function, which is the rigorous statistical
moment presented in Figure 4.

[43] As far as the effects due to the magnetic field of the
Earth are concerned, we have confined this consideration
to the isotropic refractive index case. However, the ap-
propriate extension of the theory (of the complex phase
method) has also been developed to describe the effects of
ordinary and extraordinary modes, so that the magneto-
ionic splitting can also be accounted for. It was not really
practical to give the detailed description of the anisotropic
version including the theory and simulator in the frame-
work of a single paper. An additional paper is planned to
be devoted to this subject. Some results for the anisotropic
case have been recently reported in the work of Gherm et
al. [2003]. To conclude this paper, in Figure 6 the
anisotropic case is briefly presented for conditions anal-
ogous to the isotropic case in Figure 5. Again, the
retrieved scattering function is represented in the form
of a contour plot. It is clearly seen that the high-angle F
mode (the uppermost local maximum) is split into o
components and e components, whereas low-angle F'
mode and £ mode are not resolved into o components
and e components.

5. Practical Use of the Simulator

[44] The inputs required for the simulator are the
geographic location of the transmitter and receiver, the
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Figure 5. Scattering function retrieved from the field realization shown in Figure 3.

nature of the transmitted signal and the characteristics
of the background and stochastic ionosphere (time-
varying irregularities) components. The background
ionosphere can be fully 3-D such as being represented
as a fit to the IRI model over a given latitude and
longitude range. Alternatively, it can be specified in
terms of the parameters of a number of Chapman,
parabolic or quasi-parabolic layers which can include
linear latitudinal and/or longitudinal gradients of elec-
tron density and/or height of the electron density
maximum. Slow time variation such a layer movement
or TIDs can also be incorporated and will result in
Doppler shift whereas the time-varying irregularities
result in Doppler spread. The stochastic component of
the ionosphere is specified in terms of the variance of
the fractional electron density, the exponent of the
inverse power law spatial spectrum, the outer scale
of the irregularities along and transverse to the geo-
magnetic field direction and the direction and speed of
the irregularities in three dimensions. The £ and H
field patterns of the transmitting and receiving anten-
nas can be taken into account when determining the
strength of the transmission at different azimuths and
elevations and when summing the E fields of the
different modes at the receiver. The initial azimuth
and elevation angles of the signal for each multipath
component are determined by the homing-in program
and so are known. This information can also be

obtained from the ray-tracing program for the end of
the ray path at the receiver location. Either vertical or
horizontal antennas can be used for the link.

6. Conclusions

[45] The general description of HF propagation in the
ionosphere with 3-D inhomogeneous background and
local random inhomogeneities embedded presented
above comprises the physical basis for producing a
software simulator for the wideband ionospheric fluctu-
ating reflection HF channel. The simulator is capable of
producing both random time sequences of a pulsed signal
propagated through the fluctuating ionosphere and its
statistical moments, e.g., scattering functions. The pro-
grams are arranged in the way that any given 3-D model
of the background ionosphere can be utilized and mul-
timode propagation can be included for any geometry of
propagation. The software simulator utilizes the inverse
power law spatial spectrum of fluctuations of the electron
density of the ionosphere with given spectral index and
different spatial scales of inhomogeneities along and
across the magnetic field. Fluctuations are assumed to
be statistically homogeneous in time (stationary). The
simulator is capable of producing results for signals with
bandwidths up to 0.5 MHz. A noise model, described by
Lemmon and Behm [1991], has also been added. Bulk
plasma motion of the background ionosphere can also be
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Figure 6. Scattering function retrieved from the field realizations for the case when the Earth’s

magnetic field is taken into account.

included, giving a Doppler shift in addition to the
Doppler spread resulting from diffraction by the moving
irregularities.

[46] This propagation model and simulator, since
based purely on physical models and parameters, also
enables the correspondence between characteristics of
the received field and the physical parameters of the
model to be investigated. This permits fine-tuning of the
model by comparison of received field and predicted
output for a variety of conditions as well as providing a
way of estimating the physical parameters from the
characteristics of the received field.

[47] Acknowledgment. NNZ and VEG thank the EPSRC
(UK) for financial support as visiting fellows under grant VF
GR/R37517/01.

References

Angling, M. J., P. S. Cannon, N. C. Davis, T. J. Willink, T. J.
Jodalen, and B. Lundborg (1998), Measurements of Doppler
and multipath spread on oblique high-latitude HF paths and
their use in characterizing data modem performance, Radio
Sci., 33, 97-107.

Arnold, J. M. (1982), Oscillatory integral theory for uniform
representation of wave functions, Radio Sci., 17,1181—-1191.

Dashen, R. (1979), Path integrals for waves in random media,
J. Math. Phys., 20, 894—920.

Devroye, L. (1986), Non-Uniform Random Variate Generation,
Springer, New York.

Flatte, S. M. (1983), Wave propagation through random media:
Contributions from ocean acoustics, Proc. IEEE, 71, 1267 —
1294.

Gherm, V. E., and N. N. Zernov (1995), Fresnel filtering
in HF ionospheric reflection channel, Radio Sci., 30, 127—
134.

Gherm, V. E., and N. N. Zernov (1998), Scattering function of
the fluctuating ionosphere in the HF band, Radio Sci., 33,
1019-1033.

Gherm, V. E., N. N. Zernov, and B. Lundborg (1997), The two-
frequency, two-time coherence function for the fluctuating
ionosphere: Wideband pulse propagation, J. Atmos. Sol.
Terr. Phys., 59, 1843—1854.

Gherm, V. E., N. N. Zernov, B. Lundborg, M. Darnell, and H. J.
Strangeways (2001a), Wideband scattering functions for HF
ionospheric propagation channels, J. Atmos. Sol. Terr. Phys.,
63, 1489—-1497.

Gherm, V. E., Y. A. Gogin, and N. N. Zernov (2001b), Diffrac-
tion of the wave field on weak inhomogeneities of the
dielectric permittivity in a 3-—D smoothly inhomogeneous
medium (in Russian), St. Petersburg Univ. Herald, Ser. 4,
2(12), 32-37.

Gherm, V. E., N. N. Zernov, and H. J. Strangeways (2003),
Wideband HF simulator for multipath ionospherically
reflected propagation channels, in Proceedings of the 12th
International Conference on Antennas and Propagation at

14 of 15



RS1001

Exeter University April 2003, IEE Conf. Publ. 491, vol. 1,
pp- 128—131, Exeter, UK.

Ishimaru, A. (1978), Wave Propagation and Scattering in Ran-
dom Media, vols. 1 and 2, Elsevier, New York.

Kravtsov, Y. A. (1968), Two new asymptotic methods in
a theory of wave propagation in inhomogeneous media
(review), Sov. Phys. Acoust. Engl. Transl., 14(1), 1-17.

Kravtsov, Y. A., and Y. L. Orlov (1980), Geometrical Optics of
the Inhomogeneous Media (in Russian), Nauka, Moscow.

Lemmon, J. L., and C. J. Behm (1991), Wideband HF noise/
interference modelling part 1: First-order statistics, N7I4
Rep. 91-277, U.S. Dept. of Comm., Washington, D. C.

Ludwig, D. (1966), Uniform asymptotic expansions at a caus-
tic, Commun. Pure Appl. Math., 19, 215-250.

Maslov, V. P. (1965), Perturbation Theory and Asymptotic
Methods (in Russian), Univ. of Moscow, Moscow.

Mastrangelo, J. F., J. J. Lemmon, L. E. Vogler, J. A. Hoffmeyer,
L. E. Pratt, and C. J. Behm (1997), A new wideband high
frequency channel simulation system, /EEE Trans. Com-
mun., 45, 26—34.

Messer, H. D. (1999), Technical progress on digital HF broad-
casting in the medium wave and short wave bands, paper
presented at 26th General Assembly of URSI, Natl. Res.
Counc. of Can., Toronto, Ont., 13-21 Aug.

Nieto, J., and S. Ely (1999), High data rate communications
over HF channels, paper presented at 26th General Assem-
bly of URSI, Natl. Res. Counc. of Can., Toronto, Ont., 13—
21 Aug.

Orlov, Y. I. (1972), Asymptotic method for wave field descrip-
tion in arbitrary fluently inhomogeneous media (in Russian),
Sov. Transl. Moskov. Energy Inst., 119, 82—113.

GHERM ET AL.: WIDEBAND HF SIMULATOR

RS1001

Proakis, J. G. (1983), Digital Communications, McGraw-Hill,
New York.

Rytov, S. V., Y. A. Kravtsov, and V. 1. Tatarskii (1978), Intro-
duction to Statistical Radiophysics, vol. 2, Random Fields
(in Russian), Nauka, Moscow.

Sudworth, J. P. (1999), A new approach for simulation of time
varying HF channels, paper presented at IEE Electronics and
Communications Division Colloquium on Frequency Selec-
tion and Management Techniques for HF Communications,
Inst. of Electr. Eng., London.

Tatarskii, V. 1. (1971), The Effects of the Turbulent Atmo-
sphere on Wave Propagation, Isr. Program for Sci. Transl.,
Jerusalem.

Vogler, L. E., and J. A. Hoffmeyer (1993), A model for
wideband HF propagation channels, Radio Sci., 28,
1131-1142.

Watterson, C. (1981), HF channel-simulator measurements on
the KY-8790/P FSK burst-communication modem-set,
NTIA Rep. CR-81-13, U.S. Dept. of Comm., Washington,
D. C.

Zernov, N. N. (1980), Scattering of waves of the SW-range in
oblique propagation in the ionosphere, Radiophys. Quantum
Electron., 23, 109-114.

V. E. Gherm and N. N. Zernov, University of St. Petersburg,
Ulyanovskaya 1, Petrodvorets, St. Petersburg 198904, Russia.
(gherm@paloma.spbu.ru; zernov@paloma.spbu.ru)

H. J. Strangeways, University of Leeds, Leeds LS2 9JT,
UK. (hjs@elec-eng.leeds.ac.uk)

15 of 15






Radio Science, Volume 33, Number 4, Pages 1019-1033, July-August 1998

Scattering function of the fluctuating ionosphere
in the HF band

Vadim E. Gherm and Nikolay N. Zernov

Institute of Radiophysics, University of Saint Petersburg, Saint Petersburg, Russia

Abstract. This paper is devoted to the investigation of the two-frequency, two-
position, time coherence function and the ionospheric scattering function describing
the HF ionospheric fluctuating radio channel. The complex phase method is applied
to obtain the analytical expressions for the coherence and correlation functions,
which are then calculated numerically for the realistic models of the fluctuating
ionosphere. The numerical Fourier transformation of the correlation function gives
the ionospheric scattering function. The numerical results obtained lead to the
conclusion that in the general case the large variability of shapes of the scattering
function of the fluctuating ionosphere exists depending on the concrete conditions
of propagation. In particular, the well-known delay-Doppler coupling can be more
or less pronounced in different propagation conditions. We have shown that the
presence of the coupling is exclusively due to the nonzero imaginary part of the
correlation function of the scattered field, which means that this effect has a purely
diffractional nature and cannot be obtained in the geometrical optics approximation.

1. Introduction

It is commonly accepted to characterize HF
ionospheric fluctuating radio channel in terms
of two fundamental quantities, which are the
transfer function and the scattering function of
the ionosphere. While the transfer function de-
scribes a regular background channel, the scat-
tering function accounts for the effects due to
electron density fluctuations of the ionosphere.
The latter may be produced through a spaced
position, time and frequency cohererice function
of the HF field propagating in the fluctuating
ionosphere by means of Fourier transformation
in appropriate variables.

So far as the main properties of the undis-
turbed (regular) HF ionospheric channel may
be considered as well studied, the interests of
those going in for HF propagation are at the mo-

Copyright 1998 by the American Geophysical Union.
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ment focused on the characterization of the fluc-
tuating ionospheric channel. One may find in
the scientific literature a lot of investigations of
the ionospheric stochastic channel, experimen-
tal {Proakis, 1983; Basler et al., 1988; Wagner
et al., 1988; Cannon et al., 1995] as well as the-
oretical.

In theory, many approaches exist to construct
a spaced time, frequency, and position coher-
ence function of the HF field and the scatter-
ing function of the ionosphere. One of them,
providing the description of strong fluctuations
of a field amplitude as well, is the momenta
parabolic equations for forward scattering, writ-
ten in Markov’s approximation [Rytov et al.,
1978; Ishimaru, 1978]. This method is well de-
veloped for the case of a homogeneous back-
ground medium [Tatarskii, 1971; Knepp, 1983a;
Nickisch, 1992; Gozani, 1993]. For VHF, and
especially HF range propagation, the inhomoge-
neous background medium, giving rise to rays
bending and multipath effects, is of importance
and has to be taken into account. To extend
Markov’s approximation technique to the case

1019



1020

of inhomogeneous background medium, the nec-
essary parabolic equations have been derived by
Hill [1985] in ray-centered variables and the co-
ordinate system of orthogonal trajectories (full
tay variables). Mazar and Felsen [1987a, b] con-
structed analytical solutions of the appropriate
equations in the scope of multiscale expansions.
They have obtained the spaced frequency co-
herence function as well, but their results are
restricted by the case of nondispersive media,
when the fields of different frequencies propagate
along the same paths, which the HF ionospheric
propagation does not pertain to because of the
dispersive nature of the ionosphere.

For practical calculations of the statistical ef-
fects of HF propagation in the fluctuating iono-
sphere with the inhomogeneous background, the
numerical multiple phase-screen/diffraction me-
thod was developed [Knepp, 1983b; Kiang and
Liu, 1985], and used, in particular, in the investi-
gation of the coherence function of the HF field
in the ionosphere [Wagen and Yeh, 1989a, b:
Rand and Yeh, 1991]. The technique of the mul-
tiple phase-screen/diffraction method was also
exploited to construct the analytical solution of
Markov’s parabolic equation for the spaced fre-
quency, time, and position coherence function of
a field in a medium with a homogeneous back-
ground [Nickisch; 1992].

To account for the regular refraction, together
with the scattering by local ionospheric inhomo-
geneities of the ionosphere, including diffraction
effects, we use Rytov’s approximation general-
ized by Zernov [1980] to the case of an essen-
tially inhomogeneous background medium. Al-
though Rytov’s method is invalid to describe
strong-amplitude fluctuations of a field (with the
variance of the logarithm of the amplitude of a
field exceeding unity), it gives the most general
description of the unsaturated regime of propa-
gation in a random ionosphere and provides the
possibility to advance significantly in the ana-
lytical and numerical investigation of HF prop-
agation in the ionosphere with moderate fluc-
tuations of the fractional electron density. The
method produces in automatic fashion the geo-
metrical optics perturbation theory as the limit-
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ing case when local inhomogeneities of the iono-
sphere are of the zero values of the wave (diffrac-
tion) parameter. The unsaturated regime of HF
propagation corresponds to the conditions of the
quiet midlatitude ionosphere. As for the high-
latitude ionosphere, characterized by stronger
fluctuations of the fractional electron density, it
may give rise to the saturated regime of propaga-
tion, which requires the alternative treatment of
the stochastic propagation problem. This may
be, for instance, the path integral technique,
outlined by Dashen [1979], Flatte et al. [1979],
and Flatte [1983]. The saturated region of HF
propagation lies beyond the scope of the present
consideration.

We already used the generalized Rytov’s me-
thod to describe HF field phase and level (log-
arithm of the amplitude) fluctuations [Gherm
and Zernov, 1995] and HF pulse propagation
through the fluctuating ionosphere [Zernov and
Lundborg, 1995]. In the latter paper the ana-
Iytical results have been derived, describing a
shape of pulses, passed through the fluctuating
ionosphere. At the same time, the paper by
Fridman et al. [1995] has been released, where
the generalized Rytov’s approximation is used
for studying of the two-frequency, time coher-
ence function of the HF field. Below, we will
discuss the results of this paper in more detail.
We should also like to point out that Gherm et
al. [1997a, b] give recent results in pulse propa-
gation, including the numerical simulation of the
coherence and correlation functions. We present
here our recent results of the analytical and nu-
merical investigation of the scattering function
of the fluctuating ionosphere, calculated for re-
alistic models of the background ionosphere and
ionospheric electron density fluctuations.

2. Coherence of a Field

In the investigation of propagation effects of
the transient fields through the fluctuating iono-
sphere, the spaced time and position coherence
function of the field received will be the sub-
ject of our interest. To describe this quantity,
we use here the frequency domain technique and
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express the coherence function in the form of a
double integral in the frequency domain as fol-
lows:

+o0
Le(ri,ro,ti,tp) = // dwqdw,

P(w) P*(wz) fo(r1,w1) f3(ra,ws)
'P(rla rs,wy,ws, i, tz)

-exp {i [k1¢o(r1,w1) — k2ddo(ra, w)]

—i(w1t1 - W2t2)} (1)
Here k1 = wi/c, k3 = wy/c, and ¢ is the light
velocity in vacuum. P(w) represents the fre-
quency spectrum of a nonmonochromatical sig-
nal launched. Functions fo(r,w) and ¢o(r,w)
give the amplitude and phase of a harmonic com-
ponent of a transient field, propagated through
the undisturbed ionosphere, so that the function

Eo(r,w) = fo(r,w)exp [ikgo(r,w)]  (2)

is the transfer function of the background iono-
spheric channel, given in the approximation of
the dominant term of the ray (geometrical op-
tics) expansion of a point source field in a smooth-
ly inhomogeneous medium. The effects due to
the ionospheric electron density fluctuations are
taken into account through the two-time, two-
frequency, two-position coherence function
L(ri,ry,wi,wy,t1,%2) in equation (1). If one
makes use of the complex phase (r,w,t) to
account for the influence of the electron den-
sity fluctuations on the monochromatic compo-
nent Fo(r,w), the disturbed component of a field
E,(r,w,t) is represented in the following form:

Eu(r,w,t) = Eo(r,w) exp[t(r,w,t)].  (3)

Then, in the scope of Rytov’s approximation,
the coherence function I'(rq, ry, wy,ws, t1, 1) may
be expressed using the first- and second-order
approximations 1 and 4 of the perturbation
theory for the complex phase. After the decom-
position of different orders of complex phases
into real and imaginary parts has been per-
formed

1021

P = x1 + 151,

o = x2 + .59, (4)

the representation for the coherence function is
given by the equation

I' = FZ(r17r27w17w23t17t2) =
Va(ry,wi, t1) Vo (ra,wa, tg)
‘eXP[b(rl,rz,wl,W2,t1,t2)

+iQ(r17 ry, W, wWs, tlth)],

(3)

where

Va(r,w,t) = exp[(Xg(l‘,w,t)) +i (53(r,w,1))
+% <X%(r7“‘)7t)> + ¢ <X1(I‘,w, t)Sl(rvwat»
~1{(S¥rw, 1)), (6)

b(rq, 1o, wr,ws, ty,t2)

= (xa(r1,wr, t1)x1(r2, w2, t2))

+ (S1(r1,w1,11)51(rg, we, 12))
q(ri, vy, w1, ws, 4, 12)

= (x1(rz,ws,12)51(r1,wi, 1))

— (xa(ry,wi, 1) 51(r2, ws, 1)) - (7)

The subscripts to I's and V, mean that these
quantities have been calculated with the first
and second approximations of the complex phase
taken into account. Representations (5)-(7) are
essentially the same coherence function as de-
rived by Zernov and Lundborg [1995, equations
(32), (33a), and (33b)]. The difference here
is that the time dependence is recovered and
spaced position is introduced.

The dependence on time takes place in the re-
lationships (3) ~ (7) in the sense of the slow time
dependence of functions E, (and consequently
the complex phases ) governed in quasi-station-
ary approximation by the equation

V2E, + kKeo(r,w) +e(r,w,t)] E, = 6(x) . (8)

In this equation, é(r) is the Dirac’s delta func-
tion, eo(r,w) is a model of the undisturbed back-
ground ionosphere, and &(r,w,?) represents lo-
cal random inhomogeneities of the ionosphere.
Time t stands to indicate possible slow time
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dependence of the properties of fluctuations in
quasi-stationary approximation. The range of
validity of the quasi-stationary approximation
(8) for a dispersive plasma is given by the in-
equality

ov > 1, (9)

where ¢ is a characteristic timescale of random
local inhomogeneities and v is an effective colli-
sion frequency of the plasma electrons, so that
v~! gives the timescale of relaxation of the iono-
spheric plasma.

To obtain the final expression for the coher-
ence function, we introduce the center and dif-
ference variables as follows:

rp+ry
R=———, p=ri-m
t 2
r=bth
2
W W
Q) = %, =W —Wwy. (]O)

In the new variables, I'y may be rewritten in the
form

F‘Z(Rav P ‘Qv 65 T7 t) =

p ) 1
Vol R+=,Q94+ =T+ -
2( +2, +2, +2)

. P bt
v, (R 2,9 2,T 2)

-exp[b(R, p; Q,6;T,t) +ig(R, p; Q, 6; T, 1)]. (11)

Generally, the coherence function is not o-
bliged to tend to zero as the difference argument
tends to the infinity. As such, it is often conve-
nient to split the coherence function into two
items, extracting its behavior in the infinity in
the explicit form. This may be performed by
making use of the well-known relationship be-
tween the coherence function and the correlation
function [Rytov et al., 1978], which we denote as
¥y. then this relationship is as follows:

FZ(Ra P; Q) 6)T7 t) = \IIZ(R7 P; Q) 5)T7 t)
P ) t
BirR+Lorlrsl

(R4 2045742

t

x P 6
vi([R-Lao-S71_2).
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The last equation, together with representation
(11), yields for the correlation function the result

\IlQ(Rﬁ p;Qaa;T7t) =
P ) t

2
. Pg 9t _£>
Vs (R 2,9 2,T 5

F(Rv p;Q,&;T,t), (13)

with

F(R,p;Q,6;T,t) = exp[b(R, p; 2, 6; T, 1)
+ig(R, p;Q,6;T,t)] — 1. (14)

Equations (13) and (14) describe the two-posi-
tion, two-frequency, two-timme correlation func-
tion of the HF field in the fluctuating ionosphere.
With the assumption of the statistical homo-
geneity of the ionospheric fluctuations in time
(stationarity), I's and ¥y depend only on the
difference time variable .

In the particular case r = ry = ry, thatis, R =
r, p — 0, the correlation function from equations
(13) and (14) gives the quantity F(r,Q,d,t),
which was treated by Fridman et al. [1995).
Strictly speaking, they studied only the quan-
tity b(R, p;Q,8;T,t) in the domain (4,t), and
they had no the imaginary part in the exponent
of equation (14). Below, we will derive the repre-
senations for the functions Vs, b, ¢. One will see
that different second-order moments involved
in the description of these quantities through
equations (6) and (7) are generally expressed as
manyfold integrals. It will be shown that only
in the case when the geometrical optics approx-
imation is valid (i.e., in the case of spatial scales
of the ionospheric local inhomogeneities being
greater than the main Fresnel zone size for a
given path of propagation) does the situation
takes place that ¢ = 0, and b is represented as
onefold integral as it is by Fridman et al. [1995].
Generally, this is not the case. Moreover, as we
will see later on, to obtain the parabolic shapes
of the profiles of the scattering function of the
ionosphere, the nonzero imaginary part ¢ in the
exponent in (14) is a crucial point. At the same
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time, we would like to point out that as our
consideration shows, the approximation used by
Fridman et al. [1995]is quite adequate for small
values of the difference variable 4.

We will give here the general treatment of
the two-position, two-frequency, time coherence
and correlation functions for an arbitrary range
of variables. This will provide the possibility
to construct the ionospheric scattering function
through the Fourier transformation in appropri-
ate variables. We will also give the results of the
numerical simulation of the scattering function
and the distribution of the angles of arrival, con-
structed for arbitrary given models of the back-
ground ionosphere and the inverse power law of
the spatial spectrum of the ionospheric electron
density fluctuations.

To finish this section, we rewrite in new vari-
ables, introduced in (10), the quantity from equa-
tion (1), which is the two-time, two-position co-
herence function of a nonmonochromatic field,
radiated by a point source, and passed through
the fluctuating ionospliere, in the form as fol-
lows:

FE(R,p,f,t)://_:o d0ds
fort) o)
-fo<R+ 8+ )fo(R pﬂ 5)

Ta(R, p,Q,4,t) - exp {20% [K$o(R,Q)]6

+zdiR [K o(R, Q)] p — i(Q1 + 6T)}. (15)

To obtain this representation the expansion

Q4+ ¢ P )
R+=,Q+ -
(/)0 ( + 27 + 2)
Q-1 p 8
g0 (r-5.0-3)
0 0
= o5 [Kao(R,Q)]5-+ - [Kgo(R, 2)] p (16)
with K = §/c has been introduced and also

the stationarity of the ionospheric electron den-
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sity fluctuations has been assumed, which has
resulted in the dependence of I'; only on the
difference time variable t. Of course, one must
understand that when some expansion is used
under the sign of integration, the expansion has
to be valid in the domain giving the main contri-
bution in the integral. This form is useful to de-
rive some analytical results, which will be given
below. At the same time, we would like to point
out here that the expansion (16) does not per-
tain directly to the procedure of numerical cal-
culation of correlation and scattering functions,
the results of which will be also given in the fol-
lowing sections of the paper. In the next section
we will use the last expression (15) to fulfil some
analytical investigation of HF field propagation
in the fluctuating ionosphere.

3. Field Coherence and the
Ionospheric Scattering Function

Expression (15) is a rather general representa-
tion of a field coherence accounting for a lot of
the effects of HF propagation in the ionosphere
with the electron density fluctuations. While be-
ing interested in the mean energy Wg(R,T) of a
pulse propagating through the fluctuating iono-
sphere, one uses (1) and (15) with the arguments
T =1, =ty and R = ry = ry, that is, as follows
from (10), p = 0, = 0. Then the mean energy
WE is given by the equation

+oo
Wg(R,T) = (R, 0,T,0) = // 046
plasf)r(a-?)
é

so(Ra+3) 5 (Roa-3)

T9(R,0,90,6,0)
- exp {z—d— [Kpo(R,Q)]6 — iéT} . (17)

0Q

In the scope of Rytov’s approximation the ef-
fects of pulse propagation through the fluctuat-
ing ionosphere have been investigated in detail

by Zernov and Lundborg [1995] and Gherm et
al. [1997a, b]. One understands from (17) that
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in the studying of pulse propagation, the pro-
jection of the general coherence function
Ty(R, p, 2, 6,t) is needed to the domain (€2, 6),
with the other arguments fixed as p = 0,7 = 0.
This is the function appearing in equation (17).
This two-frequency coherence function has been
thoroughly investigated numerically by Gherm
et al. [1997a)] for realistic models of the back-
ground ionosphere and the ionospheric electron
density fluctuations.

Another interesting effect can be described
by rtepresentation (15) in the case of the field
launched being the monochromatic. This is the
case where the spectrum of an excited field is as
follows:

P(w) = Ugd(w — wo), (18)

so that

Wo = U2 (19)

gives a full energy, radiated to the direction of a
ray, connecting the communication points, and
6( ) is the Dirac’s function. With the spec-
trum (18), general expression (15) for a coher-
ence function of a received field yields

I'e(R,p,T,t)=T'g(R,p,0,1)

= U fo(B+ £, w0) f (R = £, 0)
'FQ(Rapa w0707t)

- exp {z—d— [Kéo(R,wo)] p — iwot} . (20)
IR

This is the two-position, time coherence func-
tion of a monochromatic field of the frequency
wo, corrupted while propagating due to the iono-
spheric electron density fluctuations. Obviously,
this function is described by another projection
of the general coherence function I';(R., p, Q, 6, 1),
which is now the projection to the domain (p,1).
This is the function T'o(R, p,wp, 0,1) with the ar-
guments R, Q, §, fixed as follows:

ri+ry

R="T22
2

Q= wo, d=0. (21)
Carrying out Fourier transformation on vari-
ables t and p of the function I'g in equation

(20), one may find a frequency spectrum (conju-
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gated to variable t) and two angle spectra (con-
jugated to the two displacements, which may be
chosen, for instance, for a sky wave, as the dis-
placements on the Earth’s surface in the direc-
tions which are parallel and perpendicular to the
plane of propagation). These spectra character-
ize the Doppler broadening and the distribution
of the angles of arrival of a monochromatic field,
propagated through the fluctuating ionosphere.
In particular, if one makes use of the decomposi-
tion of the coherence function according to rela-
tionships (12)-(14) and performs Fourler trans-
formation on ¢ in equation (20), one obtains the
Doppler broadening at the point of observation
r in the following form:

fE(R“’o@) = UgIVZ(Paw0)|21f0(r>w0)[2

[G(r,wo, @) 4+ 6(@ —wo)] . (22)

Here the variable & is a frequency, which is
Fourier conjugated to ¢, and

+oo

i 1
G(r,wp, @) = —/ dtF(r,0,wo,0,t)
2T J oo
cexp [1(@ —wo)t], (23)
where F' is given by equation (14). The two

items in the sum (equation (22)) represent the
contributions of the fluctuational and coherent
components of a field to the mean energy of
a full field for each monochromatic component
(strictly speaking, they are the contributions to
the spectral density of the mean energy of a full
field).

At last, the difference frequency variable é of
the coherence function I'y in the integral in equa-
tion (15) is involved in the description of pulses
stretching due to ionospheric electron density
fluctuations studied by Zernov and Lundborg
[1995] and Gherm et al. [1997a, b]. When
one performs Fourier transformation of I'y on
the difference variable ¢, one obtains the Fourier
transform, being a function of the time variable,
which is the additional delay time due to fluctu-
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ations. This Fourier transform may be written
as follows:

= 1 +00
FZ(R7P7‘Q’tdat) = '2—7?/ PZ(R7 pvQ757t)

-exp(—16t4)dé,(24)

where t; is a time variable conjugated to the
frequency variable &.

This way, to describe the different effects of
HF propagation in the fluctuating ionosphere,
a two-position, two-frequency, time coherence
function of HF field or its Fourier transform in
appropriate variables needs to be addressed. The
last one is one of several possible definitions of
scattering function, which we will follow after.

To have the quantitative description of differ-
ent effects of HF propagation, numerical calcula-
tions of both the coherence and scattering func-
tions have to be performed for concrete given
models of the background ionosphere and iono-
spheric electron density fluctuations. The next
section of the paper will deal with the regular
procedure of the numerical calculations of the
spaced time, frequency, and position coherence
function and the scattering function of the iono-
sphere.

4. Algorithms for Numerical
Calculations

It is convenient to express quantities V3, b,
and ¢ involved in the representation of the corre-
lation function from equation (13) through the
moments of complex phases of the first and sec-
ond orders ¢ and ;. Then V5, b, and ¢ from
equations (6) and (7) may be rewritten as fol-
lows:

Vao(r,w,t) = exp [(d)g(r,w,t)) +3 <1/Jf(r,w,t)>] ,

b(r1, 12, w1, we, b1, 12)
+1g(r1, re, w1, we, ty, )

= (P1(r1, w1, t1)97(r2, wa, t2)) (25)

If the stationarity of ionospheric electron den-
sity fluctuations is assumed, then single-point
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moments in equation (25) are no longer the func-
tions of a time variable. As for the two-argument
moment in (25), it is now a function of the dif-
ference time variable ¢ = #; — 3. Taking into
account all theé above mentioned, we finally rep-
resent the correlation function given by (13) and
(14) in the following form, written making use
of the center and difference variables (10):

‘Il2(R7p; ‘Q76at) =V (R+ Te7Q + g)

2
(p_P g ¢
V3 (R 50 2)
‘F(R, p;Q,81), (26)
where
F(R, p;Q,6;t) = exp[b(R, p; 2, §; 1)
+ig(R, p; Q,65t)] - 1. (27)

and V3 is given by equation (25) with the time
dependence supressed.

Below, we present a brief derivation of expres-
sions for moments of complex phase involved
in (25). More detailed derivation are given by
Gherm et al. [{1997a, b] with the only distinc-
tion that the derivation presented here extends
the treatment to the case of two-position coher-
ence and correlation functions.

To find the complex phase ¥(r,w,t), we use
here Rytov’s method generalized to the case of
inhomogeneous background ionosphere with lo-
cal inhomogeneities [ Zernov, 1980]. Substituting
representation (3) for the disturbed monochro-
matic component of a field to the Helmholtz
equation (8), one obtains the equation for the
complex phase

(V)2 + V2 + 2(Vin Ey - Vi) = —k%¢, (28)

which is then solved by a perturbation method
assuming function ¢ to be a small quantity. In-
troducing Green’s function G(r', r,w) of the un-
disturbed problem for equation (8), one can eas-
ily write the expressions for the first-order term
of the perturbation series for the complex phase

qbl(r,w,t)
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Pi(r,w,1) = k2B (r,w)
./G(r’,r,w)g(r',w,t) Eo(x’,w)dr’,  (29)

and the second-order term (r,w,t)
a(r,w,t) = —E;(r,w)

- / G 1,w) [Vt w0, O] Eo(r',w) dr’ . (30)

For the next consideration the functions
Ey(r,w) and G(r',r,w) are represented in the
geometrical optics (GO) approximation, which
is formally invalid near the caustic surfaces.
However, as was shown by Zernov [1994], the
expressions obtained from (29) and (30) by mak-
ing use of these quasi-classical asymptotics are
valid and uniform along the ray of the incident
field, provided the condition [ > I. holds, where
l. is a spatial scale of inhomogeneities and [, is
a near-caustic area size.

To analyze expressions (29) and (30), it is
convenient [Zernov, 1980; Gherm and Zernov,
1995] to introduce a ray-centered coordinate sys-
tem with transversal variables linked with a ref-
erence ray which connects the source and the
point of observation r in the undisturbed iono-
sphere. Using these variables with s calculated
along this ray, » perpendicular to the ray in the
plane of propagation, and 7 perpendicular to the
plane of propagation, expressions (29) and (30)
can be written in the Fresnel approximation for
forward scattering as follows:

ik?
7/’1(1‘700,75) = E // ds dn dr

e(r(s,n,7),w,t)

T
£2 ()| Du(s, 50) D (s, 50)|2

1k n? N 72
TR 2 D?L(5780) DT(Sy‘SU)

_%{sgn (Dn(s,50)) + sgn (D~ (s, 30))]} , (31)
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valr,et) = 1= [[[ ds dan ar
[Vioi(x(s,n,7),w,1)]?
53(5)1[)71(5, SO)DT(S’ 30)'%

1k n? T2
TxP {5 [Dn(s,so) + DT(S,So):|
- {sn (Da(s,50)) + 50 (Drlsys0))] | - (32)

The integration over s in (31) and (32) is car-
ried out along the ray from the point s = 0 to
the point s = sp, which correspond to the ori-
gin and the endpoint of the ray of reference, re-
spectively. The integration domain in the plane
(n,7) should cover some Fresnel zones, so that
the full integration volume covers the main Fres-
nel volume. Parameters D, (s, sq) and D, (s, sg)
are defined as

Folr(s)]

0%¢1[r(s), r(s0)]

D;l(s, 50) =

on? On2 )
- 02¢ b 82§/> 8), (s )
D71 (s, 80) = LO0lE] | POl o)l )

where ¢o(r) and ¢;(r, ") are the eikonals of in-
cident field and Green’s function represented in
GO approximation

G(r,r') = fi(r,x") explike(r, )],

and r(s) is the ray trajectory. The derivatives in
the right-hand sides of (33) are calculated at the
point r(s) of the ray and are actually the main
curvature radii of the wave fronts described by
the corresponding eikonals.

For the further treatment, it is more conve-
nient to introduce local Fourier-conjugated vari-
ables Kg, fip, Ky instead of s,n,7 and to rep-
resent the fluctuations in the spectral domain.
Thus, for the second-order moment of the first-
order complex phase, we have

2 K~ 7
<1/)1(I‘,CU)> - 4 /O 50(5)
. / dk,, dx, BE(O, K’IHK”T‘)

(34)

- exp {—% [m%Dn(s,so) + meT(s,SO)]} , (35)
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where B.(0, %y, k,) is the transverse spectrum
of the correlation function for the dielectric per-
mittivity fluctuations and the integration over s
is performed along the ray for the frequency w
which connects the transmitter and the observa-
tion point with the coordinate r = r(sp).

For the calculation of the two-frequency, two-
point, two-time moment
(1(r1, w1, t1)7(re,we, t2)), three different rays
should be used, which correspond to three dif-
ferent frequencies, wy,ws, and @ = (wy + w3)/2,
and connect the transmitter point to the points
ry,ry, and R = (r; +rg)/2:

b(R, p; Q,6;1) +ig(R, p; Q, §51) =
kikoy [%0 ds

4 o [eo(s1)ea(s2)]2
. / dk, der Be(0, kp, Kr)
cexp{ikn[An(8) = vut] + ik [AL(s) — v 1]}

k1 — ko) [ o 2
exp {7517@_ [nnDn(s, so) + k7D (s, 50)}} .
(36)

Here the integration over s is performed along
the ray for the center frequency {2 and reaching
the point R; sy and s, are the points on the
rays for wq to ry and for wy to ry, which are the
intersection points of these rays with the plane
perpendicular to the ray for the center frequency
Q and passing through the point s of the latter;
A,(s) and A,(s) are the projections of the vec-
tor from point s; to s3 in the n and 7 directions;
v, and v, are the same projections of the drift
speed vector.

The average of the second-order term
(12(r,w)), which is also needed for further cal-
culations, may be written as follows:

wirw = -5 [* 7= [ 2=

RO
. // Ak dk, B(0, Ky, ke ) (K2 + £2)
- exp {—% (k2 D,(s',s) + nfDT(s',s)]} . (37)

Equations (35)-(37) solve the problem of con-
structing the two-frequency, two-position, time
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coherence and correlation functions for an arbi-
trary profile of the background ionosphere and
an arbitrary spectrum of fluctuations. To obtain
concrete results, one should specify the mod-
els of ionosphere and fluctuations spectrum, cal-
culate ray trajectories and corresponding func-
tions D, and D., and evaluate integrals (35)-
(37). Generally, this procedure can be carried
out only numerically, and the numerical evalua-
tion of manyfold integrals of oscillating functions
requires special methods to be applied here.

In some cases, when the fluctuation spectrum
has specific form, for example, if it does not
depend on the wave vector direction (isotropic
spectrum), it becomes possible to reduce the
number of integrals in (35)-(37). Let us consider
such an isotropic power law spectrum model:

C¥(s)
Be(k)=—""%,
( ) (1 + 52/14,8)2
(38)
(;‘2(5) = F(p/Z)[l . 50(8)]2 (7“2
E 3 T{(p — 3)/2]k3

where T is the traditional gamma function; o%
is the variance of the fractional electron density
fluctuations, which are considered as a homo-
geneous zero-mean random field; ko = 27/¢,,
where £. is the outer scale size; and p is the
spectral index. Slow spatial variations of the
spectral parameters kg, p, oy are accounted for
in the model by their dependence on the variable
5. For the isotropic spectrum (38) one integra-
tion in the spectral domain can be performed an-
alytically, resulting in the following expressions
[Gherm et al., 1997a):

7k% 50 ds

(vir,0)) = -7~ s /Ooo x dx B,(x)

K2
- exp {5]? [D,.(s,50) + D (s, 80)]}
'JO {%[Dn(sa 50) - DT(S, 50)]} »

(39)
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koo ds' e
(ialre)) = = [ [ s B)
S0 ds iK?
A exp{ﬁ[Dn(s’,s)+DT(s’,s>]}
! ()

2

I X

=

»

we

(1(ry, w1, t)9] (rg,we, t2)) =
kiky [ 5o : %
™ 2/ ds 1/ kdkB. (k)
2 Jo [eo(s1)eo(s2)])7 Jo

exp {i(_kl_—@mz [Du(s, 50) + Dx(s, 30)]}

[Dn(sla s) — DT(SIa 5)]} )
(40)

4k ks
-Jo[rA(s)]
k1—k
-Jo {(;TME)KZ [Dn(S, 50) — DT(S, SQ)]} ,(41)
where k2 = k2 + k2 and Jo is the zero-order

Bessel function; A(s) = {[An(8)—vut]2+[AL(s)—
th]2}—1/2_

5. Results and Discussion

In this section the results of numerical investi-
gations of the two-frequency, two-point, time co-
herence function of the field propagating through
the fluctuating ionosphere are presented. The
ionospheric scattering function is connected to
the coherence function (or to the correlation
function) by means of Fourier transformation in
the appropriate variables. Introducing the nota-
tion S for the scattering function, we may write

S(Ra Qv k7 tda wd) =

ﬁ////\ll(R,p,Q,ﬁ,t)

cexp[—ikp — itg6 + iwgt]d®p dé dt,  (42)

where U(R, p, 2, 6,%) is a correlation function of
two components of a point source field having
frequencies Q + §/2 and Q — §/2, measured at
the points R 4+ p/2 and R — p/2 with a time
shift ¢.

Functions ¥ and S depend on many variables.
Namely, correlation function ¥ depends on the
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point of observation R, on central frequency {2,
and, besides, on the displacement p, difference
frequency 6, and time shift ¢. According to
this, the scattering function S is a function of
wave vector k, time tg, and frequency wy, which
are Fourier-conjugated variables to p, 6, and ¢.
Therefore the scattering function may be inter-
preted as the energy density distribution func-
tion of a scattered field in the space of the wave
vectors (k), time delays (¢4), and Doppler fre-
quency shifts (wg). In fact, this function de-
scribes the spread of signal energy in angle, time,
and frequency.

The technique presented here makes it pos-
sible to evaluate the coherence and correlation
functions, as well as the scattering function for
arbitrary values of their arguments. We shall
present our results for the correlation function
as different projections of this function, for ex-
ample, ¥(R,0,9Q,6,t), where p is made equal
zero. The scattering function corresponding to
this projection may be represented as the inte-
gral of the general scattering function (42):

5(td,wd)://d2k S(R, 0,k tg,0q), (43)

which describes the distribution of the energy
density of a scattered field in the time delay-
Doppler frequency domain. In the same way,
the projection U(R, p,2,6,0) of the correlation
function generates another corresponding scat-
tering function,

$(tg, k) = / dwg SR, Ok, ta,wq),  (44)
describing the energy density distribution in the
time delay-scattering angle domain. The single-
variable one-dimensional distributions of scat-
tered energy, such as Doppler broadening, the
distribution of angles of arrival, and distribution
in time, may be obtained by means of additional
integrations of the two latter expressions.

The calculations have been performed for the
model background ionosphere typical for sum-
mer daytime and midlattitude conditions with
FE and F layers. The propagation distance has
been 900 kin, and the center frequency has been
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8 MHz. We performed numerical evaluations
for the outer scale of the fluctuations 4. = 3
km, spectral parameter p = 3.7, and drift speed
v = 300 m/s, directed orthogonal to the plane of
propagation. The variance of the relative elec-
tron density fluctuations is 0%, = 5x 107%, which
corresponds to the conditions of the quiet mid-
latitude ionosphere.

We start with the case p = 0. The three-
dimensional plots of the real and imaginary parts
of the correlation function ¥ are represented in
Figures 1a and 1b. As can be seen from Figure
1, the real part ¥ as a function of variables ¢
and 6 has its maximum at ¢ = § = 0 and tends
to zero as ¢ and § increase. The plot is sym-
metrical with respect to the inversion ¢t — —t

Re ¥(5,t)

03

Im ¥, t)
x10° b

Lt
i,
(0522 \llé Wy,
ATEEMIIE
gl

SSSEEAIL I II, I,
,.\«:/Jy//;,'».,
NNl e
) IIII['Q/;IIIOIZ&"‘;%;;:
74 WO %
7/ ‘I!l{!’!/ N9,

I

Figure 1. (a) The real part of the correlation func-
tion Re¥(6,t) in the domain of difference frequency
and time, (b) The imaginary part of the correlation
function ImW¥(6,¢) in the domain of difference fre-
quency and time.
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Figure 2. (a) The surface plot of the ionospheric
scattering function S(t4,wq) in the domain of time
delay and Doppler frequency, (b) The contour plot

of the ionospheric scattering function §(td, wg) in the
domain of time delay and Doppler frequency.

and § — —6, so that Re¥ is an even function of
both ¢t and é. As for the imaginary part In¥ of
the correlation function, it is an even function of
time ¢, but it is an odd function of frequency §
with Im¥(0,t) = 0. The values of ImW¥(4,t) are
of the order of 10~3, while Re¥(§,t) reaches 0.3
at its maximum. In spite of such a big difference
between magnitudes of the real and imaginary
parts of the correlation function, it would not be
right to neglect its imaginary part when investi-
gating the scattering function. As will be clear
from the following treatment, the presence of the
imaginary parts results in the appearance of spe-



1030

cific parabolic-shaped structures on the plot of
the scattering function S(tg,wa).

The calculated scattering function is repre-
sented in Figure 2a as the three-dimensional (3-
D) surface plot and in Figure 2b as the contour
plot. The contour levels in Figure 2b are spaced
linearly between the maximum value 18.3 and
the mirnimum 0. The difference of the levels
on the neighbouring contours is 0.9. One can
note some asymmetry in the contour level map,

which appears as a superposition of the symmet-
rical main shape and the parabolic-shaped struc-
ture, reflecting the well-known coupling between
the time delay and Doppler frequency shift of
the scattered signal; the time delay is propor-
tional to the second power of the frequency shift.
The width of the scattered energy distribution
is about 20 ps in delays and about 0.4 Hz in
Doppler shifts. This coupling has been observed
experimentally [Basler et al., 1988; Cannon et
al., 1995] and has been calculated by means of
parabolic equation solved for the model situa-
tion by Nickisch [1992). As can be seen from
Figure 2, the coupling is not expressed signifi-
cantly. This result is not in good agreement with
that obtained by Nickisch, [1992], who had the
well-pronounced parabolic shapes of the scatter-
ing function for the case of the frozen drift.
According to Nickisch [1992], this parabolic
delay-Doppler coupling is nnique to the case of
frozen-in plasma drift; other delay-Doppler cou-
plings are generated by nonuniform plasma mo-
tions (with completely turbulent motion pro-
ducing absolutely no delay-Doppler coupling).
Our calculations show that even in the scope
of the homogeneous motion (frozen drift), the
parabolic shape may be not represented sig-
nificantly in the conditions of real propagation
in the medium with the inhomogeneous back-
ground. The explanation of the fact lies in
the following: In our case of an oblique prop-
agation in the inhomogeneous ionosphere, every
frequency component propagates along its own
path, and the correlation falls off rapidly with
the frequency separation. The correlation func-
tion (and hence the scattering function) of the
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real fluctuating ionosphere is formed by the con-
tributions from each point of the ray trajectory.
The parameters of the parabolic structures de-
pend on the values of parameters D,, D, and
v, v, varying along the ray. The resulting ef-
fect is a superposition of many different shapes,
so that the scattering function has a strongly dif-
fused shape and the coupling is not pronounced
significantly.

Formally, the weakness of the coupling is stip-
ulated by the very small imaginary part of the
correlation function compared with its real part.
Indeed, if we put Im¥ = 0 and make the Fourier
transformation of the Re¥ only, we apparently
get a pure symmetrical scattering function with-
out any specific structures due to the symmetry
of Re¥. On the contrary, the odd-in-frequency
imaginary part of ¥ gives after Fourier transfor-
mation the odd-in-time Fourier transform. The
proper scattering function can be obtained only
considering both real and imaginary parts of the
correlation function, and the odd imaginary part
does stipulate the asymmetry of the scattering
function. As we already mentioned here, the
correlation function obtained by Fridman et al.
[1995] has no imaginary part, and hence the cor-
responding scattering function must be of purely
symmetric shape. It is of importance to note
here, that in the geometrical optics approxima-
tion the coherence and correlation functions are
pure real functions, therefore the presence of the
nonzero imaginary part is exclusively due to the

diffractional effects.
To understand it better, we have performed

some calculations for the different conditions of
propagation which provide a higher contribution
of diffraction in a full field. This is, for instance,
the case of a longer distance of propagation. We
have performed calculations for the distance of
2000 km. The scattering function calculated for
this case is represented in Figure 3, where the
coupling is much more pronounced than in Fig-
ure 2.

Finally, we have tried another numerical ex-
periment to find out the influence of the spatial
separation of the rays corresponding to differ-
ent frequencies. Namely, we calculated the scat-
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Figure 3. The contour plot of the ionospheric scat-
tering function S(¢4,wq) in the domain of time delay
and Doppler frequency for the path 2000 km.

tering function for the same propagation condi-
tions as for the results represented in Figures 1
and 2 but neglecting the ray separation by ar-
tificially forcing the parameters A, and A, of
equation (36) to be equal to zero. The result
is represented in Figure 4, where one can see
a well-resolved parabolic structure. This result
explains the clear parabolic shapes obtained by
Nickisch [1992], where the components having
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Figure 4. The contour plot of the ionospheric scat-
tering function S(t4,wg) in the domain of time de-
lay and Doppler frequency for the artificial situation
when the spatial separation of the rays due to the
frequency separation is neglected.
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different carrier frequencies propagate along the
same straight path. Our conclusion then is that
even in a scope of a homogeneous drift a large
variety of shapes of the scattering function may
be produced by different concrete conditions of
real propagation.

We have also investigated the scattering func-
tion in the domain of time delay-angle of ar-
rival. This is the case of ¢ = 0 (the absence of
the time shift). The real and imaginary parts
of another projection of the correlation function
Y(R, p,2,6,0) are represented in Figures 5a and
5b; the spacing vector p is orthogonal to the
plane of propagation. The contour map of the
respective scattering function surface ‘g(td,ky)

Re ¥(3,y)

Im ¥(3,y)
x10° b

’;I;E.
Ry R
2 s X I 'I’I;"j ¥
S ;!@!{IIII" VS
. % .:3‘4:::.,:::.;\(&./&, II"I'l:*tE:::
S TSCSo2s RIRE5S
N

Y ‘Q‘ &
R 2:::::45{{«/5, S
:.o‘bli

N9

(ﬂ)\)\\

8, MHz 05\\ —

Figure 5. (a) The real part of the correlation func-
tion ReW(é, y) in the domain of difference frequency
and transversal spatial separation, (b) The imagi-
nary part of the correlation function Im¥(4,y) in
the domain of difference frequency and transversal
spatial separation.
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is plotted in Figure 6, where the similar weak
parabolic-shaped structure can be observed. In
this case, the presence of such structure reflects
the coupling between time delay and scattering
wave vector, or angle of arrival of the scattered
signal. The angle of arrival 8 is connected with
the scattering wave vector through the relation
B = ky/k. The width of the scattered energy
distribution is about 20 s in delays (as in the
previous case) and about 4-1072 ~ 0.23° in an-
gles of arrival. All the ideas pointed out for the
previous case may be addressed also for this time
delay-angle of arrival scattering function, so we
shall not discuss the results in detail.

6. Conclusion
We have performed an investigation of the

two-frequency, two-position, time coherence func-
tion and the ionospheric scattering function,
which are the most general fundamental quan-
tities describing the HF ionospheric fluctuating
radio channel. The quantitative description has
been based upon numerical calculations in the
scope of the complex phase method for realistic
models of the fluctuating ionosphere.

The numerical results obtained lead to the
conclusion that in the general case the large vari-
ability of shapes of the scattering function of the

0.02
0.018}
0.016F
0.0141

2 0.012}F
Soooif @
0.008}
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0.002

e

-1.‘5 —1‘ -0.‘5 6 0‘.5 ’; 1f5 2
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Figure 6. The contour plot of the ionospheric scat-

tering function S(t4, k4) in the domain of time delay
and wave vector.
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fluctuating ionosphere exists depending on the
concrete conditions of propagation. In particu-
lar, the well-known delay-Doppler coupling can
be more or less pronounced in different prop-
agation conditions. There are two competitive
effects contributing to the final shape of the scat-
tering function. These are diffraction, which re-
sults in highly pronounced parabolic shapes, and
spatial separation of the rays due to the iono-
spheric dispersion, which leads to the spreading
out of the parabolic structures. We have shown
that the presence of the coupling is exclusively
due to the nonzero imaginary part of the correla-
tion function of the scattered field, which means
that this effect has a purely diffractional nature
and cannot be obtained in the geometrical optics
approximation.
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[1] An analytic technique has been developed to construct the asymptotic representation
of the spaced position and frequency coherence function in Markov’s diffusive
approximation. The technique employs the formalism of the quasi-classic complex paths
in an extended complex-valued coordinate space. It allows the construction of the
coherency for arbitrary realistic models of the structure function of the fluctuations of the
refractive index of the medium of propagation. The technique has been employed to obtain
explicit analytic asymptotic solutions for some realistic models of the structure function.
For the quadratic structure function the method produces the known rigorous solution in

an automatic fashion.

INDEX TERMS: 0659 Electromagnetics: Random media and rough surfaces;

0669 Electromagnetics: Scattering and diffraction; 0689 Electromagnetics: Wave propagation (4275);
KEYWORDS: Markov’s approximation, coherence function, complex trajectories

1. Introduction

[2] The technique of Markov’s parabolic equations for
the moments of a stochastic field is one of the classical
approaches in the problem of wave propagation in
random media [Rytov et al., 1978; Ishimaru, 1978].
Despite many years of exploitation of the method, there
still exist unsolved problems in the scope of Markov’s
approximation. In particular, a general analytic solution
has not yet been constructed for the fourth moment, and
some questions arise with respect to the two-frequency,
two-position coherence function.

[3] As far as the second-order coherence function is
concerned, the exhaustive solution has been constructed
for the single-frequency (pure spatial} coherence function
[Rytov et al., 1978]. The spaced position and frequency
coherence function was studied numerically by Lin and
Yeh [1975], who investigated this function in a fading
ionospheric communication channel numerically for
power-law and Gaussian spectra of ionospheric fluctua-
tions. For the two-frequency coherence function the
closed form exact analytic solution was only constructed
in the case of a plane wave propagating in a random
medium with the quadratic structure function of fluctua-
tions [Sreenivasiah et al., 1976]. Knepp [1983] general-

!0n leave at School of Electronic and Electrical Engineering,
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ized this solution to the case of spherical wave propaga-
tion. The technique of separation of variables was
employed by Oz and Heyman [1996, 1997a, 1997,
1997¢] to construct the second-order coherence function
for an arbitrary structure function of the fluctuations of
the properties, but in a medium with a homogeneous
background. It implies the expansion of the solution into
the series of the transversal eigenfunctions of the prob-
lem, and, in this way, requires additional quantification
of the number of terms needed to achieve the necessary
accuracy for a given distance of propagation and spaced
frequency. The series fails to converge for some types of
initial conditions (e.g., an incident plane wave) as the
distance and difference frequency tend to zero. Addi-
tional constraints in the separation variables technique
may also arise when considering fluctuations with the
structure function tending to a constant as the difference
variable tends to infinity. In this case the continuous
spectrum may likely occur in the spectrum of the trans-
versal operator of the problem, which makes expansion
of the solution in terms of the transversal eigenfunctions
much more complicated.

[4] In the present paper the asymptotic technique is
developed to construct the solution to Markov’s para-
bolic equation for the two-frequency, two-position coher-
ence function in the case of an arbitrary structure
function of the refractive index of fluctuations and an
inhomogeneous stratified background medium. The tech-
nique employs quasi-classic representation in terms of
complex trajectories. It has no constraints pertinent to the
initial conditions in the form of an incident plane wave,
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and is also valid beginning with the zero distance from a
boundary surface and zero spaced frequency. In the case
of the quadratic structure function it produces the known
exact solution of the problem [Sreenivasiah et al., 1976]
in automatic fashion.

2. Statement of the Problem

[5] We consider the background medium, stratified in z
direction, with local random inhomogeneities embedded,
which is characterized by the dielectric permittivity of
the form

ez, t,w) = go(z,w)[1 + &1 (r, 2, w)].

(1)

Here ey(z, w) is the dielectric permittivity of the back-
ground medium, and ¢,(r, w, #) represents relative space
and time varying fluctuations of the permittivity.
Variable ¢ indicates time dependence of fluctuations in
quasi-stationary approximation.

[6] We consider an incident plane wave propagating in
the positive z direction. The field random realization is
searched for in the following form:

1/4
0
E(z,p,t,w) = MU(Z, p,t,w)

-exp {—iwt + ik/a(l)/2 , w)dz’} , (2)
provided that go(z, w) is finite and not equal zero at any z,
w. In equation (2) £ = w/c is the vacuum wave number
corresponding to the circle frequency w, and U(z, p, £, w) is
the random complex amplitude of the field. The two-

frequency, two-position, two-time coherence function
of the field is defined as

F<27 p17p27 t17t27w17w2) - <U<27 pl;tlywl)U*<Zy p27 127w2)>-

3)

Employing a standard averaging procedure of Markov’s
technique for a medium described by equation (1) results
in the following parabolic equation for the coherence
function I':

@_i

1 1
= Vi - v; |
0z 2 <k1\/€0<27w1) ! k2 €0<Z, wz) 2)

1 1
+§k12€0<2, wl)All (Z, 0, O)F + §k22€0<2, wz)A22<Z, 0, O)F

1
—Zk1k2v€0(zpw1)€0(zp w2)Aia(z,py — pp, tt — 1)I'=0,
(4)

Here &, and k, are the vacuum wave numbers correspond-
ing to the frequencies w; and w, in the background
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medium, and V7 and V3 are the Laplacians with respect to
coordinates p; and p,. Equation (4) was derived in the
approximation of the fluctuations delta-correlated in the
direction of propagation. This means that functions 4,,,,
are determined through the following relationship for the
correlation functions of the relative dielectric permittivity:

an<zyjyp1 =Py f1 — 12)
= <€1 <Z+Z//27p17t17wm)€l (Z _Z//27p27t27wn)>

= 6<5)Amn<z> P — Pyt — b)), (5)

m, n=1,2, so that

Amn<zy Pr — P2 H — tZ)_/ an<Z,Z/, P — Py f1 — t2)dz/-
(6)

Herez=(z; +2,)/2, z =z, — z, are longitudinal central and
difference variables.

[7] Introducing also central and difference transversal
variables R = (p1 + p2)/2, p = p1 — p2, as well as
difference time ¢ = #; — f, in the assumption of the
stationarity of fluctuations in time, and substituting

F<27 P1: P2, tlyt27w17w2) = F1<Z7 R) P, tywlywz)

z

1
-exp{—g/[k12€0<2/,w1)A11<Z/,0,0)

0

+ k22€0(5, wz)Azz (Z/, 0, 0)]&’2/}

1 z
e {Z / [klkz\/€0<z/>wl)€0(2’,wz)

0

. A12<Z/,0,0):| dz/} (7)

results in the following equation for function I'y
ory i

—+
Oz 2kiky EO(Z; Wl)€0<zy wZ)

1
: {kdvﬁ + devf - 2ksvsv4 I

+ k]kzy/€0<2,w1)€0<z, wz)

4
- [A412(2,0,0) — A1 (z,p, )] =0

®)
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with

kd = k]\/ €0<Z,w1 - kz\/€0<Z, wz),
ks = (k]\/Eo(Z,wl) + ko o/ €0<Z, w2)>/2

V, and V,; are the operators of gradient with respect to
the sum and difference coordinates R and p.

[s] Until now, the assumption of the statistical homo-
geneity of the fluctuations of the dielectric permittivity in
space was not implied. When introducing fluctuations of
the dielectric permittivity in the form of a product in the
second item in equation (1) (e.g., as given by Sreeniva-
siah et al. [1976]), it is convenient to consider the
relative fluctuations of the dielectric permittivity ¢, as a
stationary and homogeneous zero mean random function.
In the case where the background medium is homoge-
neous and nondispersive and the relative fluctuations are
statistically homogeneous, equations (4) and (8) become
the same as those treated by Sreenivasiah et al. [1976]
and Oz and Heyman [1996, 1997a, 1997b, 1997¢].
Alternatively, for the cold ionospheric plasma the statisti-
cally homogeneous relative fluctuations of the electron
density are introduced (e.g., as given by Lin and Yeh
[1975] or Knepp [1983]) instead of homogeneous fluc-
tuations of the relative dielectric permittivity. In this case,
equations (4) and (8) lead to those considered by Knepp
[1983]. We shall follow our formulation of the problem
(equations (2}, (4), (7), (8)).

[¢] To complete the statement of the problem, equa-
tion (8) should be complemented by the boundary
condition at z = 0

F1<0>R>P>f>W1>W2) = F0<R7p7w17w2)7 (9)

which is determined by the incident field.

3. Solution to the Plane Wave

[10] Here we confine the consideration by the case
where the incident field is a plane wave propagating in
the z direction. In this case, I'y = 1, and equation (8) can
be simplified. Indeed, the coefficients and boundary
conditions do not depend on the central variable R;
therefore the solution I'y should not depend on R, and a
simplified equation can be considered as follows:

r k.
oy + il Vil
Oz 2k1k2 €0<Z;W1)€0<Z7 wz)
4 k1k2 €0<Z;W1)€0<Zy wZ)

4
: [A]z(Z,0,0) —A12<Z,p,[)]rl =0 (10)

When considering this simplified equation, the technique
of solving based on quasi-classic representation in terms

K_
K /GG w)
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of complex trajectories can be most transparently
outlined. The extension of the technique to the general
case of a full equation (8) and the incident field not
necessarily propagating along the z axis is the next step
that will be considered separately.

[11] To construct the asymptotic solution to equation
(10), first, the dimensionless variables should be intro-
duced. Let us denote as /. the scale of the random
inhomogeneities in the z direction and substitute z =
(/. and p = rl.. In new dimensionless variables (C, r)
the last equation can be rewritten as follows:

al, iky V2T

ril

K2\/eo(C, wi)eo(C, wa)

+
4

: [A12<€7070) _A12<€7ryt):|rl =0, (11)
where A, (¢, ¥, 1) = ' 4y (z,1,2) and in the equation
(6) for 4,,, transfer to the dimensionless variables was
performed, k; = kyl.. V2 is the transversal Laplacian
written in the dimensionless difference variables, and
K = kikl? is the dimensionless parameter, which is
assumed to be the large parameter of the problem.
Physically, this means that random inhomogeneities of
a medium are of large spatial scale in terms of vacuum
wavelengths for both frequencies w; and w,. At the
same time this is one of the limitations of Markov’s
diffusive approximation.

[12] Formally, provided K — oo, the solution of
equation (11) is sought for in the form of the following
asymptotic series:

F1<I',Q, t) = exXp [K‘V(B G t)] ’ f:U}(rKipjgt) (12)

The dependencies of the functions newly introduced
here, v and U,, on frequencies w;, w, are not
indicated explicitly in representation (12).

[13] Series (12) is almost the traditional Debye series
for constructing the high-frequency asymptotic. The
distinction is that the exponent function does not obey
the imaginary unity 7 in its power and that the expansion
is carried out into inverse powers of the real parameter K
rather than in powers of (iK). The reason to do so is that
in the case of a single frequency the equation (11) for the
pure space coherency, evidently, has the solution in the
form of a real exponential function (it will be shown that
in this case Uy = 1, U; = 0, j > 0). Additionally, in the
general case of a spaced frequency we shall be dealing
with complex “eikonals™ v, so that it is no matter
whether or not it is introduced with 7 in the exponent’s
power in (12).
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[14] The standard asymptotic procedure of substituting
(12) into equation (11) results in the following “eikonal”
equation for v

8\4/ ikq
2\/60 (G wi)eo(Cwa)

i VeolG, wi;)g()@) wy)

' [IZIZ<Q7 07 0) - ZlZ(Q; r, t)i| = 07
and transport equations for amplitudes U;
an lkd
\/€0 le)Eo Q;wz)
lkd 2
UoVyy =0,
2\/50 Q; wl)€0<€7 wZ)
8U l'];d
+
\/€o Q;wl)Eo Q;wz)
lkd U
2\/50 Q; w1 )60 (Q) wZ)
ik,
- : ViU
24/20(C, wi)e0(C, wa)
j>0.

(Vey)?

(13)

( Y- erO)

(14)

(Vey - V2 07)

Vv

(15)

[15] To solve equations (13), (14), and (15), the gen-
eral method of characteristics can be employed. Equation
(13) is a Hamilton-Jacobi type equation, so that the
appropriate Hamilton equations may be written in the
following form:

a6 _

dr "’ (16)
dr B l'];d
Ei \/60 Q;M)EO Q;wz)p <17)
% _Zﬁ_ﬁ(\/go (G, wi)eo(C,w2)
'[/TH(Q)O)O) _AN12<€71.7 t)})) (18)
%: —%Vr(\/€0(€>w1)€0(€7w2)
'[/TH(Q)O)O) _AN12<€71.7 t)}) (19)

In this set, three-dimensional vectors (C, r) and (p¢, p)
are coordinates and moments, respectively, along the
complex trajectory, which is parameterized by variable 7.
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Due to equation (16) it may be accepted T = (, where ( is
a real variable.

[16] Equations (16)—(19) determine complex trajecto-
ries r = 1(Q), pc = pc(Q), p = p(C), which arrive at real
points of observation ((, r) and are subject to the initial
conditions (from I'y = 1 on the initial surface = 0):

p(0) =0, (20)
pc(0) :%\/Eo(opwl)Eo(O,wz)
Jan©r0),0 - 400,00] @

Value r(0) = ry is a complex coordinate of the point in
the initial plane { = 0 that should be determined to
provide a complex trajectory to arrive at the real point of
observation ((, r).

[17] Once equations (16)—(19) with proper initial con-
ditions (20) and (21) have been solved and complex
trajectories have been determined, the function y in
representation (12) can then be calculated as the integral

i];dpz (©

¢
w(Gr) _0/ <\/50(Q,w1)€0(€>W2) i

As for solving the transport equations (14) and (15), the
solution of the main equation is given by

pc(i)) di. (22)

e kg V2ydC, {J(O)} 1/2
Us(C,7)=exp \/60 Conac ol V@)
(23)
where Jacobian J(() is calculated as follows:
_ (G, x1,x2) _ Ax1,x2)
J<Q B a(me,xoz) B a(xm,xoz) <24)

with r = (x1, x») and rqg = (xg1, xp2). Coordinates rg
are two-dimensional orthogonal complex trajectories
transversal to the ( axis; J(0) = 1. To calculate the
determinant in equation (24), quantities oy = Ox)/Oxg
should be calculated directly after the ray equations have
been solved, or additional differential equations for oy
may be obtained. In particular, in the case of the
homogeneous background medium, the following equa-
tions may be derived for oy differentiating (17) in
variables rg = (xp1, xo2) and making use of (19):

aZOL[k l'];d Rl

o + 4 Zq: ak Ox10x,
. |:AN12<€7 07 0) - LZ(Q) r, t)i| =
lLk,g=1,2.

(25)
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In this way, the general scheme of constructing the
asymptotic solution of Markov’s parabolic equation (11)
in terms of the representation (12) is completed. It is clear
that this scheme in its most general form, when the
background medium is inhomogeneous and dispersive,
can only be realized numerically. When doing this, some
general problems arise. In particular, when solving ray
equations (17)—(19), the homing problem to construct the
complex trajectories will be the crucial point. Addition-
ally, the problem of the analytic continuation of the
correlation function of fluctuations into the complex
domain of its argument is also a nontrivial one. It should
be considered independently for each accepted model of
the correlation function of fluctuations.

[18] To demonstrate more transparently how the devel-
oped technique works, below the problem is discussed
under the simplifying assumption of a homogeneous
background medium characterized by g = 1. This is just
the problem treated by Sreenivasiah et al. [1976] and Oz
and Heyman [1996, 1997a, 1997b]. Here we can proceed
further analytically.

4. Plane Wave Propagating in a
Homogeneous Background Medium With
Fluctuations

[19] In this case, 4 does not depend on ( and, accord-
ing to equations (13) and (18), pc(Q) = p(0) = (1/4)
[4 (ro,2) — A4 (0,0)] (4, = 4, if a medium is nondis-
persive). Provided, additionally, that the fluctuations are
isotropic in the transversal planes (A(r,z) = A(r, t))
and cylindrical coordinates are introduced to express
vector p, the explicit relationship for a complex trajec-
tory can be written (ray or Hamilton equations can be
solved analytically) as follows:

—~ ¥
ik dr
Voo [ =
oo AJA(r 1) = A(ro, t)
At the same time, equation (26) is the transcendent
equation, which allows us to find the initial complex point
ro = ro(C, 7), where the complex trajectory comes out at
( =0, to arrive at the real point of observation (C, r).
[20] Once ry was found from equation (26), function y
in the asymptotic representation (12} is expressed
through

(26)

¢
v6r) =5 [ (4000 - din,))ac

+ Alro,t) — A(0 0)) 27)

o=
o\ﬁ
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F(Q,O,l;d> =cos ! \/—
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When calculating the main amplitude U, according to
equations (23)—(25) after introducing cylindrical coordi-
nates for isotropic fluctuations, equation (25) is reduced
to a simpler form
r
J(Q) =—a (28)
¥o
with o = Or/Ory. Then instead of a general set of

equations (25), it is now one equation for the divergence
«, as follows:

o

o tkacx lkdOL 0
¢

4 or 2{ (0,0) —A(r (Q:l‘)} = (29)

This way, the general scheme of constructing the
asymptotic solution to the second-order Markov’s
equation for the space-frequency coherency has now, in
the conditions of a homogeneous background medium
with isotropic fluctuations, been reduced to a very simple
procedure of considering equations (26)—(29). This
allows the construction of the asymptotic solution for
an arbitrary given correlation (or structure) function of
fluctuations.

[21] Some results may even be obtained without spec-
ifying a model of the structure function of fluctuations.
In particular, for the case of pure frequency coherency
(no spaced position and time, » = 0, ¢t = 0) equation (26)
yields » = rg; therefore v = 0, as follows from equation
(27). Finally, equation (29) for the divergence o = ¢, is
simplified to the form

Foy, lkdOL 82 ~ _
so that
iky &
() = cos \/ = L] 19 PR )

and the main term of the high-frequency asymptotic
solution for the two-frequency coherence function is
given by

5 gl

~ o~
o l_ kA0 0)@] |

This is quite a fundamental result. Actually, it is
straightforward to obtain the two-frequency coherence
function in the approximation of geometrical optics,
which only describes the case of weak fluctuations

(32)
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(unsaturated regime). The second factor in (32} just stands
for the geometrical optics approximation. A nontrivial
thing is the derivation of the first factor, which may only
account for a possible saturated regime of propagation
(strong fluctuations). It was first obtained when the strict
coherence function was constructed for the parabolic
structure function of fluctuations [Sreenivasiah et al.,
1976]. The same type of results were also obtained for the
quadratic structure function in the scope the technique of
path integrals (functional integrals) [Dashen, 1979; Flatte,
1983]. We have obtained (32) for an arbitrary model of the
structure function. This was just a particular result of the
general theory being developed here.

[22] It should also be shown how the technique works
to produce well-known results for a single-frequency case
kz=0. In this case, according to equation (17), ro =r, and
according to (28) and (29), J = 1. As to the main
amplitude Uy in representation (12}, this results in Uy =
const. As far as the higher-order amplitudes U, (j =
1,2...) are concerned, U; = 0, (j = 1,2...) may be chosen
because of the zero initial conditions and homogeneous
equations (15) in the case of U, = const. Finally, integrat-
ing equation (13) or (27) along straight lines »o=r yields
the known solution to the single-frequency problem (see
equation (45.20) from Rytov et al. [1978]).

[23] Below the general case of a spaced frequency and
position coherency in the medium with a structure
function of fluctuations other than quadratic will be
considered. Before doing this, it will be shown in the
next subsection how equations (26)—(29) produce the
exact solution for the space-frequency coherence func-
tion in the case of the quadratic structure function of
fluctuations obtained by Sreenivasiah et al. [1976].

4.1. Quadratic Structure Function
[24] For the structure function of the form

D.(r) = 2([(0) - Z(r)> = 202 (33)
integral in equation (26) is calculated analytically to
yield

(34)

This expression explicitly relates the initial complex
point ry (at ¢ = 0) and a real point of observation ((, 7).
Alternatively, when r, was determined for a given real
point (C, ), the equation explicitly describes a complex
trajectory arriving at a real given point in the form » =
G, 7o)-

[25] Once a complex trajectory has been defined by
(34), integration in equation (27) along this complex ray
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gives the following complex eikonal:

o1 il;
(G r) = =g | |/ 50
\/ 8iky

Equation (29) for the divergence becomes of the form

(35)

o iky og

8—Q2+ > (36)

a =0,
which allows the explicit analytic solution, satisfying
necessary initial conditions, as follows:

af() = cos \/éoag .

Finally, putting together relationships (7), (12), (23),
(28), (34), (35), and (37), the following representation for
the space-frequency coherence function U, can be
written

Jik, Ko.? [/ ik
I'(¢,r)= cos™" ZTder exp|— OEFN 1g TO‘EQ
£/ 8iky

~2 2

In corresponding notations, this is exactly the function
derived by Sreenivasiah et al. [1976]. It is worth pointing
out that in our technique the higher-order transport
equations (15) give identically zero solutions for the
quadratic structure function of fluctuations (33). As a
result, in this case the asymptotic theory produces the
rigorous solution.

(37)

(38)

4.2. Structure Function of Fluctuations Other
Than Quadratic

[26] We have developed the method of constructing the
space-frequency coherency, enabling investigation of the
problem with the models of the structure function of
fluctuations more realistic than those considered in the
literature. Namely, both the quadratic structure function
[Sreenivasiah et al., 1976] and the structure function of
the form 7", investigated by Oz and Heyman [1996,
1997a, 1997b] do not allow limiting transition to the case
of moderate or weak fluctuations, at least, in the case of
spaced position. Both tending to infinity as » — oo are
good models in the case of strong fluctuations, whereas
for the opposite case the structure function should tend to
a positive constant as » — oo. As already mentioned in
section 1, the method of separation of variables employed
by Oz and Heyman [1996, 1997a, 1997b] is also formally
valid for this type of structure function. However, it will
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likely face additional constraints, stipulated by a more
complicated structure of the spectrum of the transversal
operator of the problem. When the structure function is a
constant at infinity, the continuous spectrum may likely
occur in the spectrum of a transversal operator. This
makes expansion of the solution in terms of the trans-
versal eigenfunctions much more complicated. We use
another type representation of the coherence function,
and our approach is free of the mentioned difficulties.

[27] The central point of the paper is to demonstrate
how the technique developed works for realistic structure
functions of fluctuations others than quadratic and, in
this way, to investigate both cases of weak and strong
fluctuations together. Some models of the structure
function (correlation function) allow explicit evaluation
or direct calculation of the integrals in equations (26)—
(28). Below we shall consider two model cases. Before
doing this, it should be pointed out that the key point in
realizing the developed technique is the analytic contin-
uation of the model correlation function into the complex
domain of its argument. As was already mentioned, for
each model chosen this should be particularly discussed,
but any model should possess the property of positive
Fourier spectrum as representing the energy spectrum of
fluctuations.
4.2.1. Inverse Power Law Correlation Function

[28] This is the case where the correlation function of
fluctuations is modeled by

2

A(r) = To e (Ex‘/r‘/ )

(39)

Recalling the definition of the dimensionless variable » =
p/l., (39) means that the correlation function, in some
sense, has the effective spatial scale Lo~ ' in the plane
perpendicular to the z axis. In particular, in the case of
3-D isotropic fluctuations, one obtains o = 1. The
variance of fluctuations is 2. Model (39) is smooth at 7 =
0 in the sense that d4(0)/dr = 0, if v > 1. Additionally,
parameter v should be chosen to provide the property of
positive Fourier spectrum of the correlation function.
[29] The structure function
~ 20?&”;””
D-(r) = 1+ avr

corresponds  to the correlation function (39). As r
increases, D,(r) tends to the positive constant 202 (if
v>1).

[30] For the correlation function (39), equation (26)
has the form

(40)

r/ro
V4 V148"

OLU/ZVE/271 1 —xv

ik,

5 G

dx, B = auy.

O¢

(41)
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The integral in the last equation can be expressed
asymptotically through the full hyper-geometric function
with different sets of parameters for the cases § < 1 and
B > 1. The comprehensive analysis of equation (41) for
an arbitrary v is not trivial. In particular, when speaking
of the analytic continuation of the function (39) into the
complex domain r, it should be noted that, on the one
hand, it is straightforward, because the function is given
explicitly, and the complex-valued » can be employed.
On the other hand, all the singularities of this analytic
function should be carefully accounted for, which are
the appropriate poles and possible cut at » = 0, and the
manifold Riemann surface should be properly intro-
duced [see, e.g., Shabat, 1976] with a finite, or,
possibly, infinite number of folds (if v is an irrational
fraction).

[31] However, the transparent explicit asymptotic
results may be obtained in the particular case of v = 2.
For this case the spatial spectrum of (39) can be easily
calculated to be positive. As far as its analytical
continuation into the complex r-domain is concerned,
it is defined on a single-fold Riemann surface and it is
the even function of its argument on the real axis. It has
no branch points, but only two poles at » = o, o>
0. The circle || = o ! separates the complex ]%)lane r
into two domains |r] < o' and |#| > o '. The
appropriate Loran series in the domain || < o'
coincides with the Tailor series of function (39) as
follows:

A(r) = ol(l—or +...). (42)

In the domain |#| > o', the Loran series for (39) is given
by the expansion into inverse powers of 7

Alr) = o (1oL, ) (43)
alr? alr?

The explicit formula (39) just shows how the series for
[l < o' should be analytically continued into the
domain || > o« ', and vice versa.

[32] Employing series (42) for a small spaced position
results in the coherence function, coinciding with that
for the quadratic model of the structure function. When
using the second series (43) for the large spaced
position in equations (26)—(28) and (41), this yields
the following explicit asymptotic form of the complex

path
2 :ﬁ - 1 + 2iky0.C2 )
2 rto

(44)
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and the following coherence function [Bitjukov et al.,

2001]
2o+ 4/l + 2ikg0.C
24/ 402 + 2iky0.C

[ Ko? 1
o -5 (14
Ko'g | r%om/i—f— il;doag
n
2&\/21'1;0108 r%om/_—\/il;doag

_}%Oﬂ

1/2

F(Q,V) =

- exp

- exp (45)

8

where ro(C, r) is given by equation (44). Equations (44)
and (45) describe the coherency for all spaced frequen-
cies and large transversal spaced position 7. In contrast
to (38), where in the case of k; = 0 and any finite (
function I'(C, r) — 0 as r — oo, coherency (equations
(44) and (45)) yields in the single-frequency case

2
I“f(Q,r) = exp {—K:E <1 - ;”217> Q}

This is exactly what the single-frequency two-position
coherence function should be [see Rytov et al., 1978;
equation (45.20)] as » — oo in the case of the structure
function of fluctuations (40) with v = 2. For finite C it
gives a nonzero constant as » tends to infinity. The
value of the constant depends on the intensity of
fluctuations of dielectric permittivity oZ2.
4.2.2. Exponential Correlation Function

[33] Finally, one more model of the correlation func-
tion of fluctuations, allowing analytic assessment, is the
exponential correlation function as follows:

A(r) = o2e™.

(46)

(47)

Here the consideration is confined by the isotropic model
of fluctuations with the correlation radius /. (recall » =
p/l.). The spatial spectrum of (47) is positive. When
formally continuing (47) evenly to the negative r, A(r) =
o2e” if r < 0 should be accepted. Therefore, this model
has the finite-step first derivative at » = 0 and turns out to
be nonanalytic. This results in the fact that the analytic
continuation is not possible in the vicinity of » = 0, and
no proper solution for the coherency can be constructed
for small spaced positions, including the pure frequency
coherence function, for the model (47).

[34] On the other hand, when considering the large
positive » the analytic continuation of (47) can be
performed into a limited complex domain around the
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real axis for large », which provides the explicit form to
equation (26) as follows:

lik,
o 17”{ ¢ = —¢arccos(2e” 0 —1).  (48)

This is valid for large » and any k4, so that the coherency
can be constructed for the large value of the spaced
position and any value of the mistuning frequency k.
This is of importance in the case of the inverse power
law spatial spectrum of fluctuations, when the spatial
correlation function, expressed through the modified
Bessel function, has the exponential asymptotic at
large r.

[35] Employing (48), the appropriate analysis of equa-
tions (27) and (28) can then be performed and the
representation for the spaced position (large ) and
frequency (any k;) coherence function can be written.
It is fairly space consuming and is not presented here, but
in the limiting case of k; = 0 (i.e. for a single-frequency
spaced position coherency) it yields the following
expected [Rytov et al., 1978, equation (45.20)] rigorous
result:

2
Oc

MG —ew|-F-end. @)

If comparing (46) and (49), both functions tend to the
same constant when the spaced position increases, but
the rate of decay is different as the different models were
employed in these two cases.

[36] To conclude this section, for both power law (39)
with v = 2 and exponential model (47) of the correla-
tion function of fluctuations considered here, the gen-
eral solutions constructed for the space-frequency
coherency in the limiting case of single frequency (pure
spatial coherency) produce in automatic fashion the
results, which are in agreement with the general theory
of the pure spatial coherence functions [Rytov et al.,
1978].

5. Conclusion

[37] An analytic technique has been developed to
construct the asymptotic representation of the two-
position, two-frequency coherence function in Mar-
kov’s diffusive approximation. The technique employs
the formalism of the quasi-classic complex paths. It
allows the construction of the coherency for a wide
range of realistic models of the structure function of
fluctuations of dielectric permittivity of the medium of
propagation, which tend to a finite value as the spaced
transversal variable tends to infinity. For some models
the final result can even be achieved analytically;
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others need numerical calculations. For the quadratic
structure function the method produces the known
rigorous solution in an automatic fashion.
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[1] An asymptotic technique to solve Markov’s parabolic equation for the second-order
spaced position and frequency coherence function is discussed. Rather than employing
separation of variables, the technique is based on the quasi-classic representation in terms
of complex trajectories and is also valid in the case of a nonhomogeneous background
medium and does not demand the statistical homogeneity of fluctuations. It has no
constraints relevant to the initial conditions in the form of an incident plane wave and
produces in automatic fashion different known rigorous solutions, in particular, to the case

of quadratic structure function.
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1. Introduction

[2] In the paper the technique to solve Markov
parabolic equation to the spaced position and frequency
second-order coherence function [Rytov et al., 1978,
Ishimaru, 1978] is developed, which is based on the
quasi-classic approximation in terms of complex trajec-
tories. Rather than separation of variables employed by
Oz and Heyman [1996, 1997a, 1997b, 1997¢], this tech-
nique is valid including the case of a nonhomogencous
background medium and does not demand the statistical
homogeneity of fluctuations. It has no constraints rele-
vant to the initial conditions in the form of an incident
plane wave and produces in automatic fashion known
solutions [Sreenivasiah et al., 1976; Knepp, 1983; Bron-
stein and Mazar, 2002; Bitjukov et al., 2002].

[3] The present paper further extends the method of
the investigation of the two-position, two-frequency co-
herence function, previously developed by the authors
[Bitjukov et al., 2002] for a particular case of plane wave,
to the case of an incident field of a general type. In that
paper there was considered a simple case of an incident
plane wave propagating along the axis of the parabolic
equation such that the appropriate second-order
Markov moment equation did not contain differential
operations in the central transversal variable and the
solution did not depend on this variable. In this case the
technique of complex trajectories (complex geometrical
optics) has the most transparent form. The technique

Copyright 2003 by the American Geophysical Union.
0048-6604/03/2002RS002714$11.00

allowed constructing the solution to the cases of realistic
behavior of the structure function of fluctuations tending
to a positive constant rather than to the infinity as the
difference argument increases. The extension of the
technique to the general case (where the dependence on
the central variable also occurs) that will be considered
here employs more complicated complex trajectories in
five-dimensional complex space.

2. Main Equations and Relationships

[4] Classic two-frequency second-order Markov’s
parabolic equation [Ishimaru, 1978] is considered for the
homogeneous background medium, where possible sta-
tistical nonhomogeneity of fluctuations in the longitudi-
nal direction is allowed as follows:

LI PR INL P SR b
9z 2k1k2 dvd 4 dVs s¥sVd 1
ks
+ 2 [A(z, 0) —A(z,x )] T{ = 0. (D

Here V, and V; are the operators of gradient with
respect to the sum and difference transversal co-ordi-
nates r, and r_, k; =k —ky, k= (ki +ky)/2,
k1 are the vacuum wave numbers for frequencies wy 5.
It was accepted that the background medium had the
unity dielectric permittivity &g = 1. Quantity A(z, r_) is
the effective transversal correlation function of the
fluctuations 8-correlated in z-direction.

[5] If complex amplitude U(z, p, o) of the field E(z,
P, w) is introduced according to
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E(z, p, w) = Uz, p, o) exp[ —iot + ikz], (2)

the coherence function of the amplitudes U(z, p, »)
U'(z, p1, P2, 11, 12, 01, ©2)

=(Ulz, p1, 01)U* (z, p2, 7)) (3)

is expressed through the solution I'; of equation (1) as
follows:

F(Z7 ry,r—, wy, wz) = Fl(Z, ry,r—, wy, wz)

-]
-exp| — ?A(z, 0)]. 4
To further treat equation (1) for function I'y, the dimen-
sionless variables are introduced according to: z = .,
r- =rl, and r, =RIl,. Here [, is the effective spatial
scale of fluctuations. Employing these dimensionless
variables s, r, R equation (1) can be rewritten as

AL P I P I
ds 2 dV¥y 4 R sYRVr 1
K2
+ v [A(z, 0) — A(z, 1)]T; = 0. (5)

In equation (5) parameter K =k k,I? is the dimen-
sionless parameter, which is assumed to be the large
parameter of the problem; k, is the following dimen-
sionless mistuning k; = I, (k; —k,), and the dimen-
sionless central wave number is given by k, =271/,
(ki + k,). Dimensionless correlation function of fluc-
tuations A(Z,r) =1, 'A(z,r_) is expressed through the
effective transversal correlation function of §-correlated
fluctuations A(z, r_).

[¢] To finally rewrite equation (5) in the form en-
abling asymptotic solution at large K, additional rescal-
ing of the central transversal dimensionless variable R
should be performed. If taking account of the relation-
ship between quantities K, k; and k;:

72
=K+, (©)
4
rescaled central transversal variable p is introduced
according to
125 R}
K+ T (L R. (7)
Employing (7), equation (5) is finally rewritten as
ary i k k\ 7!
K— 4 [kVi+ 2|k +-2] v2-av,v, I,
ds 2 4 4 P
K2
+ ?D(g’ Il = 0. (8)
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Here

D(s, r) = 2[A(s, 0) — A(s, 1)] )

is the effective transversal structure function of fluctua-
tions &-correlated in z-direction.

[7] Equation (8) allows asymptotic solution at
K — o, Physically, the large K means that random
inhomogeneities of a medium are of large spatial scale in
terms of vacaum wavelengths for both frequencies wq
and w,. At the same time this is one of the limitations of
Markov’s diffusive approximation. When constructing
the asymptotic solution at large K, it should be accepted
that for any finite k;, but K—, quantity (K +
47'%3) 7" in equation (8) can be expanded into a series
as follows:

By i B (R
+—] =—|1-—+|—| +
K 4 K1 4K  \4K

33U
+(—1)1‘( d) T

1K (10)

Analysis of possible forms of the coherence function of
the high frequency incident field indicates the following
most general form of the solution to equation (8):

Uy(r, p, s, kg, Ky=exp[Ky(r, p, T, kq) + KV (1, p, {, k)]

KU p, LR = 0,1,
n=0

(11)

Standard asymptotic procedure of substituting (11) into
(8) and taking account of (10) results in the “eikonal”
equations for “phase” functions ¢ and ¥

alll ll;d 2 . 1 _
ag b (Ve —i(Veu Ved) + o Dls 1) =0,

(12)

v

a—g + ik (Vo= Vo) — (V- VW) — i(V,if - V, W) = 0,
(13)

and the main transport equation for the amplitude U,

aly ik

ot 2V U0 Vi) + UgV i+ Up(V, )]
S

ik;
g Ua(V,)> — iL(V,Uo - V) 1 (V,Us - V,4)

+ UV, V, i+ Ug(V, ¥ -V, W) = 0. (14)

As far as higher-order transport equations for amplitudes
U,,n=1,2,...1in the series (11) are concerned, they
can be also written taking account of the full expansion
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(10), but they are fairly space consuming and are not
exposed here in order to save the space.

[8] Equations (12-14) can be solved by the method
of characteristics, which, according to Kravtsov and Orlov
[1980], is also applied to the case of complex character-
istics. Within this method, the Hamilton-Jacobi equation
[see Kravisov and Orlov, 1980, equations (2.1’) and
(2.17)] in our case has the form given by (12). Then,
according to equations (2.3)—(2.5) from Kravtsov and
Orlov [1980], presenting the appropriate Hamilton equa-
tions for characteristics, complex characteristics corre-
sponding to the equation (12), are given by the following
set of the first-order equations:

ds
—=1 15
dr ’ (15)
dr )
dr ikapr — iP,, (16)
dp
— = —ip,, 17
7. P (17)
dps  14D(s, 1) "
dr 8 ds
ap; 1 _
= —V.,D(s, 1), 19
i < (s, 1) (19)
dp,
—=0. 20
dr (20)

These equations define complex trajectories in 5-dimen-
sional space (s, r, p). According to equation (15) it can
be accepted that the points along a trajectory are
parameterised by the real parameter 7= s. The trajec-
tories start at initial complex points (rg, pg) at s = 0 and
arrive at real points of observation (s, r, p), so that (ry,
po) are the initial conditions to equations (15-17). In
fact, (rg, po) are being determined as the function of the
real point of observation (s, r, p) when the “inverse”
homing problem is considered.

[9] Initial conditions to the moments (p,, p,) from
the set of equations (18-20) are defined by a given initial
distribution of the eikonal function Yy (rg, po, kq) = ¥
(rg, po, 0, k;) of the coherence function of the incident
field at s = 0 (see equation (11)) as follows:

Pro — Vr‘/"O: (21)

Poo = VplpO- (22)

Finally, the initial condition to p. is obtained from

equation (12) employing also relationships (21, 22) at
s = 0, which yield

43

ik,

1
Ps= = (Vao)> + (Voo - Vidho) — & D(0, o).

. (23)

When dealing with the complex trajectories the analyti-
cal continuation of a structure function to the complex
domain of its argument is an important point, and it
should be specially discussed in each particular case.
However, this continuation is straightforward when the
structure function of fluctuations is given explicitly by
the analytic function. Then the appropriate Loran series
can be written for different domains of convergence in
the complex domain.

[10] Once characteristic equations (15-20) with the
initial conditions outlined above have been solved
eikonal ¢ from equation (12) is then obtained by inte-
grating along the appropriate trajectory as follows:

P(r, p, 0, k) = o(ro, po, ka)

+ J[pg +ikap; — 2i(p, - p)lds.  (24)
0

[11] When considering the second eikonal W gov-
erned by equation (13), it turns out that dW¥/ds=0
along the trajectories satisfying equations (15 - 20) with the
appropriate initial conditions, so that along any trajec-
tory

W(r, p, {, ka) =V (ro, po, 0, kg) = Vo(ro, po, ka),

and W(rg, po, kz) is defined by a given initial distribu-
tion of the second eikonal of the coherence function of
the incident field at ¢=0 (see equation (11)). In
particular, if this eikonal is not presented in the incident
field (W, = 0), then it is also not present in the solution
of the problem given by representation (11). As will be
seen, this holds in the case of an incident field of a
spherical wave that will be considered below. However,
W may be present in other cases, for instance, when the
incident field is a plane wave propagating in the direc-
tion different than z-direction.

[12] Finally, the solution to the main transport equa-
tion (14) is also obtained by integrating along the
constructed trajectories as follows:

1
‘ 2

i ka .
- 2J " p,+ki(V, ¥~ (V,¥-V,¥) ||ds.

0

(25)

ar, p)
a(rg, po)

Uy(r, p, s) = Ugo(ro, po, ka)

S

- exXp

(26)

In equation (26), Ug(rg, po, k4) is the distribution of the
“amplitude” of the coherence function of the incident
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field, and the quantity under the sign of the square root
is the determinant of the appropriate matrix of the
derivatives of the points along a trajectory by the initial
conditions to this trajectory.

3. Spaced Position and Frequency
Coherence Function to the Spherical Wave

[13] To demonstrate how the outlined technique
works, the case where the incident field is a spherical
wave written in the small-angle approximation respec-
tively z-direction is considered here. Its coherence func-
tion is given by

To(ro, po, K, ka) = Ugo(ro, po, ka)exp[Ki(ro, po, ka)]

(27)
with
N ipy kapo
Po(ro, po, ka) = (ro + )’ (28)
S5 2
_ , [ikq _,
U (rg, po, ka) = s, ~ exp 2 (rg + kapo)?|. (29)

Here s is the dimensionless distance from the source of
the spherical wave to the plane s = 0. According to (27)
VP, =0 in the coherence function of the incident
spherical wave, then, according to (25), eikonal W at \/12
identically equals zero

¥ =0, (30)

so that V¥ is not present in the solution to the spherical
wave (27-29).

[14] With equations (28, 29) characterizing the inci-
dent spherical wave the initial conditions (21-23) for ray
equations (15-20) become as follows:

ipo

Pro= > (31)
i ~
P = - (ro + kapo), (32)
ipo kapo\ 1
Ps= —z(ro + )— gD(O, rg). (33)
Ss

If also the statistical homogeneity of fluctuations along
s-direction as well as the statistical isotropy of fluctua-
tions in the transversal planes is accepted such that D
(s,r) = D(r) ray equations (15-20) with the finitial
conditions (31-33) can be solved in the closed form.
With it all, it turns out that vector r(s) is always in the
plane of the initial vector ry (r(s) is collinear to ry), so
that in cylindrical variables for r its absolute value is
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given by the relationship

(34)

whereas its polar angle ¢ is the same as the angle ¢, for
the initial vector ry that is ¢ = ¢;. As far as the central
variable p = p(s) is concerned, it is expressed through
r(s) as follows:

s 1 s r(s, ro)
p(g): 1+*p0+7 1+*l‘0*~7.
Sy kd Sy kd

(35)

To further proceed in consideration of the two-fre-
quency, two-position coherence function to the spherical
wave, the model of the structure function of fluctuations
D(r) should be specified. In the next subsection a simple
power law model of fluctuations will be considered
which allows further analytic assessment.

3.1.

[15] The following model of the effective transversal
structure function of fluctuations is considered below:

Inverse Power Law Model of Fluctuations

20%2

D) =——.
® 1+r2

(36)
It has a positive spatial spectrum, and also has a realistic
behavior at r — =, tending to a positive constant 2a-2.

[16] Analytical continuation of (36) into the complex
domain of its argument is straightforward. In particular,
its Loran series in the circle || < 1 (here this is the same
as its Tailor series) is

D@ =251 — 12 +..), (37)
and for the circle || > 1 it is given by
DRy =201 —r2+..). (38)

The rigorous form (36) shows how Loran series (37) can
be analytically continued into the domain || > 1, or,
how the series (38) can be continued into || < 1.

[17] Employing main terms of representations (37,
38) explicit calculation of the integral in (34) can be
carried out so that the final explicit representations for
the coherence function can be obtained for the cases of
small (jf|<1) and large (J{>1) values of the
difference variable r.

[18] By means of representation (37), complex tra-
jectories are constructed which are launched and landed
at |rl,Jro] <1. Using the main term in (37) (that is
equivalent of considering the model of the quadratic
structure function) results in the following explicit form
of the equation (34):
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l.];d()'z

2

s|. (39)

ik 02 1 2
+ — =
2 s s, Vikgo? st

Equations (35, 39) describe in the explicit form the
complex trajectories r = r(s, rg), p = p(s, po, I, rp). In
other words, they also show how the initial complex
values ry, py at s =0 should be chosen for the
trajectory to come at the real point of observation (s, p,
r). The limiting case of an incident plane wave corre-
sponds to ¢, — <. In this limiting case, equation (39)
becomes exactly equation (34) from Bitjukov et al. [2002],
which describes complex trajectories in the difference
variable in the case of the incident field of a plane wave.
[19] Having (39) and taking account of (31-33, 35)
allows explicit calculation of the integral for the eikonal
function given by (24), as well as the amplitude expressed
through (26). Then, when putting all together including
(30), this yields the main term of the asymptotic represen-
tation of the two-frequency, two-position coherence
function for small |r|,|rg| in the model (36) as follows:

Ly(r, p, s) = Ug (1, p, s)exp[Ky(r, p, s)],  (40)
where
( ) ir+kap)? or?
r,p,s) =5 - =
llj 2kd(g+ gs) \8ikd0'2
l.];d()'z
- tg 5 ST arccos 4 |, (41)
l.];d()'z l.];dO'Z 1 e 4
f 74, — .
2 2 gsz ? ( )
_ ikg(r + kqp)?
Uo(r, p, s) = s, (s+) ! eXp{M
l.];dO'Z 1 2 . l.];d()'z !
«| cos 5 s| + ; Wsm 5 S
(43)

Being the solution to the spherical wave in the medium
with fluctuations having the structure function (36) at
small |r|,rp| (the main term in (37)), representation of
the coherence function (40-43) at the same time gives
the rigorous solution to the case of a spherical wave in
the medium with quadratic structure function of fluctu-
ations considered by Knepp [1983]. Moreover, in the
limiting case of a plane incident wave (s, =%, 4 =
1) representation (40—43), properly renormalized, gives
equation (38) from Bitjukov et al. [2002] that is the
solution to the coherence function of a plane wave
propagating in the medium with the quadratic structure
function of fluctuations initially obtained by Sreenivasiah
et al., [1976]. As can be shown, for the quadratic structure
function and the incident field of a plane wave propagating
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along z-axis, the higher-order amplitudes in (11) identically
equal zero, so that in this case our asymptotic technique
produces the rigorous solution in automatic fashion.

[20] However, the most interesting is the case with
trajectories located at |r|,Jrq| > 1, when the structure
function of fluctuations is given by representation (38).
This is the case of realistic behavior of the structure
function of fluctuations at large values of its spaced
position r. Considering trajectory equations (34, 35) with
the model of the structure function of fluctuations given
by the two terms in the series (38) yields the following
explicit form for trajectories instead of (34):

2 .7 2 .7

L) lkd0'2 B L) lkd0'2 5
S\ 2 T re

Ss Ty Ss

2r§
Equation (44) together with (35) explicitly describe com-
plex trajectories r =r(s,ry), p = p(s, po, T, ry), which
now start and finish at large |, [ry|. In the limiting case of
the incident field of a plane wave (sp— ) equation (44) is
reduced to equation (44) from Bitjukov et al. [2002].

[21] Having (44) and again taking account of (31-33,
35) allows explicit calculation of the integral for the
eikonal function s given by (24), as well as the amplitude
expressed through (26), now for the case of large |r|, |rgl.
Then again, when putting all together including (30), this
yields the main term of the asymptotic representation of
the two-frequency, two-position coherence function now
for large ||, [rg| in the model (36) as follows:

.5 2
lkd0'2 L)

5 . (44)

Li(r, p, ) = Ug(r, p, s)exp[Ky(x, p, s)1,

kapo s a1 —r s
I+ +—
2 Ss 4
2 0'2 il 1 S S l.];dO'Z
= nll+———=4
2 8ikd0'2 Ss r(% 2
il 1 S S l.];dO'Z
—Inll+—+—
sy i\ 2

(45)

where

5

P(r, py s) = o (ro +

; (46)
rodr| "2
Up(r, p,s) =5, (s + ) | ———
ry dro
ika(r + kqp)?
exXp|l ———— 47
p{ 8+ ) (47)

In equation (47) for amplitude U, trajectory r=r
(s,rg) is defined implicitly by equation (44). In the
limiting case of plane incident field (s, = %) and with
proper renormalization equations (45 — 47) are reduced
to the coherence function presented by equation (45)
from Bitjukov et al. [2002].
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3.2. Single-Frequency Spaced Position Coherence
Function to the Spherical Wave

[22] To conclude the consideration, it is discussed
here how the general technique outlined in Sections 2
and 3 works in the limiting single-frequency case, when
ks = 0. This is the case of the pure spatial coherency
comprehensively studied by Tatarskii [see Rytov et al.,
1978, chap. VII]. Equation (45.18) from this book rep-
resents the general solution of the single frequency
problem for any given incident field in the form of
appropriate Fourier integral in the central transversal
variable. When applied to the problem of a spherical
wave in the small angle approximation whose coherence
function is given by (27-29) with k; =0, Fourier
transform of the coherence function of the incident
spherical wave is proportional to the appropriate 5-func-
tion, so that integration in spectral parameter in (45.18)
from Rytov et al. [1978, chap. VII] can be easily per-
formed. This finally yields the following solution to the
single-frequency coherence function (in our notations):

F(Z7 r—, r+) =

12 ik(r—-ry) k2
(z +2,)2 P z+z, 8

z

r_
~JD(1‘ — (zz’))dz’]. (48)
z+ zg
0
On the other hand, when considering the same problem
by means of the technique discussed in this paper, in the
single frequency case ray equations (15-20) give the

following trajectories:

(49)

r, = (r+)0(1 + Z) . (50)

Then, performing necessary integrations for cikonal
function  given by (24) along trajectories (49) and
calculating the appropriate determinant in the ampli-
tude factor U, given by (26) for trajectories (49, 50)
results exactly in representation (48) for the coherence
function, if (4) and (11) (with ¥ = 0) have been also
taken into account.

4, Conclusion

[23] Asymptotic technique to solve Markov’s para-
bolic equation for the second-order spaced position and
frequency coherence function has been developed,
which employs quasi-classic approximation with complex
paths, or complex geometrical optics with complex ray
trajectorics. In the most general case of fluctuations,
which are not statistically homogeneous, appropriate
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complex ray equations should be solved numerically,
however, the method allows explicit analytic representa-
tions of the spaced position and frequency coherency for
a series of realistic models of the structure function of
statistically homogeneous fluctuations. In automatic
fashion, it produces the solutions to the space-frequency
coherence function known in the scientific literature.

[24] Acknowledgments. The work was performed un-
der the financial support of the Russian Ministry for
Education, grant E00-3.5-138, and the UK EPSRC Visiting
Fellowships (V.G. and N.Z.) GR/R37517/01.
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Abstract. The complex phase method has been further extended to the problem of electro-

magnetic (EM) field scintillations on Earth-satellite GPS paths of propagation. The numerical
and analytic technique based on the method has been developed to characterize the transiono-
spheric channel of propagation. The effects of additional range errors due to the ionospheric
electron density fluctuations in space and time have been studied taking into account the ray
bending due to the inhomogeneous background ionosphere and the diffraction on local ran-
dom ionospheric inhomogeneities. In the method developed, the impact of the Earth’s mag-
netic field is accounted for by the anisotropic spatial spectrum of the ionospheric turbulence
with different outer scales along and across the magnetic field lines. The variances of the EM
field phase (yielding range errors) and level (log amplitude) fluctuations have been calculated
for different models of the background ionospheres characterized by different height electron
density profiles and total electron content. The conditions of the saturated regime of propaga-

tion, which will likely result in the degradation of a GPS navigation system, have been dis-
cussed. In addition, the scattering function of the GPS transionospheric channel of propaga-
tion has been constructed and simulated for a wideband signal.

1. Introduction

Despite many years of research effort there continue
to be many new publications on the effects of the iono-
spheric electron density fluctuations on electromagnetic
wave propagation through the ionosphere. The early at-
tention to this problem was mainly stimulated by iono-
spheric studies and by the need to interpret data of ra-
diation from natural radio sources, whereas recent inter-
est in this problem has been fueled by the intensive de-
velopment of satellite-to-satellite and Earth-satellite
communication systems. In order to increase the accu-
racy of range measurements the effects due to the inho-
mogeneous regular background ionosphere and tropo-
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sphere were first studied. Consequently, errors arising
out of an assumed isotropic inhomogeneous ionosphere,
which are proportional to the total electron content
(TEC), have been taken into account, and then finer ef-
fects due to the Earth’s magnetic field have been inves-
tigated. A review of these results is given by, for exam-
ple, Dieminger et al, [1985) and Leitinger [1998]. Re-
cent advances on the effect of the Earth's magnetic field
are given, in particular, by Ashmanets et al. {1996] and
Strangeways and Ioannides [1999]. Altshuler [1998] has
described tropospheric range errors.

Statistical effects of VHF and UHF propagation
through the fluctuating ionosphere have been studied in
many papers. In their review paper, Yeh and Liu [1982}
have given an exhaustive description of the results ob-
tained on this subject by that time. In recent years a lot
of publications have appeared dealing with experimental
data on fluctuations on transionospheric paths (see, for
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instance, Basu et al. [1988] and Aarons {19971). Differ-
ent theories accounting for the effects of the ionospheric
electron density fluctuations have been developed and
further extended. A power law phase screen approach
[Rino, 1979] has been used by Secan et al. [1995, 1997]
to model cquatorial and high-latitude scintillation ef-
fects. The multiple-phase-screen method, initially intro-
duced by Knepp [1983], has been slightly generalized,
with the parabolic equation written in a cylindrical coor-
dinate system and for a cylindrical incident wave instead
of in rectangular co-ordinates for a plane incident wave.
It was then used in the numerical simulation of the ef-
fects of transionospheric propagation in the gigahertz
band [Grimault, 1998]. Amplitude scintillation effects
on GPS links due to tropospheric turbulence have been
considered by Marzano and d’Auria [1998]. When
dealing with scintillation effects, attention is paid to the
behavior of phase and amplitude fluctuations, the scin-
tillation index S, the type of statistics of the field fad-

ing, the time coherence range, etc. Attention is also paid
to the relationship between GPS amplitude scintillation
and TEC variations referred to as GPS phase fluctuations
[Beach and Kintner, 1999]. A simple propagation model
of a single one-dimensional phase screen is employed in
this paper in order to interpret the experimental data.

From the point of view of the assessment of the error
of the regular range measurements the statistical proper-
ties of the field phase are important for highly accurate
phase measurcments, and the group delay time spread is
significant for the GPS spread spectrum technique. The
latter is characterized by the time scale of the GPS chan-
nel scattering function.

The analytical-numerical technique for characterisa-
tion of the HF ionospheric fluctuating channel of propa-
gation, which is based on the complex phase method, or
generalized Rytov’s approximation, has been developed
by Zernov {1980, 1992] and Gherm and Zernov [1995,
1998]. It deals with the point source field, rather than
with plane wave propagation, and any orientation of the
path of propagation with respect to the Earth’s surface. It
takes into account the ray bending due to the inhomoge-
neous background ionosphere and the diffraction effects
on local random ionospheric inhomogeneities. The
method provides the possibility to simulate statistical
characteristics of the channel for different geophysical
conditions of propagation, and in this way, to study, in
particular, their variability with the form of the height
electron density profile [Radicella et al., 1998].

In the present paper, this approach is extended to the
case of a transionospheric channel of propagation, and
the range of its validity for this problem is discussed.
Such a fine effect as the dependence of the curved path
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of propagation on transmission frequency due to the fre-
quency dispersion of the ionosphere is taken into ac-
count, which may be of importance, in particular, for
calculation of the scattering functions. The effccts due to
Earth's magnetic field, resulting in longitudinally ex-
tended forms of the ionospheric inhomogeneitics, are
also discussed. Additionally, it should be pointed out
that the propagation model developed provides rigorous
numerical results for both phase and amplitude fluctua-
tions for realistic models of the background ionosphere
and ionospheric electron density fluctuations, which is of
importance, in particular, in the analysis of TEC fluctua-
tions.

Our attention will be focused on the assessment of the
intrinsic additional errors in the pseudorange measure-
ments in the case of single-frequency measurements re-
sulting from the fluctuations of the electron density of
the ionosphere. The assessment of the fluctuational
range error will be performed under the condition that

the variance 0'; of the field log amplitude (level) fluc-

tuations is such that ¢ <1. This inequality will be also

used to forecast the ionospheric conditions, which would
result in the saturated regime of propagation, character-
ized by strong fluctuations of the field amplitude and
stochastic multipath effect contribution.

2. Propagation Model

A complete statement of the propagation problem and
the details of the analytical technique used can be found
in Zernov [1980, 1992} and Gherm and Zernov [1995;
1998]. To give a brief description, the field propagating
through the fluctuating ionosphere is assumed to have
the following form:

E(r,a),t)zE(, (r,a))exp[l//(r,w,t)l (1)
where E| (r,w) is the field in the background regularly
inhomogeneous ionosphere and the effects due to iono-
spheric electron density fluctuations are taken into ac-
count by means of complex phase u/(r,(o,t). As v and
E are random functions, the statistical characteristics of
the level (log amplitude) y and phase S of the field
(1), which are the real and imaginary parts of v, re-
spectively (y =y +iS ), are of interest, as well as the
statistical moments of the full field E .

For the complex phase y , variances of the real (log
amplitude) and imaginary
ol=<x’>,0;=<8">

(phase)
and mutual

parts
correla-

tion< xS > are expressed through the second-order

moments <yy > and <1;n,1/* > as follows:
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P 1 .
<x'>:5[<w >+Re<1/n//>], (2)

2 1 N
<S >=E[<W >—Re<1//1//>], (3)
<xS>=Im<yy >. “

We will also be interested in the two-position, two-
frequency, two-time correlation function W of the full
field E, which is necessary for constructing the scat-
tering function of the transionospheric channel of propa-
gation. This is expressed through the first and second or-
der approximations (Y, =y, +iS,,y, = x, +iS,) of the
perturbation series for the complex phase as follows:

‘{J(rl’rZ’a)l’(UZ’tl’tz):V (r1»w1»tl)V*(rz’w2»t2)

~{exp [(Wl(rl’wntl )V/;(rz»wz’tz )>]—1} (5)

Here quantity V is the mean field in the fluctuating
ionosphere, given by the equation

V (r,0.0)=exp [, (r0.1)) +%<V/f(rywat)>] (6)

As shown by Zernov [1992], in the case of transiono-
spheric propagation through the inhomogeneous iono-
sphere, the following relationships hold asymptotically

on the parameter a);t, / o'

<plc=-<py>, <8, >==-<8,>; (D)

w , 1s the maximal plasma frequency of the ionospheric

pl
layer and @ is a working frequency. Relations (7) are of
the same type as in the classical problem of wave propa-
gation in a random medium with a homogeneous back-
ground [Tatarskii, 1971] when they hold identically. Di-
rect substitution of (7) into (6) results in the simpler ex-
pression for the mean field V .

V(?,w):exp{—%<w1 (F,w)yf(?,w)%. (8)

In principle, the relationships (7) allow us to avoid
constructing the second order approximation in the com-
plex phase method. However, they are of use as criteria
for validation of the results of numerical calculations
performed. When first order phase and log amplitude
fluctuations and second order fluctuations have been in-
dependently calculated a reasonable validation proce-
dure is provided by determining if they satisfy these re-
lationships. This procedure is employed in our numerical
codes in order to ensure rigorous numerical results.

A full description of the procedures to construct all
the necessary quantities is given by Gherm and Zernov
[1995; 1998]. To give here just a brief description, we
first point out that analysis is performed in the local ray-
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centered co-ordinate system. The undisturbed field E,
and the Green’s function of the undisturbed problem are
represented in the geometrical optics approximation, and
the curved path of propagation of E; through the back-
ground ionosphere is considered as the reference ray of
the ray-centered variables. It traverses the background
ionosphere, connecting the corresponding points under
and above the ionosphere rather than refracting in the
ionosphere, as was the case in the work by {Gherm and
Zernov [1998] for HF sky wave propagation.

Employing the ray-centered variables, we can deter-
mine the complex phase y, which is given by equation
(31) from the paper [Gherm and Zernov, 1998], which is
as follows:

v, (ro,1)= lk——IHds dndr
4r

 ellonc)o)
8(1)/2 (S)Dn (s, Sy )Dr (S’ Sy 1”2

{ik n? 7?
-exp 15 +

(S’ S()) DT(S,S(,)

- Ehalp, (s s D651} ©

This corresponds to a random function y, if € is ran-
dom. In equation (9) variable § is measured along the
reference ray, and the integration over s is carried out
from the point s=0 to the point s=5, which corre-
spond to the origin and the end point of the reference ray
respectively. Variables n and 7 are the orthogonal
variables pertinent to this ray, so that 72 is in the plane
of propagation, and 7 is perpendicular to this plane. Pa-
rameters D, (s,s, ) and D, (s, s(,) are defined as

D (S, 5 ) _ d 2¢0 [r(s )] n az¢1 [r(s )’ r(s(, )]

" on’ on’ '
Dr_l (s, 30)= 9 gEE(S )] + L) [rzgi )27 r(s“ )] 10)

where ¢, (r) and ¢, (r,r') are the eikonals of the inci-
dent field and the Green's function, represented in the
geometrical optics approximation.

The expression for ¥, can be written in similar fash-
ion. This has been given by equation (32) of Gherm and
Zernov [1998] and is not repeated here. The necessary
statistical moments involved in relationships (6) and (8)
are constructed employing representation (9) and the ap-

propriate formula for y,, so that variance <l,l/12 (r,w)> is

expressed by formula (35) of Gherm and Zernov [1998]
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and the function

<1//1(r1 0,1 )‘//1* (rszz’tz )> is given by equations (25),
(36), and (33) in the same paper. To save space, we do
not repeat all these equations here. The assumptions of
the “frozen drift” and the statistical stationarity of the
ionospheric random inhomogeneities have also been in-
corporated and used where necessary.

Once the technique to calculate the correlation func-
tion (5) and (6) of the transionospheric propagation
channel is introduced, another important quantity, char-
acterizing the signal spread in the group delay time and
Doppler frequency, may be also constructed, namely the
scattering function of the channel. Different types of
scattering functions have been considered in the scien-
tific literature [see, e.g., Nickisch, 1992; Mastrangelo et
al., 1997; Lundborg and Zernov, 1998; Gherm and Zer-
nov, 1998]. The definition of the scattering function
which is used in problems of the channel simulation
system design involves the correlation function of the
channel impulse response [Mastrangelo et al., 1997,
Lundborg and Zernov, 1998]. We shall also adopt this
definition, which defines the scattering function as the
Fourier-transform of the appropriate auto-correlation
function of the channel impulse response on the differ-
ence time variable t of the form as given by {Lundborg
and Zernov, 1998];

P, (r,w,,,cuL_)sz(Q+%—wc }P*[Q——i——a)cj

-f(,(Q+%]/*o(Q—g}P(Q,5,t)

exp i -1, (@b +io,tfdads a. an
In (11) function £ is the known slowly varying function

in the representation for the transfer function of the
background channel, P is the spectrum of a launched
pulse with a carrier frequency @,, Q and & are the

correlation

center and difference frequencies and ¢, and w, are the

group delay time and Doppler shift, respectively. Func-
tion ¥ is the two-time, two-frequency correlation func-
tion of the monochromatic component of the field, intro-
duced by (5) and (6). Scattering function P, in (11) does

not depend on the center time variable if stationarity of
the ionospheric fluctuations is assumed. According to
(11) the time-frequency correlation function of the
monochromatic components of the field is the central
point in calculation of the scattering functions. These
functions have been investigated in different approxima-
tions for the sky wave and transionospheric channels
(see, for instance, Liu and Yeh [1975), Fridman et al.
[1995], and Gherm and Zernov [1998]).
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The technique outlined here will be used in the con-
sideration of the transionospheric propagation effects,
resulting from the ionospheric electron density fluctua-
tions. The background ionosphere will be assumed iso-
tropic, but the presence of the Earth’s magnetic field will
be taken into account by means of the anisotropic model
of the ionospheric electron density fluctuations.

We now discuss briefly the range of validity of our
approach. It is commonly accepted (sce, for instance,
Tatarskii [1971], Rytov et al. [1978] and Ishimaru
[1978]) that the Rytov-type approximation is valid for
weak fluctuations of the field amplitude, resulting in the
inequality

2
01<1.

(12)

Then, when performing any numerical simulation to
obtain different moments of the random field, which has
propagated through the fluctuating ionosphere, the va-
lidity of that inequality should be checked. However, it

is also known that fluctuations of the phase of a field are

well described by this approximation even beyond the
formal scope of its validity [Barabanenkov et al., 1971;
Ishimaru, 1978). The latter provides the possibility to
study phase fluctuations for a wider range of the iono-
spheric fluctuation parameters than strictly limited by

inequality (12). Then the condition G; =1 can be con-

sidered as only indicating a minimal order of magnitude
of the log amplitude fluctuations up to which the results
in phase fluctuation assessment are correct. In other

words, phase errors obtained for G; reasonably greater

than unity may also be considered valid.
From the point of view of the scintillation index S,

the case of weak amplitude fluctuations, or the unsatu-
rated regime of propagation, is outlined [Yeh and Liu,
1982] by the condition S, <0.5—-0.6. The latter, taking

into account the relationship S :40-; for small log

amplitude fluctuations, results in an approximately 1 or-
der of magnitude stricter condition than the limitation
given by (10) for the amplitude fluctuations

o; <01 (13)

In principle, the severer condition (13) should also be
taken into account when discussing the moments of the
full field in the saturated regime of propagation.

To conclude this section it should be pointed out that
our propagation model employs (according to equations
(9) and (10) and equations cited from Gherm and Zernov
[1998)) integration along the path of propagation of the
effects of ionospheric irregularities with the properties of
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the background ionosphere being included, in particular,
through the term in €,(s) in the denominator of (9). It
also accounts for the diffraction effects on local iono-
spheric inhomogeneities. As a result, this propagation
model is free of a series of limitations inherent in propa-
gation models based on a power law phase screen
method [Rino, 1979; Secan et al., 1995]. The latter as-
sume a uniform propagation geometry and irregularity
structure along the path of propagation and do not take
into account diffraction effects in the ionospheric layer.

3. Model of the Electron Density
Fluctuations

For the calculation of the effects due to the iono-
spheric electron density fluctuations the following model
of the spatial spectrum of fluctuations will be utilized

K2 2
BE(K,S):Cf,[l—s()(s)]zc,zvf U; +£%
g tr

(14)

Here the values of the background ionosphere dielec-
tric permittivity &, (s) are given at the points along the

. . . 2
reference ray as a function of variable 5. Quantity oy

in (14) is the variance of the fractional electron density
fluctuations of the ionosphere. The f(x) with

K:{K K,,_} is a dimensionless spatial spectrum of

g
fluctuations, normalized so that f(O): 1, and Cf, is the

normalization coefficient of the dimension L*. To char-
acterize the anisotropy of the ionospheric inhomogenei-
ties, the wave vector k¥ was introduced in (14) with

projections along (th) and across (K,,) the force lines

of the magnetic field of the Earth, K, =2r/L, and
K, =2r/L, . Quantity L, is the outer scale of the ran-

dom ionospheric inhomogeneities along the Earth’s
magnetic field and L, is their transversal outer scale, so

that the aspect ratio of the inhomogeneities is given by
a=L, [L, . Variables (x, , &, ) and the variables of the

wave vector, conjugated with ray-centered variables de-
fined by the reference ray, are linked by the transforma-
tion of rotation, so that the rotation matrix elements de-
pend on the latitude and longitude of the path of propa-
gation. This way, both the propagation model and the
model of the ionospheric electron density fluctuations
take into account the Earth’s magnetic field and the ori-
entation of the path of propagation, as well as the geo-
physical conditions.
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The most adequate model of the ionospheric fluctua-
tions spatial spectrum f (K) in equation (14) is known to
be the inverse power law spectrum as follows:

-pl2

2 K2
fle)=|1+ S+ 2 , (15)
34 r

where p is the spectral index. This model is used in the
numerical simulation of the propagation effects. The
normalization coefficient C for the inverse power law
spectrum (15) is given by

2 F(p/Z) . (16)

"oetri(p-3)2kik,

However, an anisotropic gaussian model with the
spectrum of the form

2 2
Ky K.

flc)=exp| - —& - =t (17)
th Klr

is also employed in the analysis, permitting analytical
assessment.

4. Results

To preface the presentation of the results, we would
like to point out that as previously mentioned, in par-
ticular, by Rino [1979], the numerical value of the outer
scale of the ionospheric plasma turbulence, which di-
vides the developed structures modeled by a statistically
homogeneous random process and the evolving fairly
large scale structures, is not well defincd. A series of
sources [Dyson et al., 1974; Basu et al., 1976; Yeh and
Liu, 1982; Alimov and Erukhimov, 1995] indicate that
the value of the outer scale is on the order of tens of
kilometers. The same order of magnitude of the outer
scale is also employed by Beach and Kintner {1999] to
give an interpretation of some effects of field scintilla-
tion on transionospheric paths.

However, the models of ionospheric inhomogeneities
with quasi power law spatial spectrum out to very large
outer scales (fairly more than 10 km) have also been dis-
cussed and employed. In such a treatment, very low fre-
quency components of the ionospheric irregularities
contribute to the phase non diffractive variations associ-
ated with TEC variations [Bhattacharyya et al., 2000].
Alternatively, very large scale variations of the electron
density of the ionosphere may be treated in a quasi-
deterministic statement as wavelike traveling iono-
spheric disturbances resulting in quasi-regular phase
trends.
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It should also be emphasized that the numerical value
of the outer scale of the ionospheric turbulence is of im-
portance in the interpretation of results of measurements
of the field phase variance. This interpretation depends
on the correlation of the data interval (or the integration
time) and the temporal interval corresponding to the
outer scale of the inhomogeneities [Myers et al., 1979;
Rino, 1979]. Rino [1979] developed the technique to cal-
culate the rms phase based on the phase screen approxi-
mation, valid for integration times both smaller than and
larger than the appropriate cutoff time (inverse of cutoff
frequency). Our propagation model also allows analysis
of both these cases. In the present paper, we give the re-
sults of calculations pertinent to the case where the inte-
gration time is large enough to exceed the appropriate
cut-off time. We used values for the outer scale of the
ionospheric turbulence of the order of tens to hundreds
of kilometers based on values given by Dyson et al.
[1974], Basu et al. [1976], Yeh and Lin [1982] and Ali-
mov and Erukhimov [1995], but any other values could
be utilized within the scope of our model.

4.1. Analytical Assessments

As has been mentioned, the Gaussian model (17) of
the spatial spectrum of the ionospheric electron density
fluctuations allows analytical calculations. In particular,
the effects due to the Earth’s magnetic field may easily

be described. Calculations of the variance 0'57' =< S‘2 >

of phase fluctuations for frequencies of interest and the
conditions of the real ionosphere and satellite height in
the range of 2000-20,000 km show the variance to be
proportional to the scale of inhomogeneity along the
path of propagation. Consequently, phasc cffects from
propagation along and across the magnetic field force
lines are proportional to the aspect ratio of the iono-
spheric turbulence.

4.2. Phase and Log Amplitude Fluctuations:
Numerical Results and Discussion

The propagation model is able to account for a wide
variety of effects of propagation for realistic conditions.
To demonstrate this, we present here a series of results,
obtained in the scope of this model. All the calculations
were performed numerically for an anisotropic inverse
power law spatial spectrum (15) and (16) and the spheri-
cal geometry of the background ionosphere. Calculations
were carried out taking into account the dispersive prop-
erties of the ionosphere, for curved paths of propagation.
In particular, the frequency dependence of the ray tra-
jectories was taken into account when constructing the
scattering functions of the transionospheric channel of
propagation.
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The results of the simulation of the effects of trans-
ionospheric electromagnetic (EM) wave propagation
through the fluctuating ionosphere presented below have
been obtained for different ionospheric height profiles
with the values of vertical TEC of 31.8, 69, and 153
TEC units (1 TEC unit is equal to 10'® el m?). The val-
ues of TEC of 31.8 and 69 are in the range of typical
vertical TEC values. As for the last largest TEC value of
153, although fairly high, it is nevertheless within the
range of observable values (see, for instance, Jursa
[1985] indicating TEC values as high as 180 TEC units).
Using this value in calculations helps to quantify maxi-
mum possible errors in GPS range-finding.

The profiles used are characterized by the following
values of foF2 and h,F2: 9 MHz and 270 km for TEC =
31.8, 13 MHz and 325 km for TEC = 69, and 16.4 MHz
and 420 km for TEC = 153. A value of p=3.7 has been

used in (15) to determine the spectrum index of the iono-
spheric clectron density turbulence. Additionally, differ-
ent values of longitudinal (to the Earth’s magnetic field)
scale L,, and transversal scale L, and, consequently, of

the aspect ratio &, as well as different values of the

variance o5 of fluctuations of the fractional electron

density of the ionosphere have been employed. Calcula-
tions have been carried out for the frequencies of L1
(1575.42 MHz) and L2 (1227.60 MHz), as well as for
137 and 2000 MHz. Vertical and oblique propagation
have been considered for the satellite height of 2000 km
above the Earth. To assess the spread of the effects due
to the zenith angle of the oblique path of propagation,
the fairly extreme cases of vertical propagation and
propagation with a zenith angle of 85° have been con-
sidered. In the latter case, the value of the effective TEC
is near maximal. The effects pertinent to the Earth’s
magnetic field have been taken into account by means of
the anisotropic model of thc ionospheric random inho-
mogeneities (15) and (16), and the limiting cases of
propagation along and across magnetic field lines have
been considered. Of course, all the intermediate situa-
tions may be also considered in the scope of our model,
if desired.

4.2.1. Midlatitude ionosphere. To perform calcula-
tions for the midlatitude ionosphere we used, as an op-
tion, the transversal outer scale of the ionospheric tur-
bulence L, =5km and the aspect ratio a =4 . This re-

sults in the longitudinal outer scale of 20 km. These
scales are in agreement with values given by Dyson et
al. {1974], Basu et al., [1976], Yeh and Liu [1982] and
Alimov and Erukhimov [1995); e.g. Umeki et al. [1977]
employ scales of the same order. The results of simula-
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tion for this case are presented in Tables 1-3. They are
arranged so that each table contains results of calcula-
tions for a given vertical TEC of the background iono-
sphere. Different rows in cach table correspond to dif-
ferent conditions of propagation, which are the follow-
ing: the frequency, the zenith angle of a path of propa-
gation « in degrees and the angle between the path of
propagation and the Earth’s magnetic field S in de-

grees. Although B might vary appreciably over the total

path of propagation, the range error will be dominated
by its value at ionospheric heights, where the electron
density is maximal, so that f is specified at this level.

To derive absolute values of the range error in centime-
ters, quantities given in tables 1-3 in the columns "Range
Error” should be multiplied by the rms of the fractional

electron density fluctuations /o, =0, . The variance

of the field level fluctuations ¢ is expressed in the

units of the variance of the fractional electron density

Table 1. Results of Calculations for TEC = 31.8
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Table 2. Results of Calculations for TEC = 69.0
Frequency, o’ B Range o
MHz Error
137 0 0 5418 4250
137 0 90 2822 551
137 35 0 8264 26,500
137 85 90 4452 4370
1230 0 0 73 2.2
1230 0 90 36 0.22
1230 85 0 120 72
1230 85 90 61 7.9
1575 0 0 44 0.83
1575 0 90 22 0.082
1575 85 0 74 31
1575 85 90 38 33
2000 0 0 28 0.32
2000 0 90 14 0.032
2000 85 0 46 13
2000 85 90 23 1.4

fluctuations o5 . The value o, =10 means 1% fluc-

7

2

tuations of the fractional electron density, o} =107
implies 10% fluctuations, and ¢} =1 corresponds to

100% {fluctuations of the fractional electron density.
Thus tables 1-3 actually give in the columns the range

Frequency, o B Range Oy
MHz Error

137 0 0 2565 863
137 0 90 1332 109
137 85 0 4008 5980
137 85 90 2155 977
1230 0 0 34 0.4
1230 0 90 17 0.04
1230 85 0 58 15
1230 85 90 30 1.7
1575 0 0 21 0.15
1575 0 90 10 0.015
1575 85 0 36 6.5
1575 85 90 18 0.68
2000 0 0 13 0.06
2000 0 90 6 0.006
2000 85 0 22 2.7
2000 85 90 11 0.28

Here o is the zenith angle of the path of propagation in de-
grees, and 8 is the angle between the path of propagation and the
Earth’s magnetic field. The o,° is the variance of the field level
fluctuations expressed in units of the variance of the fractional
electron density fluctuations oy”. To derive absolute values of the
range efror in centimeters, quantities given in the column "Range
Error” should be multiplied by the rms of the fractional electron
density fluctuations \IGNZ =0y

error in centimeters for 100% fluctuations.

Table 3. Results of Calculations for TEC=153.0

Frequency, o’ i Range o

MHz Error

137 0 0 104 1.8x 10*
137 0 90 5242 2440
137 85 0 1.4x10* 89x10*
137 85 90 7830 1.5x10*
1230 0 0 136 i3

1230 0 90 109 41

1230 85 0 212 274
1230 85 90 106 31

1575 0 0 83 49

1575 0 90 42 0.48
1575 85 0 131 121

1575 85 90 67 13

2000 0 0 52 1.9

2000 0 90 26 0.19
2000 85 0 82 53

2000 85 90 41 55




When beginning the discussion of the results, it is to
be remembered that the absolute range of validity of the
technique developed is stated by inequality (12). This
means that figures in the last columns of tables 1-3 to-
gether with (12) indicate maximal values of the variance

Gf, of the fractional electron density fluctuations for

which the results are valid. It also needs to be considered
that the phase calculations are actuaily valid reasonably
far beyond the formal scope of validity of the method.

As the numerical results show, the worst case in the
sense of maximal phase fluctuations is obviously the
case of very oblique (& =85") propagation along the di-
rection of Earth’s magnetic field lines ( B =0°) with the
densest background ionosphere (highest vertical TEC). It
is characterized as well by the maximal restraints on the
range of validity. Even this worst case is almost within
the scope of the method validity for the gigahertz band
and for fractional electron density fluctuations up to 10%
(higher, sometimes even 100% fluctuations of the frac-
tional electron density for less bad conditions). In this
case the range errors of up to 6, 12, and 21 ¢m occur for
TEC valucs of 31.8, 69, and 153 units, respectively. On
the other hand, for a frequency of 137 MHz the method
works only for very weak fractional fluctuations of thc
order of a few percent and yields, for example, for 2%
electron density fractional fluctuations, a maximal range
error of ~3 m for TEC = 153.

Additionally, the dependencies of the single-point
moments, represented in Tables 1-3, on the aspect ratio
have also been investigated. We will not present here the
detailed results of these calculations, obtained for greater
values of the aspect ratio, but point out that these only
critically depend on the value of the aspect ratio for the
special conditions when propagation is very close to the
direction of the geomagnetic field lines. Thus calcula-
tions repeated for the conditions of propagation specified
in line 5 of thc Table 2, but performed instead for
a=10, result in a range error of 1150, c¢m, and

o) ; =5.50 . We see that at least for the parameters here

considered, the variance of the field log amplitude is ap-
proximately proportional to the aspect ratio and the
range error is approximately proportional to its square
root. On the other hand, calculations performed when the
line of sight is not parallel to geomagnetic field demon-
strate fairly weak dependence of the results on the aspect
ratio, providing that the aspect ratio exceeds 3-5 and the
cross-field outer scale exceeds a value of order 1 km.
For instance, the calculations performed for TEC = 69,

o = f§=45", frequency 1230 MHz, L, =5km , and as-
pect ratio a =4 give the range error 49.30, cm, and
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G; =0.760, , whereas for the case of a=10 the fig-

ures are 49.90, cm, and 0'; =0.720, , respectively

showing a negligible difference.

4.2.2. Low-latitude ionosphere. In the low-latitude
ionosphere, characteristic scales of local ionospheric in-
homogeneities are reported of the order of tens, hun-
dreds and even thousands of kilometers. On the other
hand, the point of view exists that transversal scales
close to the main Fresnel zone size should be employed
to model the saturated regime of propagation. Within the
scope of our propagation model, parameters of local io-
nospheric inhomogeneitics like the outer scale and as-
pect ratio may easily be chosen which result in consider-
able amplitude variations for a given model of the back-
ground ionosphere and geometry and orientation of the
propagation path and for the inverse power law spectrum
of the electron density fluctuations.

To start with, calculations have been performed for
the case of vertical TEC of 69 units, frequency 1230
MHz, and L, =10km, L,y =500km (aspect ratio
a =50). Then for slant propagation with o =85 and
B =0" (propagation along magnetic field lines), the
range error is given by the quantity 620c, cm, and
O'; =168c , . For transversal propagation ( 8 =90") the

range error is 880, ¢cm and G; =130} . According to

these figures, 100% fluctuations of the fractional elec-
tron density evidently result in the regime of strong am-
plitude scintillation, both for the longitudinal and trans-
versal propagation. However, more typical 10% fluctua-
tions still result in the saturated regime for the longitudi-
nal propagation but do not give rise to the strong scintil-
fation for the transversal propagation.

The calculations performed for the same parameters
of the background ionosphere and fluctuations, but for

the propagation geometry with o« = =45" give the
following results: 7lc, cm for the range error and

O’; = O.()90';:,. The latter demonstrates, even for 100%

fluctuations of the fractional electron density, too small a
value of the amplitude fluctuations to be considered as
the saturated regime.

When searching for the parameters of the tonospheric
fluctuations resulting in the saturated regime of propa-
gation for the same conditions as previously, we con-
sider smaller values of the outer scale of the turbulence.
For instance, for the same geometry, background iono-
sphere, and aspect ratio, but L_=1km (this corre-

sponds to the longitudinal outer scale of 50 km) our
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propagation model yields the range error 200, cm and

O'; = 6.26,%, . Then a value of the rms of the fractional

electron density of 0.4 (40%) results in O'; =1 which

indicates the strong amplitude fluctuation occurrence.

Finally, as in section 4.2.1, we would like to point out
the fairly weak dependence of the scintillation effects on
the aspect ratio if the direction of propagation is not
close to longitudinal (along the geomagnetic field line
direction). For transversal outer scales of both 1 and 10
km, calculations have been performed for different
smaller aspect ratios such as 20 or even 10 with the rest
of the parameters the same as in the previous case. These
calculations demonstrate approximately the same results
irrespective of the aspect ratio.

4.2.3. Fraunhoffer diffraction. For the paths of
propagation and frequencies under consideration the
main Fresnel zone size is on the order of 300 m. This
means that in the case of ionospheric turbulence with the
outer scale considerably less than this, the propagation
model, if correctly constructed, should give the same
values for the variance of the phase and log amplitude
fluctuations. This was investigated as a check of the va-
lidity of our model. For an outer scale of 0.1 km, a =1
and the rest of the propagation conditions are the same
as previously, our model yields o'} =G; =8.1c} . The

latter demonstrates that this limiting case of Fraunhoffer
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diffraction is properly accounted for in the scope of the
propagation model developed.

4.3. Scattering Function

In this section the results of simulation of the scatter-
ing function for the Earth-satellite channel are presented.
The calculations were performed for the frequency 1230
MHz, a vertical path of propagation, and a satellite
height of 20,000 km above the Earth. The profile with
vertical TEC of 69 units was employed, and anisotropic
fluctuations  with L, =10km

L, =500km (aspect ratio @ =50) were employed. As

ionospheric and

our estimates show, for a geostationary satellite the main
contribution to the “frozendrift” velocity is given by the
ionospheric wind, and so the drift velocity of 300 ms’'
has been employed. The two limiting cases of the drift
direction perpendicular and parallel with respect to mag-
netic field lines are presented.

In Figure 1 the three-dimensional plots of the time-
frequency correlation functions of the field are given as
a function of difference time and frequency variables for
both cases (Figure la is for the transversal drift direc-
tion, and Figure 1b is for the longitudinal drift). Of note
are the different scales in the time domain (correlation
time), which arisc because of the anisotropic spectrum of
the electron density fluctuations. As can be seen, the cor-
relation functions depend very slowly on the frequency
separation variable 0 . This means that their Fourier

sl

42
Rt tares iy ety
T o e e
_;g—? -‘:. ALY
2 £ "

17
ek IR i
0 szttt i
SRS, i ’
BNy 2000
rariea el
ety
27

A0 000 ts

of MHz

Figure 1. Time-frequency coherence functions of the GPS channel for the two limiting directions of the
frozen drift with respect to geomagnetic field lines: (a) transverse and (b) parallel.
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Figure 2. Scattering functions of the GPS channel for the two limiting directions of the frozen drift with
respect to geomagnetic field lines: (a) transverse and (b) parallel. Contours are shown at 2 dB intervals.

transforms on & are “almost” delta functions in the do-
main of the group delay time spread, which is Fourier-
conjugated to & . In other words, the effects of the group
delay time spread due to the ionospheric electron density
fluctuations are negligibly small for GPS links.

The main factor governing these cffects is given by
the bandwidth of the GPS transmitter-receiver system.
This factor is involved in the calculation of the scattering
function P, (r,0,,0, ) of the GPS channel given by (11)

through the spectral function P(w—w, ). In our calcula-
tions the Gaussian spectral window used was of the form

P(a)—wc)=exp[— } .

In (18), @, is the carrier frequency of the transmitter

and A is the half-bandwidth of the system. The value of
A =10 MHz was used in the calculations. In Figure 2 the

contour plots of the scattering function of the GPS chan-
nel are shown with contours separated by 2 dB for the
same cases of the drift direction. According to these
graphs the characteristic scales of the scattering function
at the level —10 dB with respect to the maximum are as
follows: 0.025 ms in group delay for both plots, 0.075
Hz in Doppler spread for the case of transversal drift,
and 0.0015 Hz for the longitudinal drift direction. As can
be seen, the values of Doppler spread differ from each
other by a value of the order of the aspect ratio of the
fluctuation spectrum model.

(-, )

ye (18)

5. Conclusion

The numerical and analytic technique based on the
complex phase method has been further extended to the
problems of EM field scintillations on Earth-satellite
GPS paths of propagation. The evaluation of the addi-
tional range errors due to the ionospheric electron den-
sity fluctuations has been performed, and the assessment
of the conditions of the saturated regime of propagation,
which may likely result in the degradation of a GPS
navigation system, has been given. In addition, by means
of the method developed, the scattering function of the
GPS transionospheric channel of propagation has been
constructed and simulated for a wideband signal. It has
been shown that the propagation model developed is ca-
pable of describing a wide variety of conditions of
propagation, including different models of the back-
ground ionosphere, ionospheric fluctuation parameters,
and geometry and orientation of the path of propagation.
In this way, a versatile tool has been created to assess the
effects of signal scintillations on real GPS paths of
propagation.
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[1] A new model for scintillation on transionospheric links, based on a hybrid
method and valid for strong scintillations, has been developed and used to construct
a software transionospheric channel simulator. The method is a combination of the
complex phase method and the random screen technique. The parameters of the
random screen are determined as the result of a rigorous solution to the problem of
propagation inside the ionosphere using the extended Rytov approximation (the
complex phase method). The random two-dimensional spatial spectrum at the screen
is then transferred down to the Earth’s surface employing the rigorous relationships

of the random screen theory. Thus the complex phase method can adequately
introduce a random screen below the ionosphere for L-band frequencies. The
technique is capable of producing statistical characteristics and simulating time
realizations of the field for a wide range of input parameters. Preliminary results
are presented for both weak and strong scintillations.

Citation: Gherm, V. E., N. N. Zernov, and H. J. Strangeways (2005), Propagation model for transionospheric fluctuating paths
of propagation: Simulator of the transionospheric channel, Radio Sci., 40, RS1003, doi:10.1029/2004RS003097.

1. Introduction

[2] There has been a significant amount of work over
the last 40 years considering the problem of wave
propagation in random media and, in particular, into
investigation of the effects of fluctuations of the electron
density of the ionosphere on signals propagating through
the ionosphere. The latter has been partly motivated by
the desire to quantify and assess scintillation effects on
satellite navigation systems such as GPS and Galileo.
Among the widely known models for the transiono-
spheric propagation are WBMOD, which is based on
the phase screen approximation and works for weak
scintillation [Rino, 1979] and GISM which employs a
numerical solution using the multiple phase screen

Copyright 2005 by the American Geophysical Union.
0048-6604/05/2004RS003097$11.00

technique [Béniguel, 2002]. Another propagation model
also valid to describe the regime of weak scintillation
employs the complex phase method, or generalized
Rytov’s approximation [Gherm et al, 2000, 2002a,
2002b].

[3] Many attempts have been made to study the
transionospheric fluctuating channel of propagation in
the framework of the diffusive Markov’s approximation,
or approximation of Markov’s parabolic equations for
the statistical moments of the field. When characterizing
the fluctuating channel of propagation, the second-order
spaced frequency and position coherence functions are of
particular interest, where spaced position can be trans-
formed into a spaced time variable within the assumption
of “frozen drift” of local random inhomogeneities of the
ionosphere. The equation for the second-order space and
frequency coherency was treated numerically [Liu and
Yeh, 1975] (see also the review paper by Yeh and Liu
[1982]). Many authors suggested different approximate
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analytic solutions to the second-order two-frequency
two-position diffusive Markov’s parabolic equation.
Among recent results, the method developed in the
papers by Bitjukov et al. [2002, 2003] to asymptotically
solve the two-frequency two-position Markov’s parabolic
equation, based on the quasi-classic approximation with
complex trajectories, seems to be the most general. It
produces automatically other known solutions to this
equation [Sreenivasiah et al., 1976; Knepp, 1983a; Oz
and Heyman, 1996, 1997a, 1997b, 1997¢c; Bronshtein
and Mazar, 2002]. However, even the exhaustive knowl-
edge of the two-frequency two-position coherence func-
tions (both, the first and second) is not sufficient to
comprehensively characterize the transionospheric fluc-
tuating channel of propagation. The characterization
procedure also requires the appropriate algorithms to
generate random series of a signal that has propagated
through the fluctuating channel, which, in turn, requires
the appropriate probability density functions (PDFs) of
the field’s components. The problem of finding PDFs
has not yet been rigorously solved for conditions
pertaining to propagation through the fluctuating iono-
sphere. Although knowledge of the scintillation index
S4, obtained when solving the fourth-order Markov’s
parabolic equation, can be of use in choosing the
approximate PDF in the family of Nakagami distribu-
tions, this is only one of the possible approximate
approaches. Additionally, it should be said that con-
structing the rigorous solution to the fourth-order
Markov’s parabolic equation is an even more compli-
cated problem than solving the second-order equation
[see, e.g., Gozani, 1993] and fairly comprehensive list
of references on this topic given there). This means that
a rigorous derivation of the scintillation index is also
fairly complicated.

[4] An alternative approach in the description of the
transionospheric fluctuating channel of propagation is a
pure numerical solution of the appropriate parabolic
equations governing the propagation by the split step
technique, or multiple phase screen method [Knepp,
1983b; Grimault, 1998; Béniguel, 2002]. The con-
straints of this technique lie in the problem of a correct
generation of the random inhomogeneities of the
medium of propagation. Additionally, this approach is
fairly time consuming due to the purely numerical
solution.

[5] The method to characterize the fluctuating transi-
onospheric channel of propagation, which will be pre-
sented in this paper, can be termed a hybrid method. It is
a combination of the complex phase method and the
technique of a random screen. Preliminary assessments
show that, for observation points lying inside the iono-
spheric layer, fluctuations of the field amplitude for
frequencies of the order of 1 GHz and higher always
have values which are within the range of validity of the
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complex phase method. This is true even in the case of
very large relative electron density fluctuations (up to
100%) and high values of TEC. For smaller relative
fluctuations and values of TEC this is also true for lower
frequencies. This means that propagation in the iono-
spheric layer for the frequencies mentioned may always
be well described in the scope of the complex phase
method. In turn, this implies that, at L band and higher
frequencies, the regime that results in strong scintillation
does not normally occur inside the ionospheric layer, but
may occur in the region where the field propagates from
the ionosphere down to the Earth’s surface. This circum-
stance permits utilization of the complex phase method
to properly introduce the random screen below the
ionosphere, and then to employ the rigorous relation-
ships of the random screen method to correctly propagate
the field down to the surface of the Earth, over which
path the regime producing strong scintillation may well
be found. This hybrid technique will be outlined in more
detail below.

2. Propagation in the Ionospheric Layer

[¢] Propagation in the ionosphere is described in the
scalar approximation by the equation

V2E + K [eo(r) +e(r, T)E = 48(r —19), (1)

widely used when considering very high frequencies.
Here k is the wave number in vacuum, go(r) is
the dielectric permittivity of the background medium
and e(r, T) is the dielectric permittivity of local random
inhomogeneities. The quantity 4 characterizes the power
of a source. The variable T denotes the possible slow
time dependence of the ionospheric random inhomo-
geneities, which can be described in the quasi-stationary
approximation.

[7] The complex phase method will be employed to
describe the disturbed field in the ionospheric layer.
According to this method the disturbed field is repre-
sented as follows:

E(l‘, W, T) = Eo(l‘, w) eXp[W(rM; T)]) (2)
where the undisturbed field £y is the solution to the
equation (1) with go(r) only. The complex phase v can
account for the effects of random inhomogeneities on
the undisturbed field and is sought as a perturbation
series,

3)

in powers of the disturbances of the ionosphere &(r).
According to the technique of the complex phase
method [see, e.g., Zernov, 1980] the solution to the

V=vy vy,
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functions wy, W,, ... can be written in the invariant

form

w0 = R (E(0) ! [ () Ealt)Glr a4

wa(0) = ~(Ea(e)) " [ (o () Ealt)) G, )
)

In (4) and (5) the function G(r, r’) is the Green’s
function for the undisturbed problem and the w
dependence is suppressed as well as the dependence
on slow time T.

[8] In the classical Rytov’s approximation, the case
was considered of a homogeneous background medium
and the incident field in the form of a plane wave. The
extended Rytov’s approximation, or the complex phase
method must be capable of constructing and describing
complex phases y(r, 7) also in the case of an inhomo-
geneous background medium and a point source of the
field.

[¢] For a slowly varying medium, like the background
ionosphere, both the quantities £y and G may be well
represented by the main term of their geometrical optics
expansions (if the points of observation are not located in
the vicinity of any caustic).

Eo(r) = Eg°(r), (6)
G(r,¥) = GO(r,¥). (7)

[10] Then (5) and (6) together with (3) and (4) yield

w(0) = ~R(EW) " [ B ()6,
(8)

w0 =~ (EW) [ (T () B
(PG (r, ¥ )dr'. 9)

Employing (8) and (9), Zernov [1980] has accomplished
the extension of the classical Rytov’s method, initially to
the case of a plane-stratified background medium and a
point source of the field. In a series of papers, this
extension was used, interalia, to study the statistical
properties of the HF field in the fluctuating ionosphere
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le.g., Gherm and Zernov, 1995, 1998; Gherm et al.,
2001a]. It was also utilized to describe the transiono-
spheric fluctuation channel of propagation [Gherm et al.,
2000, 2002a, 2002b].

[11] Recently, the complex phase method has been
further extended to the most general case of a 3-D
inhomogeneous background medium [Gherm et al.,
2001c]. The main point of the extension was to construct
the complex phases yy, v, for the case when the incident
field is the field of a point source and the background
medium is an arbitrary 3-D slowly varying inhomoge-
neous medium. This appeared to be possible and conve-
nient by making use of ray-centered curvilinear variables
introduced for an arbitrary 3-D inhomogeneous back-
ground medium. The reference ray for this type of
coordinate system is the path of propagation, which
connects the transmitter and receiver in the background
medium.

[12] In the work of Gherm et al. [2001c] the explicit
expressions were derived for yq, v, using these curvi-
linear ray-centered variables with variable s directed
along the reference ray and q = (g1, ¢») lying in the
plane perpendicular to the reference ray at each point. In
this coordinate system complex phases are represented in
the following form (further details are given in the work
of Gherm et al. [2005]):

i (s, q1,
\Vl(Sm0>0)_—E///deﬂlldﬂlz<nfi<ls)qz)hs(S;CI1>Clz)

. ik
- [detBT] ” eXp{% (b1 +85)) g

+ (bzz + b§2)q§+2(b12 + b’i})qlqz} }
(10)

Here no(s) = n(s, 0, 0) = [go(s, 0, 0)]”. B =58+ B
where the matrices B and 5%, with the elements by, i, k =
1, 2 and b%, i, k = 1, 2 respectively, satisfy the matrix
Riccati equations

OB . . .
—+B-B=C 11
n08s+ 3 ( )
oB: . . .
—ng—+ B2 -BE =C. 12
o Os + (12)

The matrix equations (11) and (12) are added to the ray-
tracing code to construct the field of the rays in the
undisturbed background medium.

[13] It is worth pointing out that the derived general
representation for the complex phase y; permits known
limiting cases to be obtained. In particular, if the back-
ground medium is homogeneous, it produces automati-
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cally the complex phase for the case of a spherical
incident field [Tatarskii, 1961],

///dxdydza X,0,2) —— O o—x)

. eXp{ZkO[yz Rk ]xo}7

2x(xo — x)

W X0,0 0)

(13)

and for large-scale local inhomogeneities with scales
greater than the appropriate main Fresnel zone sizes, it
gives the geometrical optics limit as follows:

lk/
2
0

[14] Finally, the disturbed field inside the ionospheric
layer is represented in the following form:

= Eg°(r) exply, (r,w)], (15)

where y(r, w) is given by equation (10). To also obtain
Wa(so, 0, 0), the product £%(s, g1, g») in equation (10)
must be substituted by (Vi (s, g1, qz))z.

¢(s,0,0)

70w ds. (14)

Y <S070 0)

E(r,w)

3. Generation of Random Realizations

[15] The first goal of the investigation is to obtain
the random time series of the field E(r) at the bottom
of the ionosphere in order to be able to further convey
it down to the level of the Earth’s surface. To produce
this random series, both autocorrelation and cross-
correlation functions of the real and imaginary parts
of 4, where

vy (r,w) = X, (r,w) + 8 (r, w), (16)
are needed, i.e.,
By (w;q1,92) = (X1 (w, 41)x1 (W, 42)), (17)
BS<w; q17q2) = <S1<w>ql)S1<w>q2)>> (18)
Bys(w; qp, q3) = (X4 (w0, 41)81{w, q3))- (19)

However, this is not sufficient. In addition, the
probability density functions (PDF) for the distributions
of the random functions ; (level, or log-amplitude) and
S1 (phase) of the random field are also necessary. When
generating x ; and §; spatial distributions, the appropriate
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spatial spectra of the correlation functions (17)—(19) are
employed. Having derived the representation (10), these
spectra can be obtained in the following form

e [ d
T S
BS("um"v-r) :7/

; €0 (S)

cost {1 D) 4 12D1(5)+ 201,051}

(20)

BE(S7 07 nn7 n-r)

So

/ = p (5,0 )
=— | —B.(s
2 8O(S) =2 7 7nn7n‘r

)
1
it {3 EDA6) 4219+ 201,05

(1)

0
mk? ds
BSX(Hna HT) = T / eo(S)BE(Sa Oa Ny T]T)

sinf 4[24 (5)+ 12D.6) + 20.0,.5)]

(22)

where 1, 1. depend on variable s along the reference ray
and are expressed through spectral variables k,, K.,
conjugated to vector q, by means of the following set of
linear relationships

on or on or

on 97 _ - — =k, (23
nnan0+nTan0 Ko, nnaT0+nTaT0 K ( )

Coefficients of the variables v, and n,, on the left-hand
side of the equation (23), are the matrix elements of the
Jacobian d(n, T)/0(ny, To), being the partial derivatives of
the components of the deviation vector at the current
point s with respect to the appropriate deviations at the
final point sg, calculated for the bundle of rays
originating at the source point. The vacuum wave
number is k& = w/c. The function B.(s; 0, k,, k.) is the
three-dimensional spatial spectrum of the electron
density fluctuations with zero value of the spectral
variable Fourier conjugated to the variable s along the
path. The coefficients Dn, D._, and D, are the elements
of the matrix D= (B ) , 1.e., the inverse to the matrix
B* , introduced in the Work of Gherm et al. [2001c]. The
matnx B" is actually a sum of curvature matrices of the
incident field and of the Green’s function. These are
obtained by integrating the corresponding differential
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equations along the reference ray and also depend on the
variable s.

[16] Inthe case when particular accuracy of calculation
of scintillation effects is not of a very high importance,
the curvature of the line of sight ray can be neglected
and the appropriate equations (20)—(22) can be simpli-
fied to the final form of

So

k> ds
B ny v ) = —(— B 0 ns s
S(H H) 2 /€0<S) ( » N M S)
0
1 s{so —s)
2 2
. _ 24
w9 gy
k>
BX<HH7HT) / 0 T]I’HT]TPS)
0
(SO—S)
25
{ we=dh )
BSX<HH7HT) / 0 T]nynﬂs)
0
—(m+m) (5o =) (26)
k n T 50 ?
with
Koy K
= — = 2
e s/so’ /S0 (27)

[17] Here the integration is carried out along the
straight line of sight, but functions eo(s) and oN(s)
involved in B, (see below), are taken from real 3-D
distributions of the background ionosphere and fluctua-
tions of the electron density of the ionosphere.

[18] In the numerical calculations, a turbulence model
of the ionospheric fluctuations is considered with an
anisotropic inverse power law spatial spectrum of the
form:

BE(S,K,) = C]%[[l - €0<S)]2012v<s) (1 +K_§+KZ> :
(28)

Here CN is a known normahzatlon coefficient. K, =
2TYZtg and K, = 2TYltr where /,, and [, are the outer
scales of the turbulence along and perpendicular to the
geomagnetic field direction respectively. The function
go(s) 1s the distribution of the dielectric permittivity of
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the background ionosphere along the reference ray | in the
3-D inhomogeneous background ionosphere and o N(s) is
the distribution of the variance of the relative fluctuations
of the electron density of the ionosphere, again along the
reference ray in the 3-D inhomogeneous ionosphere.

[19] As far as the PDFs for x; and S are concerned,
both these quantities, according to equation (10), are
represented as a sum of a large number of statistically
independent random contributions (the integral in (10) is
over a large number of random inhomogeneities).
According to the central limit theorem, this means that
both the random functions x; and §; are normally
distributed.

[20] The spectra (20)—(22}) of the appropriate correla-
tion functions (17)—(19) and the known PDFs permit the
proper generation of the random two-dimensional distri-
butions of x; and Sy below the ionosphere, and, in this
way, to introduce the random screen with a given random
field. Then, its random spatial Fourier transform is
conveyed down to the Earth’s surface by the propagator

iRz
2k

[21] Finally, performing inverse Fourier transformation
of the random spectra of x; and §; at the Earth’s
surface yields, at this location, the desired random
spatial distributions of x; and S;. The latter, with the
assumption of “frozen drift” of the inhomogeneities in
the ionosphere, can be transformed to random time
series of the field log amplitude x; and the phase S;
of the field.

E(z,k,t) = €FE(0,k, ) exp <— (29)

4. Applications

[22] The hybrid technique, outlined above, for
describing the transionospheric fluctuating channel of
propagation permits the determination of different
characteristics of the field propagated from satellite
altitudes down to the Earth’s surface. The results, which
will be presented below, have been obtained for the
following conditions of propagation: (1) the NeQuick
model profile of the background ionosphere for the
low-latitude ionosphere with a TEC value of 90 TECU;
(2) the value of the spectral index (p) of the spatial
spectrum of the electron density fluctuation in (28) was
3.7; (3) the variance of the relative electron fluctuations
0% was 1072; (4) the cross-field outer scale was 10 km
and the aspect ratio a was 5; (5) the elevation angle of
the path of propagation was 60° and its azimuth was
180°; (6) the effective velocity of the horizontal frozen
drift was 300 m/s; and (7) the transmission frequency
was 430 MHz (for strong scintillation) and 1545 MHz
(for weak scintillation).
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phase realization 65=3.02 amplitude realization 0,=0.428

X, km

X, km

Figure 1. Two-dimensional realizations of random distributions of (left) phase and (right) log
amplitude at the Earth’s surface. See color version of this figure in the HTML.

realization of phase, f =430 MHz realization of amplitude, f =430 MHz

10 T T

|
(4]

phase, rad

L
=)

amplitude, dB

T O o |

80 0 20 40 60 80

Figure 2. Random time series for the (left) phase (radians) and (right) amplitude of the field. See
color version of this figure in the HTML.
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dS/dt, rad/s, f =430 MHz
] T T T T

dS/dt, rad/s

10 20 30 40 50 80 70

Figure 3. Rate of phase change obtained by taking the
time derivative of the phase variation shown in Figure 2.
See color version of this figure in the HTML.

[23] The following series of figures illustrate how the
hybrid technique works. Figure 1 shows the two-dimen-
sional realizations of the random distributions of phase
(left panel) and log amplitude (right panel) at the Earth’s
surface. When the hypothesis of the frozen drift is
assumed the distributions represented in Figure 1 are
transformed into random time series for the phase (left
panel in Figure 2} and amplitude (right panel in Figure 2)
of the field. Then the rate of phase change, shown in
Figure 3, is determined by taking the time derivative of

spectra of amplitude and phase, f =430 MHz
T T

60

spectral power, dB

amplitude

phase

“ 107 10° 10
frequency, Hz

Figure 4. Frequency spectra of the phase and log-
amplitude fluctuations of the field simulated for the
regime of strong scintillation (S; = 0.727). See color
version of this figure in the HTML.
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probability of received intensity, f =430 MHz
0.14 T T T T T

—— §,=0727 ‘
0.121
D] L L L S 8
E.o.oa——r—rr—: rrrrrrr SRR IR I R B R
]
o
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004f- -l SR S SR U oA
L e e e A S
o ; ; ;
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Figure 5. The probability density function for the
amplitude fluctuations showing an asymmetric form for
the regime of strong scintillation (S; = 0.727). See color
version of this figure in the HTML.

the phase variation as shown in Figure 2. This is an
important parameter when assessing the probability of
phase lock loss at the moments of the deepest fading of
the signal [c.f. Gherm et al, 2003]. In Figure 4 the
frequency spectra of the phase and log amplitude fluc-

scatter plot of random component, f =430 MHz

Quadrature

In-phase

Figure 6. Scatterplot of the random walk of the phasor
R(r , w, T), representing the field propagated through the
fluctuating ionosphere for the case of strong scattering.
See color version of this figure in the HTML.

7 of 9



RS1003

scatter plot of random component, f=1575 MHz

2 L
1 "
2
2
©
5 0
©
=
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14t
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In-phase

Figure 7. Scatterplot of the random walk of the phasor
R(r , w, T) for the case of weak scattering (transmission
frequency = 1.545 GHz and S, = 0.158). See color
version of this figure in the HTML.

tuations of the field are presented, simulated for the
regime of strong scintillation S, = 0.727. Considering
the forms of the log amplitude and phase spectra, the
regime of strong scintillation is characterized by the fact
that both curves do not merge at the high-frequency tail.
This distinguishes the case of strong scintillation from
the case of weak scintillation, when the curves of the
phase and log amplitude spectra merge at high frequen-
cies. Additionally, in the case of strong scintillation, the
probability density function for the amplitude fluctua-
tions is of asymmetric form, as seen in Figure 5. Finally,
Figure 6 demonstrates the random walk of the phasor
R(r, w, T) representing the field propagated through the
fluctuating ionosphere. By contrast the scatterplot of the
random component is shown in Figure 7 for the case of
weak scattering (transmission frequency 1.545 GHz and
S, = 0.158).

5. Conclusions

[24] The presented technique is capable of producing
statistical characteristics and simulating time realisations
of the field (including regime of strong amplitude
fluctuations) for a wide range of the input parameters:
(1) coordinates of the satellite and point of observation;
(2) slant electron density profile along a given path; (3)
zenith angle of a satellite; (4) magnetic azimuth of the
plane of propagation; (5) magnetic field dip angle at the
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pierce point; (6) the parameters of the random irregular-
ities: their spectral index, their outer scale along and
perpendicular to the geomagnetic field direction, their
effective drift velocity and the variance of the fractional
electron density fluctuations. Additionally, the developed
technique allows investigation of the problems of the
spatial correlation of the signals on transionospheric
links and, in particular, for differential GPS [cf. Gherm
et al., 2001b].

[25] Acknowledgment. The work was done under the
financial support of the Russian Ministry for education grant
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