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Preface
This compendium is a concise version of a course of lectures on wave prop-

agation in random media that was given by the author at the University of
Uppsala, Sweden few years ago . The full version of the course was published
by the presenting author in co-authorship with Dr. Bengt Lundborg [Zernov
and Lundborg 1993]. Dr. Lundborg prepared the initial English draft version
of the compendium. The draft was subsequently elaborated by both authors to
its final form. Full course of lectures is regularly delivered by Prof. N.N.Zernov
at the University of St.Petersburg, Russia to the students specializing in radio
wave propagation. It gives main notions, definitions and basic ideas of a series
of methods employed in the theory of wave propagation in random media. In
the present version all the methods are discussed in their most simple form,
i.e., when the background medium is assumed to be homogeneous. This makes
description of the methods more transparent and less overloaded by (sometimes
boring) transformations and manipulations. At the same time it should be men-
tioned that in the works of numerous authors (including the presenting author)
methods have been extended to the more practical and important case of the
inhomogeneous background media. The full version of the course outlines many
of these extensions.

The widely known books by Tatarski [1961; 1967], Rytov [1976], Rytov,
Kravtsov and Tatarski [1978; 1987; 1988; 1989], Ishimaru [1978], Yeh and
Liu [1972], Budden [1985] and Kravtsov and Orlov [1980] have been used
for the basic contents of the lectures, without giving specific references to these
books.

Along with the basic items, the author additionally included in the list of
references a series of papers pertinent to the subject under consideration, which
reflect to some extent the up-to-date status of the theory of wave propagation in
random media. Among others the papers written by the author in co-authorship
with his colleagues are also presented in the List of References, which are de-
voted to the problems of propagation of the high frequency wave fields in the
ionospheric reflection and transionospheric fluctuation channels of propagation
(the copies of some of those papers are also applied). In these papers one can
additionally find numerous references to the papers of many other authors , who
worked into similar problems.
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Chapter 1

Introduction to the theory
of random functions

In many cases wave propagation through the ionosphere can be described by
the Helmholtz’ equation for a component of the electromagnetic field:

∇2E + k2ε(r, ω, t)E = 0 (1.1)

supplemented by appropriate boundary conditions. The isotropic approxima-
tion (no geomagnetic field) is quite sufficient to describe the essential effects
of the fluctuations of the ionosphere, at least neglecting the effects of ordinary-
extraordinary wave coupling. By this we avoid a lot of mathematical complexity,
since we can use instead of the permittivity tensor the scalar dielectric permit-
tivity

ε(r, ω, t) = 1− e2N(r, t)
mε0ω2

(1.2)

Here N(r, t) is the electron density as a function of space and time coordinates.
This may be a smooth and slowly varying regular function, in which case we have
a deterministic wave propagation problem which can be treated with traditional
methods such as ray tracing. In more realistic models of the ionosphere N(r, t)
includes local inhomogeneities and fluctuations. When we describe the influence
of fluctuations we can write

N(r, t) = 〈N(r)〉+ ∆N(r, t) (1.3)

The function 〈N(r)〉 is a regular function which represents the background, the
average large-scale density of the ionosphere, and is assumed independent of
time. The fluctuations are expressed by the quantity ∆N(r, t) , which is a zero-
mean random function, i.e. it fulfils

〈∆N(r, t)〉 = 0 (1.4)

With (1.3) the wave equation (1.1) is a stochastic differential equation. This
is the topic of the present course and to solve (1.1) we therefore need some
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tools from this branch of mathematics. Hence we devote this Chapter to an
introduction to the theory of random functions.

1.1 Random values

We denote a random value by the symbol ξ . If we restrict the treatment to
the case of continuous random variables, the probability that ξ takes a value in
the interval (x, x+dx) is expressed by means of the probability density function
(PDF) w(x) as follows:

P (x ≤ ξ ≤ x+ dx) = w(x) dx (1.5)

The interval of ξ may be finite, ξ ∈ [a, b] , or infinite, ξ ∈ (−∞,+∞) .
By means of the probability density function, moments of ξ can be con-

structed:
〈ξ〉 =

∫
xw(x) dx (1.6a)

〈
ξ2
〉

=
∫
x2 w(x) dx (1.6b)

and so on. In fact, for any deterministic function f(x) , its average is given by

〈f(ξ)〉 =
∫
f(x)w(x) dx (1.6c)

An alternative approach to the description using the probability density
function is the characteristic function for ξ :

ϕξ(u) =
〈
eiξu

〉
(1.7)

where u is a deterministic variable. If the domain of definition for ξ is infinite,
the characteristic function obviously forms a Fourier transform pair with the
probability density function:

ϕξ(u) =

+∞∫
−∞

w(x) eixu dx (1.7a′)

w(x) =
1
2π

+∞∫
−∞

ϕξ(u) e−ixu du (1.7b′)

1.2 The definition of probability

In order to be a probability, P must possess the following three properties.
1. The property of positive-definiteness:

P ≥ 0 (1.8a)
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2. Probabilities of mutually excluding events Ak are additive:

P

(⋃
k

Ak

)
=
∑

k

P (Ak) (1.8b)

3. The deterministic event D has probability unity:

P (D) = 1 (1.8c)

The last property leads to the normalization property of the probability density
function: ∫

w(x) dx = 1 (1.9)

1.3 Random functions

ξ(Q) is a random function if for every value Q of the independent variable, ξ(Q)
is a random value. In the most general case ξ is a function of space and time:
Q = {r, t} . In special cases we may have Q = {r} or Q = {t} . The case ξ(r) is
called a random field and the case ξ(t) is called a random process.

1.4 Probability density functions

With random functions the concept of probability density is much more com-
plicated than for random values. Since Q may take a continuum of values it is
now necessary to describe how the probabilities for neighbouring Q’s are related
to each other.

We now have the first-order probability density function

w1(ξ,Q) dξ = P (ξ ≤ ξ(Q) ≤ ξ + dξ) (1.10a)

which corresponds to the definition (1.5). Furthermore we have a set of higher-
order probability density functions:

w2(ξ1, Q1, ξ2, Q2) dξ1dξ2 = P (ξ1 ≤ ξ(Q1) ≤ ξ1 + dξ1; ξ2 ≤ ξ(Q2) ≤ ξ2 + dξ2)
(1.10b)

.....

wn(ξ1, Q1, ..., ξn, Qn) dξ1...dξn = P (ξ1 ≤ ξ(Q1) ≤ ξ1+dξ1; ...; ξn ≤ ξ(Qn) ≤ ξn+dξn)
(1.10c)

.....
For a rigorous and complete description of the random function, the entire
infinite set of multi-dimensional PDF’s is reqired.

The following are necessary properties of probability density functions.
1. They are invariant for permutations of each pair of arguments:

wn(ξ1, Q1, ...ξi, Qi, ...ξj , Qj , ..., ξn, Qn) = wn(ξ1, Q1, ...ξj , Qj , ...ξi, Qi, ..., ξn, Qn)
(1.11a)
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2. The PDF’s of lower order can be obtained from those of higher order:

wk(ξ1, Q1, ...ξk, Qk) =
∫
wn(ξ1, Q1, ...ξk, Qk, ξk+1, Qk+1, ..., ξn, Qn) dξk+1...dξn

(1.11b)
3. Normalization property (note that the dependencies on all Qi vanish in the
integration): ∫

wn(ξ1, Q1, ...ξn, Qn) dξ1...dξn = 1 (1.11c)

1.5 Moments of random functions

Corresponding to the set of PDF’s we may also construct moments of ξ(Q) of
arbitrary orders. To start with we have the first-order moment

M1(Q) = 〈ξ(Q)〉 =
∫
ξ w1(ξ,Q) dξ (1.12a)

The second-order moment is defined by

B2(Q1, Q2) = 〈ξ(Q1) ξ(Q2)〉 =
∫
ξ1ξ2 w2(ξ1, Q1, ξ2, Q2) dξ1dξ2 (1.12b)

In describing energy level fluctuations of ionospheric signals, fourth-order mo-
ments are employed.

Because of the property (1.11b) we may also obtain M1 from the second-
order PDF as follows:

M1(Q1) =
∫
ξ1 w2(ξ1, Q1, ξ2, Q2) dξ1dξ2 (1.13)

Similarly each moment of a lower order can in general be calculated using a
higher-order PDF with integration over the extra variables.

1.6 Correlation functions and their properties

An important second-order moment is the correlation function

ψξ(Q1, Q2) =
〈
[ξ(Q1)− 〈ξ(Q1)〉] [ξ(Q2)− 〈ξ(Q2)〉]

〉
=
∫

[ξ(Q1)− 〈ξ(Q1)〉] [ξ(Q2)− 〈ξ(Q2)〉] w2(ξ1, Q1, ξ2, Q2) dξ1dξ2 (1.14)

It is easy to show that this definition is equivalent to

ψξ(Q1, Q2) = B2(Q1, Q2)− 〈ξ(Q1)〉 〈ξ(Q2)〉 (1.15)

In particular, the second term in (1.15) vanishes when the regular part has been
subtracted so that ξ(Q) is a zero-mean random function.
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When we deal with complex random functions

ζ(Q) = ξ(Q) + i η(Q) (1.16)

where ξ(Q) and η(Q) both are real random functions, the 2n-dimensional PDF’s
must be introduced w2n(ξ1, Q1, ..., ξn, Qn; η1, Q1, ..., ηn, Qn) for each n to get a
complete description. All properties introduced above for the random functions
apply also for the complex random functions. It is convenient to have a special
notation for the zero-mean random part of a random function ζ(Q) . Hence we
put a tilde above such quantities:

ζ̃(Q) = ζ(Q)− 〈ζ(Q)〉 (1.17)

In the complex case we are now dealing with two correlation functions, de-
fined as follows:

ψζ(Q1, Q2) =
〈
ζ̃(Q1)ζ̃∗(Q2)

〉
, first correlation function (1.18a)

ψ̃ζ(Q1, Q2) =
〈
ζ̃(Q1)ζ̃(Q2)

〉
, second correlation function (1.18b)

The first correlation function has three important properties.
1. Hermitean property:

ψζ(Q1, Q2) = ψ∗ζ (Q2, Q1) (1.19a)

2. It fulfils the inequality

|ψζ(Q1, Q2)|2 ≤ σ2
ζ (Q1) σ2

ζ (Q2) (1.19b)

where the variance or statistical dispersion σ2
ζ (Q) is a real quantity:

σ2
ζ (Q) = σ2

ξ (Q) + σ2
η(Q) = ψζ(Q,Q) (1.20)

Introducing the correlation coefficient

Kζ(Q1, Q2) =
ψζ(Q1, Q2)

σζ(Q1) σζ(Q2)
(1.21)

we may use the property (1.19b) to obtain the following property of the corre-
lation coefficient:

|Kζ(Q1, Q2)| ≤ 1 (1.19b′)

3. For an arbitrary deterministic function u(Q) , the following inequality holds:∫
ψζ(Q1, Q2) u(Q1)u∗(Q2) dQ1dQ2 ≥ 0 (1.19c)

(property of positive definiteness).
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1.7 Statistical homogeneity

We have two forms of statistical homogeneity for a random function ξ(Q) , viz.
in the strict and in the wide or weak sense. The corresponding terms for random
processes are stationarity in the strict and in the weak sense.

Statistical homogeneity in the strict sense amounts to the property of trans-
lational invariance for arbitrary-order PDF’s, i.e. for any ∆Q , any Q1, ..., Qn

and any wn one has

wn(ξ1, Q1, ..., ξn, Qn) = wn(ξ1, Q1 + ∆Q, ..., ξn, Qn + ∆Q) (1.22)

When (1.22) pertains it is easily shown that (1.12a,b) simplifies to

M1(Q) =
∫
ξ w1(ξ, 0) dξ = M1(0) = const. (1.23a)

B2(Q1, Q2) =
∫
ξ1ξ2 w2(ξ1, 0, ξ2, Q2−Q1) dξ1dξ2 = B2(0, Q2−Q1) = B2(Q2−Q1)

(1.23b)
Eqs. (1.23a,b) are, in fact, the conditions for statistical homogeneity in the wider
sense. These conditions can hold even if (1.22) is not known to hold, and hence
the conditions (1.23a,b) are weaker than (1.22).

We can now reformulate the properties (1.19a–c) for the correlation function
in the case of statistical homogeneity as follows:
1. The Hermiticity gives in this case

ψζ(Q) = ψ∗ζ (−Q) (1.24a)

This can also be expressed

ψζ(Q) = aζ(Q) + i bζ(Q) (1.24a′)

ψ∗ζ (−Q) = aζ(−Q)− i bζ(−Q) (1.24a′′)

where aζ(Q) is an even function and bζ(Q) is an odd function.
2. The inequality

|ψζ(Q)| ≤ σ2
ζ = ψζ(0) = const. (1.24b)

3. The positive-definiteness is the same as (1.19c) with obvious changes in
arguments.

As illustrations of statistical homogeneity, let us consider a few examples
of random fields, where the correlation function

ψξ(r1 − r2) = ψξ(r) (1.25)

in general depends on all spatial coordinates, ψξ(x, y, z) . This function can be
anisotropic, e.g.

ψξ(r) = σ2
ξ exp

(
− x2

2a2
− y2

2b2
− z2

2c2

)
(1.26)

6



with three spatial scales a, b and c along the arbitrarily oriented x-, y- and
z-axes. A more general case of this can be written ψξ(r) = ψξ(x/a, y/b, z/c)
which is typical in the case of ionospheric field-aligned irregularities.

As examples of statistically homogeneous isotropic random fields,

ψξ(r) = ψξ(r) (1.27)

we may consider, e.g.

ψξ(r) = σ2
ξ exp

(
− r2

2a2

)
(1.28)

or
ψξ(r) = σ2

ξ exp
(
− r

2a

)
(1.29)

We may define an effective scale size `ef through

σ2
ξ `ef =

∞∫
0

ψξ(r) dr (1.30)

if this integral converges (convergence is not always the case).

1.8 Spectra of random functions

We can formally write for the random function the Fourier representation

ζ(r, t) =
∫∫∫∫

ζ(κ, ω) exp[+i(κ · r− ωt)] dκ dω (1.31a)

and its Fourier transform

ζ(κ, ω) =
1

(2π)4

∫∫∫∫
ζ(r, t) exp[−i(κ · r− ωt)] dr dt (1.31b)

In these expressions r = {x, y, z} = {x1, x2, x3} and the spatial frequency is
κ = {κ1, κ2, κ3} . Elements of volume integration are written in the usual way,
i.e. dr denotes dxdy dz and dκ denotes dκ1 dκ2 dκ3 . The overlining is used to
denote the Fourier conjugate of the random function. We shall in most of the
following simplify the notations by writing many-dimensional integrals with only
one integral sign, the dimension of an integral being obvious from the element
of integration.

However, the integrals (1.31a,b) are in practice not always convergent. For
example if ξ(r, t) is statistically homogeneous, its spectrum is a delta function.
In contrast, correlation function spectra are in general convergent in the mean-
square sense. Hence the Fourier transform pair involving the first correlation
function is in most cases well-defined:

〈ψζ(r1, t1, r2, t2) =

7



∫ 〈
ζ̃(κ1, ω1) ζ̃

∗
(κ2, ω2)

〉
exp[i(κ1 · r1 − ω1t1 − κ2 · r2 + ω2t2)] dκ1dκ2dω1dω2 (1.32a)

〈
ζ̃(κ1, ω1) ζ̃

∗
(κ2, ω2)

〉
=

1
(2π)8

∫
ψζ(r1, t1, r2, t2)

exp[−i(κ1 · r1 − ω1t1 − κ2 · r2 + ω2t2)] dr1dr2dt1dt2 (1.32b)

When speaking about random function spectra, we shall therefore understand
the Fourier transform pairs for correlation functions.

1.9 Spatial spectral expansions for homogeneous
random fields

When the correlation function for a random field has the simpler form for sta-
tistical homogeneity, the transform corresponding to (1.32b) is〈
ζ̃(κ1) ζ̃

∗
(κ2)

〉
=

1
(2π)6

∫
ψζ(r1 − r2) exp[−i(κ1 · r1 −κ2 · r2)] dr1dr2 (1.33)

Performing in this integral the change of variables

r1 → r1 , r1 − r2 → ρ (1.34)

with the Jacobian having a determinant of absolute value unity,

dr1 dr2 =

∣∣∣∣∣∣∣
∂r1

∂r1

∂r2

∂r1
∂r1

∂ρ

∂r2

∂ρ

∣∣∣∣∣∣∣ dr1 dρ = dr1 dρ (1.35)

we can simplify the correlation function spectrum (1.33) as follows〈
ζ̃(κ1) ζ̃

∗
(κ2)

〉
=

1
(2π)3

∫
ψζ(ρ) exp[−iκ2 · ρ] dρ$

1
(2π)3

∫
exp[−i(κ1 − κ2) · r1] dr1 = φζ(κ2) δ(κ1 − κ2) (1.36)

where δ(κ) is the Dirac delta function of a vector argument

δ(κ) =
1

(2π)3

∫
exp[−iκ · r] dr (1.37)

and
φζ(κ) =

1
(2π)3

∫
ψζ(ρ) exp[−iκ · ρ] dρ (1.38b)
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The inverse of (1.38b) is

ψζ(ρ) =
∫
φζ(κ) exp[+iκ · ρ] dκ (1.38a)

Taking the complex conjugate of (1.38b), changing then the sign of the
variable, ρ → −ρ , and using finally the property (1.24a), we find

φζ(κ) = φ∗ζ(κ) (1.39)

i.e. φζ(κ) is a real function.
An interesting special case is when also ψζ(r) is real. Then (1.38a,b) can be

evaluated with the cosine transform:

ψζ(r) =
∫
φζ(κ) cos(κ · r) dκ (1.40a)

φζ(κ) =
1

(2π)3

∫
ψζ(ρ) cos(κ · ρ) dρ (1.40b)

Hence ψζ(r) and φζ(κ) are then even functions of their arguments.
As another special case we shall also consider the isotropic case ψζ(r) =

ψζ(r) . In spherical coordinates (r, θ, ϕ) with κ as polar axis we then have
dr = r2 sin θ dr dθ dϕ . Then (1.38b) yields

φζ(κ) =
1

2π2κ

∞∫
0

r ψζ(r) sin(κr) dr (1.41b)

This expression involves the sine transform, and hence, by using the formula for
the inverse sine transform, we find

ψζ(r) =
4π
r

∞∫
0

κ φζ(κ) sin(κr) dκ (1.41a)

We shall conclude this section by pointing out a consequence of the fact that
the arguments of the correlation functions must be dimensionless. If the typical
characteristic scale in ordinary space is `ζ , then the spatial spectrum has the
typical scale size κζ ∼ `−1

ζ , as can be seen from

φζ(κ) =
1

(2π)3

∫
ψζ

(
r
`ζ

)
exp

[
−iκ `ζ ·

r
`ζ

]
dr =

(
`ζ
2π

)3 ∫
ψζ(α) exp[−iκ `ζ ·α] dα ∼ φζ(κ`ζ) (1.42)

so that κζ `ζ ∼ 1. The quantity α is the dimensionless space variable r/`ζ .
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1.10 Spatial and frequency expansions

When the correlation function is homogeneous in time as well as in position,
ψζ(r1 − r2, t1 − t2) , we find as a natural generalization of the spatially homo-
geneous case the correlation function spectrum〈

ζ̃(κ1, ω1) ζ̃
∗
(κ2, ω2)

〉
= φζ(κ2, ω2) δ(κ1 − κ2) δ(ω1 − ω2) (1.43)

where
φζ(κ, ω) =

1
(2π)4

∫
ψζ(r, t) exp[−i(κ · r− ωt)] dr dt (1.44)

Integrating this over frequency and using the δ-function (1.37), we find the
pure spatial spectrum of the homogeneous correlation function:

φsp
ζ (κ) =

∫
φζ(κ, ω) dω =

1
(2π)3

∫
ψζ(r, 0) exp[−iκ · r] dr (1.45)

Integrating over the spatial variable we find, instead, the pure frequency spec-
trum:

φfr
ζ (ω) =

∫
φζ(κ, ω) dκ =

1
2π

∫
ψζ(0, t) exp[+iωt] dt (1.46)

1.11 The model of frozen drift

This model is useful when there is a macroscopic velocity v involved, which
dominates over the internal isotropically fluctuating velocities of the medium
as for, e.g. the transionospheric signal from a satellite moving with high speed.
Then the correlation function can be written

ψζ(r, t) = ψζ(r− vt) (1.47)

The spectrum of this function is expressed by (1.44). Introducing there the
variable transformation

t→ t , r− v t→ ρ (1.48)

and noting that the determinant modulus of the Jacobian here, as with (1.34),
is unity, we obtain the correlation function spectrum

φζ(κ, ω) =
1

(2π)4

∫
ψζ(ρ) exp[−i(κ ·ρ+κ ·v t−ωt)] dρ dt = φζ(κ) δ(ω−κ ·v)

(1.49)
with φζ(κ) given by (1.38b).

To express the pure frequency spectrum (1.46), which now is

φfr
ζ (ω) =

∫
φζ(κ) δ(ω − κ · v) dκ (1.50)
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we split κ into its parallel and perpendicular components:

κ = {κ‖,κ⊥} ; where κ‖ = κ · v/v , κ⊥ = κ− κ‖v/v (1.51)

Hence we obtain the result

φfr
ζ (ω) =

∫
φζ(κ‖,κ⊥) δ(ω − κ‖v) dκ‖ dκ⊥ = 1

v

∫
φζ

(ω
v
,κ⊥

)
dκ⊥ (1.52)

1.12 Quasi-homogeneous fields

To define the concept of quasi-homogeneity we consider again the general spatial
correlation function

ψζ(r1, r2) = σζ(r1) σζ(r2) Kζ(r1, r2) (1.53)

In the special case of statistical homogeneity (1.53) can be written

ψζ(r1 − r2) = σ2
ζ Kζ(r1 − r2) (1.54)

If, on the other hand, we introduce the new spatial variables:

R = 1
2 (r1 + r2) , r = r1 − r2 (1.55)

the general correlation function (1.53) can be written

ψζ(R, r) = σζ

(
R + 1

2r
)
σζ

(
R− 1

2r
)
Kζ(R, r) (1.56)

Quasi-homogeneity implies that two spatial scales are involved, one scale `ef

for the relative variable r and another Lef for the central variable R , and that

`ef � Lef (1.57)

Homogeneity, in particular, is the limiting case when Lef = ∞ and then `ef is
the only spatial scale.

In the quasi-homogeneous case we may approximate (1.56) as follows:

ψζ(R, r) = σ2
ζ (R) Kζ(R, r) (1.58)

The Fourier transform pair in the fast variable corresponding to (1.38a,b) is now

ψζ(R, r) =
∫
φζ(R,κ) exp[+iκ · r] dκ (1.59a)

φζ(R,κ) =
1

(2π)3

∫
ψζ(R, r) exp[−iκ · r] dr (1.59b)

The function φζ(R,κ) signifies a local spectrum, which depends slowly on R .
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1.13 The concept of ergodicity

The theoretical introduction in this Chapter is based upon averaging over sta-
tistical ensembles, expressed by the angular brackets 〈 〉 . Experimentally we
are confined to measurements on a concrete realization of the ensemble. Then
the averages of any deterministic function F [ξ(r, t)] , e.g. the mean value, must
be formed by time averaging

F [ξ(r, t)] = 1
T

T∫
0

F [ξ(r, t)] dt (1.60)

The important principle of ergodicity implies that ensemble averages are
equal to time averages as T →∞ , i.e.

lim
T→∞

F [ξ(r, t)] = 〈F [ξ(r, t)]〉 (1.61)

A necessary condition for a stationary process to be ergodic is that

lim
T→∞

1
T

T∫
0

ψF (t) dt = 0 (1.62)

1.14 The structure functions and random fields
with stationary increments

The correlation function for the real random field ξ(r) is according to (1.18)
given by

ψξ(r1, r2) =
〈
ξ̃(r1) ξ̃(r2)

〉
(1.63)

Another commonly used second-order moment is the structure function, which
in the general case is defined by

Dξ(r1, r2) =
〈
[ξ̃(r1)− ξ̃(r2)]2

〉
=
〈
ξ̃2(r1)

〉
+
〈
ξ̃2(r2)

〉
−2
〈
ξ̃(r1) ξ̃(r2)

〉
(1.64)

In the situation of statistical homogeneity (Section 1.7) the structure function
depends only on the difference variable r = r1 − r2 . From (1.64) we easily find

Dξ(r) = 2 [σ2
ξ − ψξ(r)] = 2 [ψξ(0)− ψξ(r)] (1.65)

Since the random functions considered in this Section are real, the Fourier
transform pair ψξ(r) , φξ(κ) can be expressed by the cosine transform, (1.40a,b).
It is interesting to obtain a transform pair relating Dξ(r) and φξ(κ) to each
other. Using (1.40a), we can express (1.65) as follows:

Dξ(r) = 2
∫
φξ(κ) [1− cos(κ · r)] dκ (1.66a)
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The gradient of this formula is

∇Dξ(r) = 2
∫

κ1 φξ(κ1) sin(κ1 · r)] dκ1 (1.67)

Multiplying on both sides by exp[−iκ · r] , expressing the sine with exponential
functions and integrating over r , we obtain as the next step∫

[∇Dξ(r)] exp[−iκ · r] dr =

−i
∫

κ1 φξ(κ1) {exp[+i(κ1 − κ) · r]− exp[−i(κ1 + κ) · r]} dκ1dr =

−i (2π)3
∫

κ1 φξ(κ1) [δ(κ1 − κ)− δ(κ1 + κ)] dκ1 = −2i (2π)3κφξ(κ)

(1.68)
After scalar multiplication with κ in the above, we may write the result

φξ(κ) =
i

2(2π)3κ2

∫
κ · ∇Dξ(r) exp[−iκ · r] dr (1.69)

Since ψξ is an even function, ∇Dξ must be odd, and hence we arrive at the
following form:

φξ(κ) =
1

16π3κ2

∫
κ · ∇Dξ(r) sinκ · r dr (1.66b)

which we shall adopt as the inverse of (1.66a). We point out that when φξ(κ)
has a singularity ∼ 1/κα as κ→ 0 , it may happen that Dξ(r) exists but ψξ(r)
cannot be constructed because of the singularity; cf. (1.40a) and (1.66a). For
the convergence of (1.40a) the singularity of φξ(κ) must fulfil α < 3 , but for
the convergence of (1.66a) it is sufficient that α < 5 .

Eqs. (1.66a,b) have been obtained formally for the case of statistical homo-
geneity, when

ψξ(r1, r2) = ψξ(r1 − r2) (1.70)

It can be shown that they remain valid for the more general case when the
structure function Dξ obeys the corresponding relation

Dξ(r1, r2) = Dξ(r1 − r2) (1.71)

but nothing is stated about ψξ . We remark that a necessary condition for (1.71)
is that

〈ξ(r1)〉 − 〈ξ(r2)〉 = a (r1 − r2) (1.72)

where a is a constant. This means that ξ(r) has a stationary increment, so
(1.71) is the definition of the random fields with stationary increments.
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Chapter 2

Statement of the problems
in the statistical theory of
wave propagation

2.1 Stationary and quasi-stationary forms of Max-
well’s equations

We shall denote the arbitrary time-dependent fields by calligraphic letters;
E(r, t), H(r, t), D(r, t) and B(r, t) = µ0 H(r, t) .

Maxwell’s equations for the electromagnetic field (without outer sources,
currents and magnetic polarization) are

∇ ·D = 0 (2.1a)

∇ ·B = 0 (2.1b)

∇×H =
∂D
∂t

(2.1c)

∇× E = −µ0
∂H
∂t

(2.1d)

Eliminating H between (2.1c) and (2.1d) and using a well-known formula from
vector analysis, we easily obtain the wave equation

∇∇ · E −∇2 E = −µ0
∂2D
∂t2

(2.2)

To develop this equation further, we need the constitutive relation between
E and D . In its most general form for a cold plasma, involving temporal
dispersion but being local in space, it is given by the linear functional

D(r, t) =

t∫
−∞

ε(r, t, t′) E(r, t′) dt′ (2.3)
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For a nondispersive medium we have locality also in time, and the permit-
tivity is given by the expression

ε(r, t, t′) = ε[r, 1
2 (t+ t′)] δ(t− t′) = ε(r, t) δ(t− t′) (2.4)

so that (2.3) simply becomes

D(r, t) = ε(r, t) E(r, t) (2.5)

This form is, however, not applicable to a plasma.
The fields of a harmonic process are characterized by the simple time-dependence

E(r, t) = E(r) e−iωt (2.6)

Here E is the complex amplitude of the field. For such fields time derivatives
can be obtained by replacement with a simple multiplication:

∂

∂t
→ −i ω (2.7)

However, in quasi-harmonic processes, where the medium is slowly changing
its properties with time, we have time-dependent amplitudes, i.e. instead of
(2.6) we have to work with

E(r, t, αt) = E(r, αt) e−iωt (2.8)

where the slowness of the time-dependence in E is indicated by the smallness
of the formal parameter α . The rule (2.7) is still valid for fields like (2.8) if
α� ω , i.e. if

ωT � 1 (2.9)

where T = α−1 is the characteristic time-scale of the slow changes of the
medium.

For a stationary plasma the permittivity depends only on the difference
between the time arguments and the constitutive relation (2.3) then takes the
form

D(r, t) =

t∫
−∞

ε(r, t− t′) E(r, t′) dt′ (2.10)

For a harmonic process in this dispersive medium the fields are

E(r, t) = E(r, ω) e−iωt (2.11a)

D(r, t) = D(r, ω) e−iωt (2.11b)

Using (2.10), one finds then the following relation between the amplitudes

D(r, ω) = ε̃(r, ω) E(r, ω) (2.12)
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where ε̃(r, ω), i.e. the dielectric permittivity of the frequency component ω,
is the Fourier transform of the permittivity function ε(r, t − t′) . For causality
reasons we then put

ε(r, t− t′) =
{
ε(r, t− t′) , t′ < t
0 , t′ > t

(2.13)

In order to simplify our notations we shall work with the relative dielectric
permittivity ε(r, ω) , defined through [cf. (1.2)]

ε̃(r, ω) = ε0 ε(r, ω) (2.14)

We now put (2.12) and (2.14) into (2.2) and use also (2.7) to obtain the wave
equation

∇∇ ·E−∇2 E = µ0ε0ω
2 ε(r, ω) E (2.15)

We rewrite the factor in front of ε by means of the vacuum wave number k as
follows:

µ0ε0ω
2 =

ω2

c2
= k2 (2.16)

The wave equation, valid for a Fourier component of the field in the stationary
plasma, may hence be written

∇∇ ·E−∇2 E− k2 ε(r, ω) E = 0 (2.15′)

The general case of a non-stationary plasma with constitutive relation of
type (2.3) is much more difficult. We shall treat this case in the quasi-harmonic
approximation, i.e. we assume that the non-stationary time dependence of ε is
slow enough so that we can write the relation (2.3) on the form

D(r, t) =

+∞∫
−∞

ε[r, t− t′, 1
2α(t+ t′)] E(r, t′) dt′ (2.17)

Consequently we shall introduce a slow time dependence also into the fields [cf.
(2.11a,b)]

E(r, t, αt) = E(r, ω, αt) e−iωt (2.18a)

D(r, t, αt) = D(r, ω, αt) e−iωt (2.18b)

With (2.18a) and the introduction of a new integration variable, t − t′ → τ ,
(2.17) can be written

D(r, t) =

+∞∫
−∞

ε[r, τ, α(t− 1
2τ)] E[r, ω, α(t− τ)] exp[+iω(τ − t)] dτ (2.19)

Neglecting τ beside t in the slow argument of E and ε , we get

D(r, t) = E(r, ω, αt) e−iωt

+∞∫
−∞

ε(r, τ, αt) eiωτ dτ (2.20)
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Hence we find in the slowly non-stationary case the same constitutive relation
(2.12) as for the strictly stationary case, i.e.

D(r, ω, αt) = ε̃(r, ω, αt) E(r, ω, αt) (2.21)

where ε̃(r, ω, αt) is the Fourier transform of ε over the fast time variable. This
kind of transform is justified if the time-scale T of change of the medium intro-
duced earlier is much larger than some characteristic internal time-scale t0 of
the dispersive plasma, i.e. T � t0 .

What is this characteristic time t0 ? We have already introduced the con-
dition (2.9) justifying the rule (2.7) for replacing time derivatives by multipli-
cation. This condition is, however, not sufficient here. Instead we consider the
relative permittivity for a cold plasma with collision frequency ν :

ε(ω) = 1− e2 N(r)
mε0ω2(1 + iν/ω)

(2.22)

We shall use this expression to get a qualitative estimate of the response of the
plasma to an impulse (δ-function, which has spectrum of amplitude unity):

ε(τ) =

+∞∫
−∞

ε0ε(ω) e−iωτ dω (2.23)

We note that the integrand through (2.22) has two poles, one at ω = 0 and
the other at ω = −iν . To get the physically acceptable solution the integration
must pass below the pole at the origin of the complex ω-plane. We may then
close the path of integration across ω → −i∞ , so that it circumvents the other
pole at ω = −iν . Residue evaluation then shows that ε(τ) ∼ e−ντ , i.e. the
plasma response time-scale is t0 ∼ ν−1 . Hence we conclude that the condition
of validity of the quasi-stationary constitutive relation (2.21) is

νT � 1 (2.24)

This is a much stronger condition than (2.9) and it must be valid also at the
peak of the ray where ν has its minimum. When (2.24) is fufilled we have, in
consequence of (2.21), the same wave equation (2.15) as in the stationary case,
with the relative dielectric permittivity now slowly time-dependent, ε(r, ω, αt) .

We have still not made use of the first Maxwell equation (2.1a) in our wave
equation. With (2.11a,b), (2.12) and (2.14), eq. (2.1a) takes the form

ε ∇ ·E +∇ε ·E = 0 (2.25)

By means of this relation, eq. (2.15′) can be written

∇2 E +∇
(
∇ε
ε
·E
)

+ k2 ε E = 0 (2.26)
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To get a final formula we shall further split the dielectric permittivity into a
static regular background part and the superimposed quasi-stationary fluctua-
tions:

ε = ε0(r, ω) + ε(r, ω, t) (2.27)

Hence we arrive at

∇2 E +∇
(
∇ε0 +∇ε
ε0 + ε

·E
)

+ k2 (ε0 + ε) E = 0 (2.28)

which is our main stochastic wave equation. The middle term in this equation
is the depolarization term. It can be neglected in many cases so that we have a
simpler form of (2.28):

∇2 E + k2 (ε0 + ε) E = 0 (2.29)

This is essentially (1.1).

2.2 Two approaches in the statistical theory of
wave propagation

2.2.1 Construction of the solution for a particular realiza-
tion

The first, and in this report the major, approach for obtaining a solution of
the wave propagation problem is the direct solving of the wave equation for a
realization of the fluctuations. Different approaches to this are employed for
different regimes in Chapters 3–6. In one particular case only, can we give an
exact representation of the field. This is the case treated in Chapter 3, when
the wave is propagating in a regular homogeneous half-space, bounded by an
infinite random screen where the initial stochastic field is given at the boundary.

When the field has been constructed for a realization, moments of the field
can be obtained by averaging.

2.2.2 Direct construction of the equations for the mo-
ments

Another approach is to construct equations for the propagation of the moments,
i.e. wave equations directly governing quantities such as 〈E〉 , 〈E ·E∗〉 etc. For
example, from (2.29) we directly can write down the equation for the mean field:

∇2 〈E〉+ k2 ε0 〈E〉+ k2 〈ε E〉 = 0 (2.30)

We see that in this equation there appears a new unknown quantity, the moment
〈ε E〉 , which cannot be split into the component parts of its argument. In order
to treat this kind of equation we must therefore find a way to handle such
quantities. This is difficult in general, but can be done in some special cases. It
is the subject of the later chapters of these notes.
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2.3 Plane waves in homogeneous media

The Helmholtz’ equation (2.29) for a component of the electric field in the
regular homogeneous medium (ε0 = constant) is given by

∇2E + k2 ε0E = 0 (2.31)

Substituting a solution on the form of an exponential function exp(iκ · r) into
(2.31), we find that the spatial frequency κ must fulfil a dispersion relation of
the form κ2 − k2 ε0 = 0 . Hence the solutions can be written

E = A exp(iκ · r) = A exp(iκ` · r) = A exp[iκ(`xx+ `yy + `zz)] (2.32)

with the wave number
κ = k

√
ε0 (2.33a)

the wave vector
κ = κ ` (2.33b)

and
` = {`x, `y, `z} (2.33c)

being the unit vector in the direction of propagation: |`| = 1 , `2x +`2y +`2z = 1 .
We also remark that the wavelength is λ = 2π/κ .

2.4 Plane wave expansion of a spherical wave

The Green’s function for the wave equation in vacuum is the solution of the
wave equation for a point source in an arbitrary point r0 :

∇2G+ k2 G = δ(r− r0) = δ(x− x0) δ(y − y0) δ(z − z0) (2.34)

with the necessary boundary condition at infinity. With the time-dependence
on the form exp(−iωt) , outgoing spherical waves increase their phase with the
distance from the source. Since the Green’s function shall be a purely outgoing
wave, we then have the well-known solution

G(r− r0) = − 1
4π

exp(ik|r− r0|)
|r− r0|

(2.35)

We want to obtain an expansion of this solution in terms of plane waves
(2.32). To this end we attempt a solution on the form

G(r− r0) =
∫∫

g(z, α, β) exp[i(αx+ βy)] dα dβ (2.36)

When we introduce this expansion into (2.34), we also replace the δ-functions
of x and y by their Fourier integrals:

δ(x− x0) =
1
2π

∫
exp[iα(x− x0)] dα (2.37a)
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δ(y − y0) =
1
2π

∫
exp[iβ(y − y0)] dβ (2.37b)

In this way we get the following ordinary differential equation for the function
g :

d2g

dz2
+
(
k2 − α2 − β2

)
g =

1
4π2

exp[−i(αx0 + βy0)] δ(z − z0) (2.38)

The solution of this equation which is continuous at z0 and the derivative of
which has a step equal to the coefficient of the δ-function at z0 , is given by

g(z, z0) =
exp[−i(αx0 + βy0)]

4π2 2i
√
k2 − α2 − β2

exp
[
+i
√
k2 − α2 − β2 (z − z0)

]
, z ≥ z0

(2.39a)

g(z, z0) =
exp[−i(αx0 + βy0)]

4π2 2i
√
k2 − α2 − β2

exp
[
−i
√
k2 − α2 − β2 (z − z0)

]
, z ≤ z0

(2.39b)
In conclusion, the Green’s function (2.35) with (2.36) and (2.39a,b) can be
written

G(r− r0) = − 1
4π

exp(ik|r− r0|)
|r− r0|

=

=
1

8π2i

∫∫ exp
{

+i
[
α(x− x0) + β(y − y0)±

√
k2 − α2 − β2 (z − z0)

]}
√
k2 − α2 − β2

dα dβ

(2.40)
Hence the expansion of the spherical wave in plane waves is

exp(ik|r− r0|)
|r− r0|

=

= − 1
2π i

∫∫ exp
{

+i
[
α(x− x0) + β(y − y0)±

√
k2 − α2 − β2 (z − z0)

]}
√
k2 − α2 − β2

dα dβ

(2.41)
where the plus and minus signs pertain to z ≥ z0 and z ≤ z0 , respectively.
Later we will also need the derivative

∂

∂z

exp(ik|r− r0|)
|r− r0|

=

= ∓ 1
2π

∫∫
exp

{
+i
[
α(x− x0) + β(y − y0)±

√
k2 − α2 − β2 (z − z0)

]}
dα dβ

(2.42)
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We introduce in these expansions some simplifying notations:

r = {ρ, z} , where ρ = {x, y} (2.43)

r0 = {ρ0, z0} , where ρ0 = {x0, y0} (2.44)

κ = {α, β} (2.45)

Then we obtain from (2.41), (2.42)

exp(ik|r− r0|)
|r− r0|

= − 1
2π i

∫∫
exp

{
+i
[
κ · (ρ− ρ0)±

√
k2 − κ2 (z − z0)

]}
√
k2 − κ2

dκ

(2.41′)
∂

∂z

exp(ik|r− r0|)
|r− r0|

= ∓ 1
2π

∫∫
exp

{
+i
[
κ · (ρ− ρ0)±

√
k2 − κ2 (z − z0)

]}
dκ

(2.42′)
The integration is to be performed over the entire κ-surface, but the partial

waves are oscillatory in z only when κ < k . Note that the integrand of (2.41′)
has a weak singularity at κ = ±k ; these two points are also branch points of
the integrand. To do a correct evaluation of the integral with the integrand as
an analytic function, it is therefore necessary to define branch cuts from these
points and to keep to those definitions. In order to get the correct solution it is
necessary to fix these branches so that Im

√
k2 − κ2 ≥ 0 .

The partial waves with κ > k are evanescent and sometimes do not influence
the solution at a distance from z0 .
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Chapter 3

Boundary given as an
infinite stochastic screen

Consider a satellite emitting a VHF signal which passes through the ionosphere
down to earth. Due to the irregularities of the ionosphere this signal has stochas-
tic features when it reaches the bottom of the ionized layers. If we treat the
wave propagation problem below the ionosphere as a free-space problem, we
may consider the bottom ionosphere as an infinite screen where the stochastic
field is given as a boundary condition.

Given this boundary field we are, in fact, able to obtain an exact representa-
tion for the field in the half-space below the ionosphere. However, the problem
how the ionospheric fluctuations act to set up the field at the boundary then
still remains.

3.1 Field representation in the half-space

We let the boundary be at z = 0 and assume that the complex amplitude of the
monochromatic (possibly slowly time-varying) field is given there on the form

E(ρ, 0) = E0(ρ) (3.1)

With this boundary condition we shall construct the field in the half-space z > 0
as the solution to the wave equation

∇2E + k2 E = 0 (3.2)

We shall proceed similarly as in Section 2.5 and write the solution as an expan-
sion of plane waves:

E(ρ, z) =
∫
f(z, α, β) exp[+i(αx+ βy)] dα dβ =

∫
f(z,κ) exp[+iκ · ρ] dκ

(3.3)
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Then (3.2) is transformed into an ordinary differential equation for f :

d2f

dz2
+
(
k2 − κ2

)
f = 0 (3.4)

Our boundary condition at z = +∞ is that the waves there be purely out-
going, and hence the acceptable solutions of (3.4) have the form

f(z,κ) = A(κ) exp
(
+i
√
k2 − κ2 z

)
(3.5)

The boundary condition (3.1) on the screen at z = 0 gives the coefficient function
as the Fourier transform of the boundary field:

A(κ) = f(0,κ) = Ẽ0(κ) (3.6)

Ẽ0(κ) =
1

(2π)2

∫
E0(ρ) exp(−iκ · ρ) dρ (3.7)

When we use (3.6) and (3.5) in (3.3), we get the result

E(ρ, z) =
∫
Ẽ0(κ) exp

[
+i
(
κ · ρ +

√
k2 − κ2 z

)]
dκ (3.8)

Thus we have obtained an exact representation of the field for z > 0 in
terms of an expansion in plane waves over spatial frequencies κ . In order to
obtain an alternative representation, in terms of an integral over the boundary,
we introduce the transform (3.7) into (3.8), which yields

E(ρ, z) =
1

(2π)2

∫∫
E0(ρ0) exp

{
+i
[
κ · (ρ− ρ0) +

√
k2 − κ2 z

]}
dκ dρ0

(3.9)
Replacing the integral of the exponential function over κ by the left-hand side
of (2.42′), we arrive at the formula

E(ρ, z) = − 1
2π

∫
E0(ρ0)

∂

∂z

[
exp(+ik|r− ρ0|)

|r− ρ0|

]
dρ0 (3.10)

This is also an exact representation of the field for z > 0 , but now in terms of
spherical waves emanating from the source points ρ0 .

In Sections 3.2–3.4 we will obtain various approximations of this represen-
tation.

3.2 Far-field (wave) zone

To obtain an approximation of the integral representation, we first calculate the
derivative in (3.10):

∂

∂z

[
exp(+ik|r− ρ0|)

|r− ρ0|

]
= ikz

(
1− 1

ik |r− ρ0|

)
exp(+ik|r− ρ0|)

|r− ρ0|2
(3.11)
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The second term within the large brackets can be neglected if k|r− ρ0| � 1 or,
rather,

kz � 1 (3.12)

i.e. for field points many wavelengths away from the screen. We adopt (3.12) as
the definition of the far-field or wave zone and find in this approximation from
(3.10) the integral representation

E(ρ, z) =
kz

2πi

∫
E0(ρ0)

exp(+ik|r− ρ0|)
|r− ρ0|2

dρ0 (3.13)

3.3 The Fresnel approximation

The next step of approximation of our integral representation involves the Taylor
expansion of the distance term

|r− ρ0| =
√

(ρ− ρ0)2 + z2 (3.14)

for large z , i.e.

|r− ρ0| = z

{
1 +

(ρ− ρ0)2

2z2
+O

[
(ρ− ρ0)4

z4

]}
(3.15)

The Fresnel approximation amounts to neglecting terms beyond the quadratic
in this expansion when using it in the exponential function in (3.13). This is
justified if the neglected terms introduce phase errors much less than unity in
the integrand. Hence the condition of validity of the Fresnel approximation is
that

kL4
0 � z3 (3.16)

Here we have introduced a characteristic scale L0 = |ρ− ρ0| of the initial field
distribution, which is related to the size of the illuminated area of the screen.
Later in the random case we will find that it is the characteristic scale of the
correlation function.

It is easily seen that the first term of the Taylor expansion is sufficient in
the denominator in (3.13), i.e. |r − ρ0| ≈ z . Thus we arrive at the following
expansion for the field in the Fresnel approximation:

E(ρ, z) =
k eikz

2πi z

∫
E0(ρ0) exp

[
+ik(ρ− ρ0)2

2z

]
dρ0 (3.17)

3.4 The Fraunhofer approximation

Finally we expand the square in the argument of the exponential function in
(3.17):

(ρ− ρ0)
2 = ρ2 − 2ρ · ρ0 + ρ2

0 (3.18)

We obtain the Fraunhofer approximation by neglecting ρ2
0 in this expression.

This is permissible if the error introduced in the argument is much less than
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unity, i.e. if kρ2
0/(2z) � 1 or, if we use the characteristic length L0 introduced

in the previous section,
k L2

0 � z (3.19)

Another way to write this condition is

L0 � `fr (3.19′)

where
`fr =

√
λ z (3.20)

is the size of the main Fresnel zone. The Fraunhofer approximation then turns
out to be

E(ρ, z) =
k

2πi z
exp

[
+ik

(
z +

ρ2

2z

)] ∫
E0(ρ0) exp

[
−ikρ · ρ0

z

]
dρ0 (3.21)

We see that this representation is a kind of plane wave expansion. If the inte-
gration is carried out over the entire ρ0-plane, then another way to write the
field is

E(ρ, z) =
2πk
i z

exp
[
+ik

(
z +

ρ2

2z

)]
Ẽ0

(
kρ

z

)
(3.21′)

3.5 Mean field and correlation function for the
field in the half-space

When we talk about spectra we usually mean spectra of correlation functions.
As we have already mentioned, the spectrum of the random function itself is
not always defined. To obtain the mean field we shall therefore use the integral
representation (3.9), which involves the initial stochastic field as a function of
the position on the screen. Thus we have

〈E(ρ, z)〉 =
1

(2π)2

∫∫
〈E0(ρ′)〉 exp

{
+i
[
κ · (ρ− ρ′) +

√
k2 − κ2 z

]}
dκ dρ′

(3.22)
We shall assume a statistically homogeneous initial field, which means that

〈E0(ρ′)〉 = E00 = const (3.23)

With this condition the integration over ρ′ in (3.22) gives a delta function; δ(κ) .
Hence the result of (3.22) is simply a plane wave of constant amplitude in the
z-direction:

〈E(ρ′, z)〉 = E00 e
ikz (3.24)

The correlation function for the fluctuating part Ẽ of the field is from (3.8)

{ψE(ρ1, z1,ρ2, z2) =
〈
Ẽ(ρ1, z1) Ẽ

∗(ρ2, z2)
〉

=
∫ 〈

Ẽ0(κ1) Ẽ∗0 (κ2)
〉
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· exp
[
+i (κ1 · ρ1 − κ2 · ρ2) + i

√
k2 − κ2

1 z1 +
(
i
√
k2 − κ2

2

)∗
z2

]
dκ1 dκ2

(3.25)
For the statistically homogeneous initial field considered here we have according
to (1.36) 〈

Ẽ0(κ1) Ẽ∗0 (κ2)
〉

= φE0(κ1) δ(κ1 − κ2) (3.26)

Hence, from (3.25) we get

ψE(ρ1, z1,ρ2, z2) =
∫
φE0(κ)

exp
[
+iκ · (ρ1 − ρ2) + i

√
k2 − κ2 z1 +

(
i
√
k2 − κ2

)∗
z2

]
dκ (3.27)

The physical solution corresponds to the following branch of the square root:√
k2 − κ2 =

{√
k2 − κ2 , κ < k

i
√
|k2 − κ2| , κ > k

(3.28)

Hence part of the exponent in (3.27) can be written

exp
[
i
√
k2 − κ2 z1 +

(
i
√
k2 − κ2

)∗
z2

]
=

{
exp

[
i
√
k2 − κ2 (z1 − z2)

]
, κ < k

exp
[
−
√
|k2 − κ2| (z1 + z2)

]
, κ > k

(3.28′)
We see from the lower case of this that the integrand vanishes if κ > k and
z1, z2 lie several wavelengths away from the screen. Thus we may confine the
integration to a circle of radius k in the κ-surface:

ψE(ρ1, z1,ρ2, z2) ≈
∫

κ≤k

φE0(κ) exp
[
+i
(
κ · ρ +

√
k2 − κ2 z

)]
dκ (3.29)

where we have introduced the relative coordinates

ρ = ρ1 − ρ2 , z = z1 − z2 (3.30)

This result shows that with E0(ρ) statistically homogeneous, also the field in
the half-space is statistically homogeneous in this approximation. Our result
is exact in the transverse ρ-variable, but an approximation in the longitudinal
variable z . Below we will study special cases of the result (3.29) in more detail.

3.6 Longitudinal and transverse correlation func-
tions in the limiting case of small-scale field
fluctuations on the screen

We shall begin by considering small-scale fluctuations, i.e. cases when the spatial
scale `E0 of the fluctuations is small compared to the wavelength. Formally we
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express the condition for this in the following inequality

k `E0 � 1 (3.31)

where k is the wave number of the radiation. We have already seen [eq. (1.42)]
that the spatial spectrum of the initial field has the scale κE0 ∼ `−1

E0
. Hence the

condition (3.31) can also be written

k � κE0 (3.31′)

When we now integrate (3.29) over the area κ ≤ k , eq. (3.31) shows us that
φE0 is non-zero over a much larger area than that. Hence φE0(κ) does not vary
so much over the area of integration and can be approximated by a constant
value :

ψE(ρ, z) ≈ φE0(0)
∫

κ≤k

exp
[
+i
(
κ · ρ +

√
k2 − κ2 z

)]
dκ (3.32)

We shall now study this expression in two special cases. First the case of
purely transverse correlation function, when we put z = 0 (i.e. z1 = z2). Then
we have

ψE(ρ, 0) ≈ φE0(0)
∫

κ≤k

exp [+iκ · ρ] dκ (3.33)

With polar coordinates κ → κ, ϕ , this gives

ψE(ρ, 0) ≈ φE0(0)

2π∫
0

dϕ

k∫
0

exp [+iκρ cosϕ] κ dκ =

= 2π φE0(0) k J1(kρ)/ρ (3.34)

This result involves the Bessel function of the first order, J1(x) , and denoting
the first zero of the Bessel function by x = d1 , we may find an estimate of the
characteristic transverse scale-size `E of the field in the half-space through

k `E⊥ = d1 ≈ 3.8 (3.35)

In the other case, the purely longitudinal correlation function, we put ρ = 0
in (3.32) to obtain

ψE(0, z) ≈ φE0(0)
∫

κ≤k

exp
[
+i
√
k2 − κ2 z

]
dκ (3.36)

When we once again introduce polar coordinates, we can immediately carry out
the ϕ-integration so that

ψE(0, z) ≈ 2π φE0(0)

k∫
0

exp
[
+i
√
k2 − κ2 z

]
κ dκ
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= 2π φE0(0)
d
dz

k∫
0

κ

i
√
k2 − κ2

exp
[
+i
√
k2 − κ2 z

]
dκ

= 2π φE0(0)
d
dz

[
1
z

(
eikz − 1

)]
(3.37)

Hence the characteristic longitudinal scale-size `(z)
E is of the order k−1 , i.e of the

order λ . From these estimates we may conclude that the correlation volume is
several units larger in the transverse directions than in the longitudinal direction.

Finally we shall consider the variance, i.e. the statistical dispersion, for the
case of small-scale fluctuations in the half-space. From (3.32), we get

σ2
E = ψE(0, 0) = φE0(0)

∫
κ≤k

dκ = π k2φE0(0) (3.38)

Expressing φE0(0) with its Fourier transform, this yields the estimate

σ2
E =

π k2

(2π)2

∫
ψE0(ρ) dρ ≈ k2

4π
π`2E0

ψE0(0) = 1
4 (k`E0)

2 σ2
E0

(3.39)

In view of the condition for small-scale fluctuations of the initial field, eq. (3.31),
we hence find that the field fluctuations in the half-space fulfil

σ2
E � σ2

E0
(3.40)

3.7 Longitudinal and transverse correlation func-
tions in the limiting case of large-scale field
fluctuations on the screen

In the case of large-scale fluctuations the situation is the opposite of (3.31), i.e.
the spatial scale `E0 of the fluctuations fulfils

k `E0 � 1 (3.41)

Because of κE0 ∼ `−1
E0

this condition can also be written

k � κE0 (3.41′)

In the integral (3.29), φE0(κ) is now non-zero only over a small part of the area
κ ≤ k of integration. Under these circumstances we may expand the square
root in the exponent as follows:√

k2 − κ2 ≈ k − κ2

2k
(3.42)
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In this limiting case we may then write the correlation function (3.29), also
extending the integration to infinity,

ψE(ρ, z) ≈ eikz

+∞∫
−∞

φE0(κ) exp
[
+i
(

κ · ρ− κ2z

2k

)]
dκ (3.43)

This expression may now be used to determine the transverse and longitu-
dinal correlation functions, just as in the previous section. For the transverse
correlation function we find simply

ψE(ρ, 0) ≈
+∞∫
−∞

φE0(κ) exp [+iκ · ρ] dκ = ψE0(ρ) (3.44)

i.e. it is the same as for the initial field and hence `E⊥ ≈ `E0 . Of course we
then also have

σ2
E ≈ σ2

E0
(3.45)

The longitudinal correlation function, on the other hand, is given by

ψE(0, z) ≈ eikz

+∞∫
−∞

φE0(κ) exp
[
−iκ

2z

2k

]
dκ (3.46)

This integral cannot be solved in the general case, but we shall obtain an esti-
mate of the order of magnitude of the longitudinal scale-size of the field. We
note that the exponent in (3.46) has a stationary point at κ = 0 . Hence the
main contributions to the integral come from the main Fresnel zone defined by

κ2
E0
`
(z)
E

2k
= 1 (3.47)

i.e. the correlation function in practice varies only for |z| < `
(z)
E , where, accord-

ing to (3.41),
`
(z)
E ∼ k `2E0

� `E0 (3.48)

To summarize our results (3.44) and (3.48), we can say that it is typical for
the correlation function for fields radiated by large-scale inhomogeneities that it
is non-zero within an elongated volume with transverse dimension equal to the
scale-size of the initial field and longitudinal dimension much larger than that.
This is in contrast to the previous case of small-scale inhomogeneities.

We shall also say a few words about the coherence function for the case
of large-scale inhomogeneities on the screen. It is related to the correlation
function, but not centred on the mean value:

BE(ρ1,ρ2, z1, z2) = 〈E(ρ1, z1) E
∗(ρ2, z2)〉

= ψE(ρ1,ρ2, z1, z2) + 〈E(ρ1, z1)〉 〈E∗(ρ2, z2)〉 (3.49)
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For statistically homogeneous fields the mean field has constant amplitude equal
to its initial value [cf. (3.23,24)]; hence

BE(ρ, 0) = ψE(ρ, 0) + |E00|2 (3.50)

The mean energy of the field is directly obtained from this and it is seen to be
independent of position in space:

W = BE(0, 0) = ψE(0, 0) + |E00|2 = σ2
E0

+ |E00|2 (3.51)

3.8 The case of a pure phase screen

In some important applications the initial field has constant amplitude, only
the phase is stochastic, i.e.

E0 = A exp[iS(ρ)] (3.52)

In the following we shall put the amplitude equal to unity, A = 1 . The phase S
is a new zero-mean random field, 〈S(ρ)〉 = 0 , which we assume has a Gaussian
probability density function:

w(S) =
1√

2π σS

exp
(
− S2

2σ2
S

)
(3.53)

Using the integral representations (3.8) and (3.9), we obtain the mean field

〈E(ρ, z)〉 =
∫ 〈

Ẽ0(κ)
〉

exp
[
+i
(
κ · ρ +

√
k2 − κ2 z

)]
dκ

=
1

(2π)2

∫
〈E0(ρ′)〉 exp

{
+i
[
κ · (ρ− ρ′) +

√
k2 − κ2 z

]}
dκ dρ′

(3.54)
Since we know that the average initial field is a constant we can take it outside
the integral. We then obtain a δ-function from the integration over ρ′ so that
(3.54) gives

〈E(ρ, z)〉 = 〈exp[iS(ρ)]〉 eikz (3.55)

With (3.53), the average of the exponential function is

〈exp[iS(ρ)]〉 =
1√

2πσS

+∞∫
−∞

exp
(

+iS − S2

2σ2
S

)
dS (3.56)

This is transformed into a standard integral by rewriting the exponent as a
square expression:

− 1
2σ2

S

(
S2 − 2iSσ2

S − σ4
S + σ4

S

)
= −σ

2
S

2
− 1

2σ2
S

(
S − iσ2

S

)2
(3.57)
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The result of the evaluation is

〈exp[iS(ρ)]〉 = exp
(
− 1

2σ
2
S

)
(3.58)

which gives the mean field

〈E(ρ, z)〉 = exp
(
− 1

2σ
2
S + ikz

)
(3.59)

We remark that (3.58) is a universal result for normally distributed random
functions S .

Next we consider the second-order moment. Using the integral representa-
tion (3.9), we find

BE(ρ1,ρ2, z1, z2) = 〈E(ρ1, z1) E
∗(ρ2, z2)〉

=
1

(2π)4

∫
〈exp{+i[S(ρ′)− S(ρ′′)]}〉 dκ1 dκ2 dρ′ dρ′′·

exp
{

+i
[
κ1 · (ρ1 − ρ′) +

√
k2 − κ2

1 z1 − κ2 · (ρ2 − ρ′′)−
√
k2 − κ2

2 z2

]}
(3.60)

The integrand contains 〈exp{+i[S(ρ′)− S(ρ′′)]}〉 . Since the exponent is nor-
mally distributed, we may again use the property (3.58):

〈exp{+i[S(ρ′)− S(ρ′′)]}〉 = exp
{
− 1

2

〈
[S(ρ′)− S(ρ′′)]2

〉}
= exp

[
− 1

2DS(ρ′ − ρ′′)
]

= fS(ρ′ − ρ′′) (3.61)

where DS is the structure function. Introducing this result into (3.60) togehter
with the change of variables

ρ′′ → ρ′′ , ρ′ − ρ′′ → ρ (3.62)

and specializing to the transverse moment by putting z1 = z2 = z we obtain

BE(ρ1,ρ2, z) =
1

(2π)4

∫
fS(ρ) dκ1 dκ2 dρ dρ′′

· exp
{

+i
[
κ1 · (ρ1 − ρ′′ − ρ) +

√
k2 − κ2

1 z − κ2 · (ρ2 − ρ′′)−
√
k2 − κ2

2 z

]}
(3.63)

Here the integration over ρ′′ may be carried out directly; it gives the function
δ(κ1 − κ2) . With κ1 = κ2 = κ , (3.63) can hence be written

BE(ρ1,ρ2, z) =
1

(2π)2

∫
fS(ρ) exp {+i [κ · (ρ1 − ρ)− κ · ρ2]} dκ dρ (3.64)

We see that also the κ-integration gives a delta function, δ(ρ1−ρ2−ρ) , so the
final result is

BE(ρ1,ρ2, z) = fS(ρ1 − ρ2) = exp
[
− 1

2DS(ρ1 − ρ2)
]

(3.65)
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Clearly this transverse coherence function is independent of z . According
to (1.65) we have

DS(ρ) = 2[σ2
S − ψS(ρ)] (3.66)

with ρ = ρ1 − ρ2 . Hence we may write the result (3.65) as follows:

BE(ρ1,ρ2, z) = exp
{
−[σ2

S − ψS(ρ)]
}

(3.67)

At the same time we have, according to the definitions of the second-order
moments,

BE(ρ1,ρ2, z) = ψE(ρ, z) + E2
00 (3.68)

where E00 is the initial mean field, which is real according to (3.59). Hence the
following relation holds for the correlation functions of the field and the phase
of the field:

ψE(ρ, z) = BE(ρ, z)− E2
00 = exp

[
ψS(ρ)− σ2

S

]
− exp

[
−σ2

S

]
(3.69)

We shall consider this expression in two limiting cases, thereby making use
of the correlation coefficient (1.21):

ψS = σ2
S KS(ρ) (3.70)

In the limiting case of weak fluctuations, σ2
S � 1 , Taylor expansions of the

exponential functions in (3.69) give

ψ
(w)
E ≈ σ2

S KS(ρ) = ψS(ρ) (3.71)

The condition for strong fluctuations is σ2
S � 1 . Then the second expo-

nential function in (3.69) vanishes and in the first one we may use the Taylor
expansion of the correlation coefficient:

KS(ρ) = 1− 1
2 |K

′′
S(0)| ρ2 (3.72)

Hence the result is

ψ
(s)
E ≈ exp

[
− 1

2 |K
′′
S(0)| σ2

S ρ
2
]

= exp
[
− 1

2 |ψ
′′
S(0)| ρ2

]
(3.73)

According to (3.67), (3.68) the average energy is〈
|E|2

〉
= BE(0) = σ2

E + E2
00 = 1 (3.74)

3.9 Fluctuations of the amplitude and phase of
the field, generated by a phase screen

Sometimes it is of interest to construct the moments for amplitude and phase
separately. To this end we shall use the Fresnel representation (3.17), where we
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separate the fluctuating part of a particular realization of the initial field from
the mean field:

E(ρ, z) =
k eikz

2πi z

∫
[E0(ρ0)− E00 + E00] exp

[
+ik(ρ− ρ′)2

2z

]
dρ′ (3.75)

The resulting field is also separated into deterministic and zero-mean fluctuating
parts:

E(ρ, z) = [E00 + a(ρ, z)] eikz (3.76)

where

a(ρ, z) =
k

2πi z

∫
Ẽ0(ρ′) exp

[
+ik(ρ− ρ′)2

2z

]
dρ′ (3.77)

with the definition
Ẽ0(ρ0) = E0(ρ0)− E00 (3.78)

If we further separate the fluctuating field into its real and imaginary parts,

a(ρ, z) = a1(ρ, z) + i a2(ρ, z) (3.79)

we may write
E(ρ, z) = A(ρ, z) exp[iΣ(ρ, z)] eikz (3.80)

with the amplitude and phase given by

A =
√

(E00 + a1)2 + a2
2 (3.81a)

Σ = arctan
(

a2

E00 + a1

)
(3.81b)

Far away from the screen, where the condition (3.19) for the Fraunhofer ap-
proximation applies, many inhomogeneities contribute to the field in any partic-
ular point. Then, according to the central limit theorem, a1 and a2 are normally
distributed and this distribution can be used to construct the moments. In more
general cases the representation (3.77) has to be dealt with, usually in the ap-
proximation of weak fluctuations. Since σ2

E = σ2
1 + σ2

2 , we have from (3.74)

σ2
1 + σ2

2 + E2
00 = 1 (3.82)

When the σ1 and σ2 are small we thus can express (3.81a,b) by means of some
terms in their Taylor expansions, thereby making use of (3.82). Hence,

A ≈ 1 + a1 − 1
2 a

2
1 (3.83a)

Σ ≈ a1 − a1a2 (3.83b)

We may now express moments by means of these expressions, e.g. the mean
values

〈A〉 = 1− 1
2

〈
a2
1

〉
(3.84a)

〈Σ〉 = −〈a1a2〉 = ψa1a2(0) (3.84b)
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and the correlation functions

ψA = 〈a1(ρ1, z1) a1(ρ2, z2)〉 = ψa1 (3.85a)

ψΣ = 〈a2(ρ1, z1) a2(ρ2, z2)〉 = ψa2 (3.85b)
as well as the cross-correlation function (mutual correlation function)

ψAΣ = ψa1a2(ρ, z) (3.85c)

which also appears in (3.84b).
The correlation functions (3.85a–c) can be expressed by means of the two

correlation functions (1.18a,b) introduced earlier, i.e.

ψa = 〈a(ρ1, z1) a
∗(ρ2, z2)〉 (3.86a)

ψ̃a = 〈a(ρ1, z1) a(ρ2, z2)〉 (3.86b)
With these we get the relations

ψa1 = 1
2Re

[
ψa + ψ̃a

]
(3.87a)

ψa2 = 1
2Re

[
ψa − ψ̃a

]
(3.87b)

ψa1a2 = 1
2 Im

[
ψa − ψ̃a

]
(3.87c)

To construct (3.86a,b) we use the integral representation (3.77). In this way we
get

ψa(ρ1,ρ2, z) =
k2

4π2 z2

∫
ψE0(ρ

′−ρ′′) exp
[
+
ik

2z
(ρ1 − ρ′)2 − ik

2z
(ρ2 − ρ′′)2

]
dρ′ dρ′′

(3.88a)

ψ̃a(ρ1,ρ2, z) =
−k2

4π2 z2

∫
ψ̃E0(ρ

′−ρ′′) exp
[
+
ik

2z
(ρ1 − ρ′)2 +

ik

2z
(ρ2 − ρ′′)2

]
dρ′ dρ′′

(3.88b)
Performing the integrations possible and putting ρ = ρ1 − ρ2 , we obtain

ψa(ρ, z) = ψE0(ρ, z) (3.89a)

ψ̃a(ρ, z) =
k

4π i z

∫
ψ̃E0(ρ) exp

[
+
ik

4z
(ρ− ρ′)2

]
dρ′ (3.89b)

With these expressions and (3.87a–c), we finally find the following expressions
for the correlation functions (3.85a,b):

ψA,Σ(ρ, z) =
1
2

ψS ∓
k

4π z

+∞∫
−∞

ψS(ρ′) sin
[
k(ρ− ρ′)2

4z

]
dρ′

 (3.90a, b)

where (−) pertains to ψA and (+) to ψΣ . Similarly we find for the cross-
correlation function (3.85c):

ψAΣ(ρ, z) =
k

8π z

+∞∫
−∞

ψS(ρ′) cos
[
k(ρ− ρ′)2

4z

]
dρ′ (3.90c)
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Chapter 4

Geometrical-optics
approximation for media
with large-scale
inhomogeneities

It is known that large-scale inhomogeneities predominantly scatter radiation in
the forward direction. Appropriate consideration of the differential cross section
of linearly, or elliptically polarized electromagnetic field scattered by the large
scale inhomogeneities shows that the depolarization effects are very small in
these cases. The latter allows, to the zero approximation, confine consideration
of the geometrical optics approximation for electromagnetic field in the scalar
approximation. According to this, one can expect that the dominant terms of
the solutions of the scalar and vector problems differ only insignificantly for
large-scale inhomogeneities, unless, the effects of rotation of the plane of polar-
ization are of interest. This is the case in the geometrical-optics approximation
to be dealt with now. It is one of the methods providing solutions for wave
propagation through media with large-scale inhomogeneities. The solutions are
expressed in terms of rays which are formally similar to particle trajectories in
classical mechanics. We shall confine our consideration by the scalar case for
the Helmholtz’ equation.
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4.1 Asymptotic representation of the solution of
Helmholtz’ equation as a series of inverse
powers of the wave number

We consider the scalar form of the wave equation (2.29), i.e.

∇2E + k2 ε(r, t) E = 0 (4.1)

The permittivity ε so far contains the overall inhomogeneous background as well
as the fluctuations and may be slowly time-dependent in the quasi-stationary
approximation.

In a homogenous medium, ε = const., the solutions of (4.1) are plane waves,
E = A exp(iκ · r) , as we saw in Section 2.4. If ε varies slowly with position
in the medium we can expect the solutions to bear some resemblance to plane
waves, and therefore we shall attempt a solution on a form with amplitude and
phase separated as follows:

E = A(r) exp[ikϕ(r)] (4.2)

From this expression we immediately find the derivatives

∇E = ∇A eikϕ + ik∇ϕ A eikϕ (4.3)

∇2E = ∇2A eikϕ + 2ik∇A · ∇ϕ eikϕ + ik∇2ϕ A eikϕ − k2 (∇ϕ)2 A eikϕ (4.4)

Substituting (4.2) into (4.1) we obtain an equation which is equivalent to Helmholtz’
equation:

k2
[
ε(r)− (∇ϕ)2

]
A+ ik

[
2∇A · ∇ϕ+A ∇2ϕ

]
+∇2A = 0 (4.5)

This is an unseparable equation in the two unknown functions A and ϕ .
In order to solve it we expand A in an infinite (asymptotic) series in negative
powers of the wave number:

A(r) =
∞∑

m=0

Am(r)
(ik)m

(6.6)

while we assume ϕ to be independent of k . Treating k as a variable, which
formally tends to infinity, we may equate each power of k in (4.5) to zero.
In this way we replace (4.5) by an equation for ϕ and an infinite sequence of
equations for Am :

(∇ϕ)2 = ε(r) (4.7a)

2∇A0 · ∇ϕ+A0 ∇2ϕ = 0 (4.7b)

2∇A1 · ∇ϕ+A1 ∇2ϕ = −∇2A0 (4.7c)

....

2∇Am · ∇ϕ+Am ∇2ϕ = −∇2Am−1 (4.7d)

....
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4.2 Eikonal and transport equations

The function ϕ determining the phase in (4.2) is also called eikonal and (4.7a)
is known as the eikonal equation. The second equation (4.7b) is called the main
transport equation. Formally the whole series of amplitude terms Am can be
constructed, but here we shall restrict ourselves to solving the eikonal equation
and the main transport equation for A0 , neglecting all Am with m ≥ 1 . Since
the series (4.6) is asymptotic it is in general not convergent. With our truncation
it will, however, accurately represent the solution if k is large enough.

4.2.1 Ray equations as the characteristic equations for the
eikonal equation

First we shall discuss the eikonal equation (4.7a), which we may write in rect-
angular coordinates r = {x1, x2, x3} as(

∂ϕ

∂x1

)2

+
(
∂ϕ

∂x2

)2

+
(
∂ϕ

∂x3

)2

= ε(r) (4.8)

In the language of the theory of partial differential equations, we can say that
for every first order partial differential equation there can be associated a set of
ordinary differential equations describing trajectories being characteristic for the
solutions of the original equation. These trajectories, the rays, are orthogonal
to the surfaces of constant ϕ . At the same time the eikonal equation (8.8) is the
Hamilton-Jacobi equation for the motion of a classical particle . In accordance
with the methods of classical mechanics (see Goldstein [1969], Chapter 9;
Orlov, Kravtsov [1980]) the Hamilton equations can hence be written for
the same trajectories.

For the coordinates r = {x1, x2, x3} we introduce formally the conjugate
momenta

pi =
∂ϕ

∂xi
, i = 1, 2, 3 (4.9)

or
p =

∂ϕ

∂r
= ∇ϕ (4.9′)

With the Hamiltonian
H(r,p) = 1

2 [p2 − ε(r)] (4.10)

the eikonal equation then takes the form of the Hamilton-Jacobi equation of a
classical particle at location r with momentum p moving in the potential field
ε(r) :

H(r,p) = 0 (4.11)

or explicitly
p2
1 + p2

2 + p2
3 − ε(r) = 0 (4.11′)
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In the techniques of analytical mechanics surfaces of constant ϕ are obtained and
the particle trajectories are always orthogonal to these surfaces. The trajectories
are the solutions of a set of ordinary differential equations

dxi

∂H
∂pi

= −dpi

∂H
∂xi

=
dϕ∑3

j=1 pj
∂H
∂pj

= dτ , i = 1, 2, 3 (4.12)

where τ is the parameter of location along the trajectories. Eqs. (4.12) are the
six Hamilton equations for the classical particle

dr
dτ

=
∂H
∂p

(4.13a)

dp
dτ

= −∂H
∂r

(4.13b)

and the equation for Hamilton’s characteristic function

dϕ
dτ

=
3∑

i=1

pi
∂H
∂pi

(4.13c)

with solution

ϕ = ϕ0 +

τ∫
τ0

3∑
i=1

pi
∂H
∂pi

dτ (4.14)

Introducing the refractive index n through

n2(r) = ε(r) (4.15)

and using our particular Hamiltonian according to (4.10), eqs. (4.13a,b) take
the form

dr
dτ

= p (4.16a)

dp
dτ

= n ∇n = 1
2∇ (n2) (4.16b)

These are our six ray equations, which have to be supplemented by six initial
conditions. We shall assume that these are given through the initial phase
distribution ϕ0(ξ, η) over a boundary surface r0(ξ, η) , described by the arbitrary
parameters (ξ, η) , together with the initial momenta ∂ϕ0/∂r0 defined from

∂ϕ0

∂r0
· ∂r0

∂ξ
=
∂ϕ0

∂ξ
,

∂ϕ0

∂r0
· ∂r0

∂η
=
∂ϕ0

∂η
(4.17)

the third momentum being determined from these through the fulfilment of the
eikonal equation on the boundary surface. With (5.16a,b), we may now, in
principle, construct rays emanating from each point on the boundary. These
rays are in general not perpendicular to the boundary, unless this boundary is a
surface of constant phase. The parameters (ξ, η, τ) can be used as new curvlinear
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coordinates, (ξ, η) selecting the ray and τ denoting the position along the ray.
These are orthogonal if the phase is constant over the initial surface.

Instead of the parameter τ it is convenient to use the length s along the ray.
From (4.16a) we have (ds)2 = (dr)2 = p2 (dτ)2 . Using also (4.11′) and (4.15)
then obtain

ds = n dτ (4.18)

Hence we may write the ray equations:

dr
ds

=
p
n

(4.19a)

dp
ds

= ∇n =
1

2n
∇ (n2) (4.19b)

Introducing instead of p the unit vector along the ray

` =
p
n

(4.20)

the ray equations finally take the form

dr
ds

= ` (4.21a)

d(n`)
ds

= ∇n (4.21b)

Sometimes one meets, instead of the two first-order (vector) equations (4.21a,b),
a second-order ray equation. This equation is easily derived from (5.21a,b) as
follows:

d(n`)
ds

= n
d`

ds
+ `

(
∇n · dr

ds

)
= n

d2r
ds2

+ ` (` · ∇n) = ∇n (4.22)

Rearranging the terms we find

n
d2r
ds2

= ∇n− ` (` · ∇n) = ∇⊥ n (4.23)

where ∇⊥ is the part of the gradient transverse to the ray direction. Alterna-
tively we may also write this equation as follows:

d2r
ds2

= ∇⊥ lnn (4.23′)

The solving of the ray equations will be discussed in later Sections.
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4.2.2 The main transport equation and the ray tube di-
vergence

Let us now return to the main transport equation (4.7b). Obviously we can also
write this equation as follows:

∇ ·
(
A2

0 ∇ϕ
)

= 0 (4.24)

Integrating this expression over an arbitrary volume V not containing the source
of the waves, we obtain with Gauss’ theorem∫

V
∇ ·
(
A2

0 ∇ϕ
)

dV =
∮
S
A2

0 ∇ϕ · dS = 0 (4.25)

We choose this volume as a ray tube or a ray pencil. Then ∇ϕ is perpendicular
to dS except for the end surfaces. Furthermore |∇ϕ| = n according to the
eikonal equation so that (counting the scalar surface element dS positive in the
direction of the ray) ∇ϕ · dS1 = −n dS on the end surface towards the source
and ∇ϕ · dS2 = +n dS on the other end surface. Then (4.25) gives∫

S1

A2
0 n dS =

∫
S2

A2
0 n dS (4.26)

If we choose an infinitesimally thin ray tube, we can thus draw the conclusion
that

A2
0 n dS = const. (4.27)

along the tube. Hence we can express the amplitude for any point along the ray
tube if its initial value is given

A2
0(r0) n(r0) dS0 = A2

0(r) n(r) dS (4.27′)

i.e. we have

A0(r) = A0(r0)

√
n(r0) dS0

n(r) dS
(4.27′′)

If we also account for the phase through (4.14) and the ray equations, we
can construct the field in the geometrical-optics approximation:

E(r) = A0(r0)

√
n(r0) dS0

n(r) dS
exp

{
ik

[
ϕ0(r0) +

∫ r

r0

n(r) ds
]}

(4.28)

In order to use this expression we first have to know the phase and amplitude
distributions ϕ0(r0) and A0(r0) on the initial surface. Then the rays from each
point, r0 → r , must be constructed and from these rays the phase function
ϕ(r) . We also have to determine the ray pencil divergence dS/dS0 . In the case
of multi-path, rays emanating from several points on the initial surface coincide
in the same point; then also the fields of these have to be added to get the total
field E(r) .
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In the general case of three-dimensional ray pencils we have the cross section

dS =
dV
ds

(4.29)

where dV is the elementary volume in the ray variables (ξ, η, s) , ξ and η being
the variables along the coordinate curves on the reference surface. If the rays
are described through the known functions

x = x(ξ, η, s)

y = y(ξ, η, s) (4.30)

z = z(ξ, η, s)

then we have
dV = dxdy dz = D(s) dξ dη ds (4.31)

where D(s) is the determinant of the Jacobian:

D(s) =

∣∣∣∣∣∣∣∣∣∣∣

∂x

∂ξ

∂x

∂η

∂x

∂s
∂y

∂ξ

∂y

∂η

∂y

∂s
∂z

∂ξ

∂z

∂η

∂z

∂s

∣∣∣∣∣∣∣∣∣∣∣
(4.32)

Hence the cross section of the ray pencil is given by

dS = D(s) dξ dη (4.33)

As a result the single-ray field representation in the three-dimensional geometry
is just (4.28) with the following expression for the ratio of the cross sections:

dS0

dS
=
D(s0)
D(s)

(4.34)

If we look more closely at the amplitude expression (4.27′′), we see that it
has singularities where:
(i) n(r) = 0 (plasma resonance),
(ii) dS = 0 (near caustics).
These conditions represent breakdowns of geometrical optics. Later we shall
see that there is a third restriction for the validity of the geometrical-optics ap-
proximation which requires the scale-size of the inhomogeneities to be large in
comparison with the main Fresnel zone size. This condition cannot be obtained
within geometrical-optics theory. To derive it more general considerations, in-
volving full-wave type solutions of the Helmholtz’ equation, are necessary.
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4.3 Methods for constructing the solutions of
the geometrical-optics equations

Numerical methods for solving the ray equations are widespread but will not be
dealt with here. One formulation of the ray equations in earth-centered spherical
coordinates is known under the name of Haselgrove’s equations [Haselgrove,
1954]. A computer program based on these equations has been produced by
Jones and Stephenson [Jones and Stephenson, 1975; Jones, 1968]. A modern
computer system for ray tracing, RaTS, which is based on the same equations
has been developed at the Uppsala division of IRF.

4.3.1 Additive separation of variables for Cartesian geom-
etry

Here we shall study a few cases where an analytical solution can be constructed.
For simplicity we shall assume a two-dimensional geometry, i.e. our point source
at the origin x0, z0 is in reality a line source. Consider the 2-dimensional eikonal
equation (

∂ϕ

∂x

)2

+
(
∂ϕ

∂z

)2

= ε(x, z) (4.35)

If we have an ionospheric structure of the particular form

ε(x, z) = ε1(x) + ε2(z) (4.36)

we may attempt a solution with additive separation of variables:

ϕ(x, z) = ϕ1(x) + ϕ2(z) (4.37)

Substitution of this into (4.35) gives(
dϕ1

dx

)2

− ε1(x) = ε2(z)−
(

dϕ2

dz

)2

= α2 (4.38)

where α2 is the separation constant. The separated equations are consequently

dϕ1

dx
=
√
ε1(x) + α2 (4.39a)

dϕ2

dz
=
√
ε2(z)− α2 (4.39b)

resulting in the following expression for the eikonal:

ϕ =

x∫
x0

√
ε1(x) + α2 dx+

z∫
z0

√
ε2(z)− α2 dz + ϕ0 (4.40)

with ϕ0 being the phase given by the initial condition at the boundary point
(x0, z0) .
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If we put ϕ0 = 0 and further specialize to a plane stratified ionosphere,
ε(x, z) = ε2(z) , ε1(x) = 0 , we find from (4.40)

ϕ = α (x− x0) +

z∫
z0

√
ε(z)− α2 dz (4.41)

Earlier we saw that the ray direction is along the gradient of the eikonal, dr =
∇ϕ ds/n ; see e.g. (4.9′) and (4.19a). With this in mind we can easily express
the local slope of the rays corresponding to the case (4.41)

tan θ(z) =
dx
dz

=
∂ϕ

∂x

/
∂ϕ

∂z
=

α√
ε(z)− α2

(4.42)

Integrating this differential equation we get the ray curve expressed in the form
of x as a function of z :

x− x0 =

z∫
z0

α dz√
ε(z)− α2

(4.43)

If we introduce the notation

φ(z, α) =

z∫
z0

√
ε(z)− α2 dz (4.44)

we may write the eikonal (4.41) as follows:

ϕ = α (x− x0) + φ(z, α) (4.41′)

Because of this, and since we have

∂φ

∂α
= φ′α = −

z∫
z0

α dz√
ε(z)− α2

(4.45)

it is also possible to write the ray expression (4.43) as follows:

∂ϕ

∂α
= x− x0 + φ′α = 0 (4.43′)

We shall illustrate the practical use of these ray expressions in a few cases.
We choose the starting points of the rays on the ground level z0 = 0 where
we have free-space propagation, ε(0) = 1 . Then we see from (4.42) that the
parameter α is determined by θ0 , the initial angle of the ray with the vertical:

tan θ0 =
α√

1− α2
⇒ α = sin θ0 (4.46)
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The situation when α is fixed and the starting point x0 of the rays is varied
corresponds to an initial wave which is truly plane if the phase is arranged to
be constant over a surface perpendicular to the incident rays. To the left we
show a case with a rather low frequency where the rays are forming a horizontal
caustic at the height of reflection z̃ for which the local plasma frequency fulfils
ωp(z̃) = ω cos θ0. The caustic represents a situation where several rays are
merging and interferring with each other. To the right we show penetrating
rays of a higher frequency; ω cos θ0 > ωcrit , where ωcrit is the critical frequency
of the ionosphere.

Now we consider a fixed-frequency point source at the origin, x0 = 0 , z0 = 0 ,
while the launching direction α is varied. This is the case of a physical transmit-
ter located to the earth surface. In the upper case we show low-frequency rays
where even the vertical ray is reflected; ω < ωcrit . There we find a caustic which
is no longer horizontal; hence the formation of caustics depends on the initial
conditions. In the lower case the frequency is higher, ω > ωcrit , so that some
rays are penetrating. Besides the exterior caustic seen also in the upper case we
now also have an interior caustic formed by the returning high-elevation rays.
The crossing-point of this caustic with the ground is called the skip distance; no
real rays are reaching the ground at closer distance to the source. The points
defining these caustics are defined by the ray expression (4.43′) together with
the condition

φ′′αα = 0 (4.47)

as we shall see later on in this Section.
We shall now take a closer look at the amplitude expressions (4.27). At

distances within the free-space area from this source the phase is then constant
over cylindrical surfaces. We choose a reference cylinder of radius r0 , where we
put the amplitude

A00 =
1
√
r0

(4.48)

To determine the amplitude at arbitrary points we have to calculate the ratio
dS0/dS , which is rather simple for the two-dimensional case and central ray
field. We then choose an infinitesimal surface element (or infinitesimal element
of length in our two-dimensional problem) on this cylinder

dS0 = r0 dθ0 (4.49)

The rays bounding this element form a ray pencil through space. Using the ray
expression (4.43′), we may easily express the horizontal distance between these
rays at a fixed height z :

dx = |φ′′αα|
dα
dθ0

dθ0 = |φ′′αα| cos θ0 dθ0 (4.50)

We then find the following cross-section of the ray pencil at this height:

dS = dx cos θ(z) = |φ′′αα| cos θ0 cos θ dθ0 (4.51)
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Hence the surface ratio involved in the amplitude expression (4.27′′) is given by

dS0

dS
=

r0
|φ′′αα| cos θ0 cos θ

(4.52)

We shall rewrite the cosines in this expression by means of (4.46):

cos θ0 =
√

1− α2 (5.53a)

and by means of (4.42):

cos θ(z) =

√
ε(z)− α2√
ε(z)

(4.53b)

obtaining
dS0

dS
=

r0
√
ε

|φ′′αα|
√

1− α2
√
ε− α2

(4.54)

Putting this, together with (4.48) and (4.15), into (4.27′′), the amplitude ex-
pression becomes

A0(x, z) =
1

|φ′′αα(z, α)| 12 [1− α2]
1
4 [ε(z)− α2]

1
4

(4.55)

According to (4.28), (4.41′) we now have the single-ray field representation

E(x, z) = const.
exp{ik[αx+ φ(z, α)]}

|φ′′αα(z, α)| 12 [1− α2]
1
4 [ε(z)− α2]

1
4

(4.56)

with the x-coordinate expressed as a function of z through the ray expression
(4.43′). In connection with this representation we wish to emphasize some im-
portant points:
(i) In the case of multiple rays crossing the same point in space, several expres-
sions like (4.56) have to be superposed (vector addition in the case of electro-
magnetic waves).
(ii) For rays before reflection or penetrating rays the phase function φ is given by
(4.44). For rays reflected at height z̃ , where ε(z̃)− α2 = 0 , this phase function
has to be generalized to

φ(α, z) =

z̃∫
0

√
ε(z)− α2 dz +

z̃∫
z

√
ε(z)− α2 dz − π

2 k
(4.44′)

The term π/2k added here is a phase shift −π/2 at reflection from the caustic
which cannot be derived within geometrical optics.
(iii) The ray expression (4.43), (4.43′) similarly after reflection has to be gen-
eralized to

x− x0 =

z̃∫
0

α dz√
ε(z)− α2

+

z̃∫
z

α dz√
ε(z)− α2

(4.43′′)
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(iv) The quartic root of ε(z) − α2 in the denominatior of (4.55) has a zero as
z → z̃ . Simultaneously the square root of |φ′′αα| tends to ∞ , however, so that
the amplitude is finite through the reflection.
(v) When the observation point is on the ground, we find from (4.43′′) the
covered distance of the ray

D(α) = 2

z̃∫
0

α dz√
ε(z)− α2

(4.57)

From this expression it is possible to draw aD(α)-curve, pertaining to the actual
electron density height profile Ne(z) . There are two particular example for two
frequencies; one with ω > ωcrit , where we can see the skip distance, and another
with ω < ωcrit , where all distances 0 < D < ∞ are obtained. In the physical
ionosphere the 1-hop distance is limited by the earth curvature, the height of
the reflecting layer and the absorption of low-elevation rays.

4.3.2 Perturbation theory in the geometrical-optics ap-
proximation

We now decompose the permittivity into a background term ε0(r) , for which
we assume the geometrical-optics field representation according to the preced-
ing Sections is known, and a small perturbation term ε(r) , describing local
inhomogeneities which may be deterministic or random. This is similar to the
decomposition we introduced in the Chapter on single scattering. Then we may
write the total eikonal and main transport equations (4.7a,b) and the corre-
sponding ray equations (4.16a,b) as follows:

(∇ϕ)2 = ε0(r) + ε(r) (4.58)

2∇A0 · ∇ϕ+A0 ∇2ϕ = 0 (4.59)

d2r
dτ2

= 1
2 ∇ [ε0(r) + ε(r)] (4.60)

Utilizing the solution of the background problem, we shall in the following in-
troduce perturbation expansions of the unknowns in the above equations and
eventually obtain the first-order corrections due to the perturbations.

The perturbation approach presented in this Section is good for short paths,
e.g. for 1-hop propagation. For long paths such as propagation in ionospheric
ducts more complicated approaches, involving two-scale expansions, are neces-
sary.

Perturbation theory for the eikonal equation

We introduce for the eikonal the following expansion

ϕ = ϕ0 + ϕ1 + ... (4.61)
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so that the eikonal equation (4.58) takes the form

(∇ϕ0 +∇ϕ1 + ...)2 = ε0(r) + ε(r) (4.62)

Identifying successive orders of smallness in this equation, we find the back-
ground equation as the 0:th order equation

(∇ϕ0)2 = ε0(r) (4.63a)

where hence ϕ0 is assumed known, the first-order equation

2∇ϕ1 · ∇ϕ0 = ε(r) (4.63b)

the second-order equation

2∇ϕ2 · ∇ϕ0 = −(∇ϕ1)2 (4.63c)

and so on.
With the variable s denoting distance along the ray we know from (4.9) that

|∇ϕ0| =
dϕ0

ds
(4.64)

Using the unit vector ` along the ray we can then write (4.63a) as follows:

∇ϕ0 =
√
ε0[r(s)] ` (4.65)

Inserting this expression into the first-order equation (4.63b), we get

2
√
ε0[r(s)]

dϕ1

ds
= ε[r(s)] (4.66)

and may hence obtain the first-order correction to the phase along the undis-
turbed ray:

ϕ1(r) =

s∫
0

ε[r(s)]
2
√
ε0[r(s)]

ds (4.67)

The parallel component of ∇ϕ1 is according to (4.66) given by

∇‖ ϕ1 =
ε

2
√
ε0

(4.68a)

If we describe the fluctuations by their variance σε , this quantity is ∼ 1
2σε/

√
ε0 .

The perpendicular component of ∇ϕ1 , on the other hand, can to good approx-
imation be obtained from (4.67) as follows:

∇⊥ ϕ1 =

s∫
0

∇⊥ ε

2
√
ε0

ds (4.68b)
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Assuming that the rays are passing through an area of length L containing many
irregularities of characteristic length `ε , we may obtain the following estimate
for this component ∇⊥ ϕ1 ∼ 1

2σε L/(`ε
√
ε0). Putting the above two estimates

together we have
∇‖ ϕ1

∇⊥ ϕ1
∼ `ε
L
� 1 (4.69)

i.e. after passage through many irregularities the parallel part of the gradient
of the correction is much smaller than the transverse part.

We mention here briefly one application of the result (4.67), viz. as a way
to account for the effect of low absorption, ν/ω � 1 . Let us separate the
permittivity into real and imaginary parts:

ε = Re ε+ i Im ε (4.70)

and identify the real part of this with the background. The dissipated power is
then expressed by (4.67) through the imaginary part of the phase:

ϕ1 =
i

2

s∫
0

Im ε(s, 0)√
Re ε(s, 0)

ds (4.71)

We shall also use the result (4.67) in determining the change of angle of
propagation due to a perturbation. According to (5.20) the unit vector along
the direction of propagation is

` =
∇ϕ√
ε0 + ε

≈ ∇ϕ0 +∇ϕ1√
ε0[1 + ε/(2ε0)]

≈ ∇ϕ0√
ε0

+
∇ϕ1√
ε0
− ∇ϕ0√

ε0

ε

2ε0
(4.72)

With the direction `0 = ∇ϕ0/
√
ε0 of the undisturbed ray and with the use of

the first-order equation (4.63b), we hence we find the first-order correction to
the ray direction

`− `0 =
1
√
ε0

[∇ϕ1 − `0 (`0 · ∇ϕ1)] =
∇⊥ ϕ1√

ε0
(4.73)

The results of this subsection can be used when ε is a local deterministic
inhomogeneity. Later we shall also use them in applications when ε is a random
function.

Perturbation theory for the main transport equation

Instead of the amplitude A0 of the wave we shall here introduce the level

χ = lnA0 (4.74)

With this notation the main transport equation (4.59) can be written

2 ∇χ · ∇ϕ+∇2ϕ = 0 (4.75)
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Together with the expansion (4.61) for ϕ we now introduce a corresponding
expansion for the level:

χ = χ0 + χ1 + ... (4.76)

In this way we obtain from (4.75) the zero:th- and first-order equations

2 ∇χ0 · ∇ϕ0 +∇2ϕ0 = 0 (4.77a)

2 ∇χ0 · ∇ϕ1 + 2 ∇χ1 · ∇ϕ0 +∇2ϕ1 = 0 (4.77b)

The solution of (4.77a) is already known according to Section 4.2.2. By virtue
of (4.69) we neglect in (4.77b) the parallel component of ∇ϕ1 . Since ∇χ0 is
mainly parallel to the ray direction we shall, furthermore, neglect the first term
in (4.77b) obtaining the approximate first-order equation

2 ∇χ1 · ∇ϕ0 = −∇2
⊥ ϕ1 (4.78)

Using once again (4.65) we find that this equation can be written

2
√
ε0

dχ1

ds
= −∇2

⊥ ϕ1 (4.79)

which leads to the following first-order correction to the level:

χ1(s) = −
s∫

0

∇2
⊥ ϕ1

2
√
ε0

ds (4.80)

Perturbation theory for the ray equations

In treating the ray equation (4.60) we now introduce the ray path expansion

r(τ) = r0(τ) + r1(τ) + ... (4.81)

Thereby we must remember that the permittivity terms depend on the per-
turbed positions, ε0[r0(τ) + r1(τ) + ...] and ε[r0(τ) + r1(τ) + ...] , so that (4.60)
to the first order can be written

d2(r0 + r1)
dτ2

= 1
2 [∇ ε0(r0) + (r1 · ∇)∇ε0(r0) +∇ ε(r0)] (4.82)

Separating the zero:th and first orders we find the equation for the undisturbed
ray

d2r0

dτ2
= 1

2 ∇ ε0(r0) (4.83a)

and the equation for the first-order correction

d2r1

dτ2
− 1

2 (r1 · ∇)∇ε0(r0) = 1
2 ∇ ε(r0) = F1 (4.83b)
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For each r0 (4.83b) is a system of linear second-order differential equations in
the unknown components of r1 . The quantity F1 is introduced here only to
have a short-hand notation for the right-hand side.

Consider now the known undisturbed rays

r0 = r0(τ, βm) (4.84)

where the parameters βm are the six initial conditions of the solutions of (4.83a).
If we formally differentiate (4.83a) with respect to these parameters we obtain

d2

dτ2

(
∂r0

∂βm

)
= 1

2

(
∂r0

∂βm
· ∇
)
∇ ε0(r0) (4.85)

Hence, if we introduce the six new vectors

ρm =
∂r0

∂βm
, m = 1, ..., 6 (4.86)

we find that they satisfy the differential equation

d2ρm

dτ2
− 1

2 (ρm · ∇)∇ε0(r0) = 0 (4.87)

i.e. they are solutions of the homogeneous system of equations corresponding
to (4.83b).

According to a standard procedure called the method with variation of the
parameters we may use these vectors to construct the solutions of the inhomo-
geneous equation by assuming a trial solution on the form

r1 =
6∑

m=1

Cm(τ) ρm (4.88a)

If we let the functions Cm be subject to the constraint

6∑
m=1

dCm

dτ
ρm = 0 (4.88b)

we may write the derivative of (4.88a) in the form as if Cm were constants:

dr1

dτ
=

6∑
m=1

Cm(τ)
dρm

dτ
(4.88c)

Hence the second derivative of (4.88a) is

d2r1

dτ2
=

6∑
m=1

dCm

dτ
dρm

dτ
+

6∑
m=1

Cm(τ)
d2ρm

dτ2
(4.88d)
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Substituting (4.88a,d) into (4.83b), and using thereby also (4.87), we find the
following equation:

6∑
m=1

dCm

dτ
dρm

dτ
= F1 (4.89)

The result of the procedure just carried out is that we have replaced the
second-order differential equation (4.83b) in r1 by a system of six linear first-
order equations, (4.88b) and (4.89), in the functions Cm(τ). Provided that the
system determinant is non-zero, this system can be inverted to take the form

dCm

dτ
=

3∑
j=1

Qmj F1j , m = 1, ..., 6 (4.90)

The summation here is only taken up to j = 3 since three components are zero
in the right-hand side column vector of (4.89), (4.88b). The elements Qmj of the
6× 6 system matrix are, in principle, known expressions of the matrix elements
ρm and dρm/dτ of the system (4.89), (4.88b). Hence (4.90) can be integrated
to yield

Cm(τ) = Cm(0) +

τ∫
0

3∑
j=1

Qmj(τ) F1j(τ) dτ , m = 1, ..., 6 (4.91)

When this solution has been obtained the first-order correction to r is expressed
by means of (4.88a). In the same way the first-order correction to the conjugate
momentum, p1 = dr1/dτ , is given by (4.88c).

4.4 Geometrical optics for random fluctuations
and homogeneous background

Next we shall use the geometrical-optics technique for describing the statistical
properties of wave propagation through a medium with random fluctuations
of the dielectric permittivity. We shall decompose the medium as in (4.58),
where we assume that the field in the background medium ε0(r) is known in
the geometrical-optics approximation and that the fluctuations are zero-mean,
〈ε(r)〉 = 0 . Our major tool in describing these fluctuations will be the perturba-
tion theory expounded in Section 4.3.2. Hence we shall use the first-order phase
correction (4.67), ray-direction correction (4.73) and level correction (4.80) to in-
vestigate the fluctuations of the corresponding quantities in the random medium.

Throughout this Section we shall adopt the simplifying assumption of ho-
mogeneous background ε0 = const. and propagation along the z-axis.
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4.4.1 Fluctuations of the phase of the field

Since 〈ε〉 = 0 , we can immediately see from (4.67) that the mean of the first-
order phase fluctuations is zero:

〈ϕ1〉 = 0 (4.92)

Assuming the fluctuations to be statistically homogeneous the correlation
function of the phase fluctuations is from (4.77) as follows:

ψϕ(ρ1,ρ2, z1, z2) =
1

4ε0

z1∫
0

z2∫
0

ψε(ρ1 − ρ2, z
′ − z′′) dz′ dz′′ (4.93)

The integration here is performed over a rectangle in the z′z′′-plane. Changing
the variables into

2 η = z′ + z′′ , ζ = z′ − z′′ (4.94)

and introducing the transverse the difference variable

ρ = ρ1 − ρ2 (4.95)

we can write this integral

ψϕ(ρ, z1, z2) =
1

4ε0

∫
♦
ψε(ρ, ζ) dζ dη (4.96)

where the area of integration in the ζη-plane is a parallelogram.
Suppose now that we consider the correlation function after propagation

through many irregularities so that `ε � z1, z2 . Then the integrand is non-
zero only close to the η-axis , and we may without introducing significant error
extend the ζ-integration to ±∞ and at the same time perform the integration
over η from zero to

z< = min(z1, z2) (4.97)

Hence we obtain the result

ψϕ(ρ, z1, z2) =
z<

4ε0

+∞∫
−∞

ψε(ρ, ζ) dζ (4.98)

This result is statistically homogeneous in the transverse direction, but not
in the z-direction. Indeed, if we vary z2 while keeping z1 fixed, ψϕ first increases
linearly until z1 = z2 and then remains constant. In particular, we have from
(4.98):

σ2
ϕ(z) = ψϕ(0, z, z) =

z

4ε0

+∞∫
−∞

ψε(0, ζ) dζ (4.99)
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This integral, as we have mentioned before [eq. (1.30)], is equal to 2 `ε σ2
ε if it

converges. Then

σ2
ϕ(z) =

z `ε
2ε0

σ2
ε (4.100)

We shall use this quantity to express the longitudinal correlation coefficient

Kϕ(0, z1, z2) =
ψϕ(0, z1, z2)
σϕ(z1)σϕ(z2)

=
{√

z1/z2 z1 < z2√
z2/z1 z1 > z2

(4.101)

Finally we recall that the physical phase of the wave is ϕ multiplied by the
wave number k and hence that the correlation function of the phase is

ψS = k2 ψϕ (4.102)

4.4.2 Fluctuations of the angle of arrival

We have already considered the deviation `− `0 of the ray direction due to an
inhomogeneity in (4.73). When this deviation is very small the angle ϑ of the
deviation is approximately equal to the length of the difference vector

ϑ ≈ |`− `0| (4.103)

In this approximation and with the z-axis as the major direction of propagation
we find from (4.73):

ϑx =
1
√
ε0

∂ϕ1

∂x
(4.104a)

ϑy =
1
√
ε0

∂ϕ1

∂y
(4.104b)

Because of (4.92) we directly find that the angular fluctuations are zero-mean:

〈ϑx〉 = 0 , 〈ϑy〉 = 0 (4.105)

To construct the correlation functions of the angular fluctuations from (4.104a,b)
we first regard

ϑx(r1) ϑx(r2) =
1
ε0

∂2

∂x1 ∂x2
ϕ1(r1)ϕ1(r2) (4.106)

We found in the previous Section that if the permittivity fluctuations are statis-
tically homogeneous, then the phase fluctuations are statistically homogeneous
in the transverse direction; cf. (4.98). With ρ = {x1 − x2, y1 − y2} we hence
obtain from (4.106):

〈ϑx(r1) ϑx(r2)〉 = − 1
ε0

∂2

∂x2
〈ψϕ(ρ, z1, z2)〉 (4.106a)

and analogously for the remaining two correlation functions:

〈ϑy(r1) ϑy(r2)〉 = − 1
ε0

∂2

∂y2
〈ψϕ(ρ, z1, z2)〉 (4.106b)

〈ϑx(r1) ϑy(r2)〉 = − 1
ε0

∂2

∂x ∂y
〈ψϕ(ρ, z1, z2)〉 (4.106c)
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4.4.3 Level fluctuations

For statistically homogeneous permittivity fluctuations also the first-order level
fluctuations turn out to be zero-mean from (4.80):

〈χ1〉 = 0 (4.107)

The transverse correlation function of the level fluctuations is from (4.80)
and (4.98)

ψχ(ρ, z, z) =
1

4ε0
∇4
⊥

z∫
0

z∫
0

ψϕ(ρ, z′, z′′) dz′ dz′′

=
1

4ε0
∇4
⊥

z∫
0

z∫
0

dz′ dz′′
z<

4ε0

+∞∫
−∞

ψε(ρ, ζ) dζ =
∇4
⊥

16ε20

+∞∫
−∞

ψε(ρ, ζ) dζ

z∫
0

z∫
0

z< dz′ dz′′

(4.108)
The integral over the z′z′′-surface can easily be evaluated to yield z3/3 so the
final result for the transverse correlation function is

ψχ(ρ, z, z) =
z3 ∇4

⊥
48ε20

+∞∫
−∞

ψε(ρ, ζ) dζ (4.109)

In particular the variance of this is given by

σ2
χ(z) = ψχ(0, z, z) =

z3 ∇4
⊥

48ε20

+∞∫
−∞

ψε(0, ζ) dζ (4.110)

Sometimes it is convenient to use, instead of (4.98), (4.109), the spectral
representation of the permittivity fluctuations

ψε(ρ, z) =

+∞∫
−∞

φε(κ, κz) exp[+i (κ · ρ + κzz)] dκ dκz (4.111)

With this representation we find from (4.99), (4.102), thereby using also the
δ-function, the variance of the phase fluctuations

σ2
S(z) =

k2z

4ε0

+∞∫
−∞

φε(κ, κz) eiκzζ dκ dζ =
πk2z

2ε0

+∞∫
−∞

φε(κ, 0) dκ (4.112)

In the same way we get from (4.110) the variance of the level fluctuations

σ2
χ(z) =

πz3

24ε20

+∞∫
−∞

κ4 φε(κ, 0) dκ (4.113)
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4.4.4 Relative contributions of phase and level fluctua-
tions

We shall now make a qualitative comparison of the orders of magnitude of
the phase fluctuations (4.102) with (4.99) and the level fluctuations (4.110).
To obtain estimates of the orders of magnitude of these quantities we use the
effective scale-size of the irregularities `ε introduced in (4.100), thereby noting
that the spatial spectrum of the fluctuations has the scale-size `−1

ε . Hence we
get

σ2
S ∼

k2z`εσ
2
ε

2ε0
(4.114a)

σ2
χ ∼

z3`εσ
2
ε

48ε20`4ε
(4.144b)

We now introduce the wave parameter

D =

√
λz

`ε
(4.115)

to describe the relative magnitudes of these fluctuations to obtain

σ2
S

σ2
χ

∼ k2`4ε
z2

=
(

`ε√
λz

)4

= D−4 (4.116)

In the next Chapter on Rytov’s method we shall obtain the geometrical-
optics approximation as the limiting case

D → 0 (4.117)

of that more general method. Hence the practical applicability of the geometrical-
optics method is for small D and there, according to (4.116), the fluctuations
are mainly in the phase and not in the level.

4.4.5 Mean field in the geometrical optics approximation

With propagation along the z-axis through the homogeneous background the
field expression (4.2) in the first approximation takes the form

E(ρ, z) = exp [χ1 + i (k
√
ε0 z + S1)] ≈ exp [+i (k

√
ε0 z + S1)] (4.118)

where we neglect the level fluctuations by virtue of (4.116).
With propagation through many irregularities the phase correction

S1 =
k

2
√
ε0

z∫
0

ε(ρ, z) dz (4.119)

is a normally distributed random value. Hence the mean field may be calculated
in the same way as we used in Chapter 3, eqs. (3.55–59):

〈E〉 = exp (i k
√
ε0 z) 〈exp (iS1)〉 = exp

(
+ik

√
ε0 z − 1

2σ
2
S

)
(4.120)
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Substituting also the expression (4.100) for the variance of the phase fluctua-
tions, we get the final result

〈E〉 = exp
(
i k
√
ε0 z −

k2σ2
ε `ε

4ε0
z

)
(4.121)

As we see from this result the mean field decreases exponentially with propaga-
tion distance in the medium. This is called extinction and is due to redistribu-
tion of the energy into the random component.

That energy is not lost can be seen from the mean energy, which according
to (4.118) is independent of distance:

〈E E∗〉 = 1 (4.122)

4.4.6 Pulse propagation through the fluctuating ionosphere

Now also some considerations about pulse propagation through the fluctuating
ionosphere. What we have done so far in the geometrical-optics method applies
to a single frequency. Regarding the spectral decomposition of a pulse we thus
have for a Fourier component the representation

E(r, ω) = Eg
0 (r, ω) exp[+ikϕ1(r, ω)] (4.123)

where Eg
0 (r, ω) is the geometrical-optics representation of the undisturbed field

with its own phase and kϕ1(r, ω) is the phase fluctuation. If we denote the
emitted spectrum of the pulse by p(ω) , we have for a particular realization of
the field received in the point r :

E(r, t) =

+∞∫
−∞

p(ω) Eg
0 (r, ω) exp{+ik[ϕ1(r, ω)− ωt]} dω (4.124)

From this we may construct the mean energy of the received pulse

〈E(r, t)E∗(r, t)〉 =
∫∫

dω1 dω2 p(ω1) p∗(ω2) E
g
0 (r, ω1)E

g∗
0 (r, ω2)

· 〈exp{+ik[ϕ1(r, ω1)− ϕ1(r, ω2)]}〉 exp[−i(ω1 − ω2) t] (4.125)

The phase term in the exponent of the average is a zero-mean normally dis-
tributed random function, so we may once again make use of the property
(3.58), i.e.

〈exp{+ik[ϕ1(r, ω1)− ϕ1(r, ω2)]}〉 = exp
{
−k

2

2
Dϕ1(ω1, ω2)

}
(4.126)

where Dϕ1(ω1, ω2) is the structure function (1.64):

Dϕ1(ω1, ω2) =
〈
[ϕ1(r, ω1)− ϕ1(r, ω2)]2

〉
(4.127)
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This representation is appropriate when r is far from the caustics and strong
interference between rays can be disregarded. In the next Chapter we shall
consider pulse propagation in the more general case of Rytov’s approximation.
The results to be obtained there will contain those derivable from (4.125) as a
particular case.
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Chapter 5

Rytov’s method (method of
smooth perturbations)

5.1 Equation for the complex phase

As before we consider the scalar Helmholtz’ equation for a point source at the
origin:

∇2E + k2 [ε0(r, ω) + ε(r, ω, t)] E = δ(r) (5.1)

where the fluctuations ε may be slowly time-dependent in the sense of eq. (2.24).
As before we assume that the solution E0 and the corresponding Green’s func-
tion G of the undisturbed problem are known. We shall now use these to
construct an approximate full-wave solution of (5.1) in the so-called Rytov’s
method. Hence we put

E = E0(r, ω) exp[Ψ(r, ω, t)] (5.2)

where we have introduced the complex phase Ψ to account for the corrections to
the undisturbed field due to the local inhomogeneities. In the forward scattering
approximation, which is appropriate in the case of large-scale inhomogeneitites,
the phase is subject to the boundary condition Ψ → 0 when r → 0 . When we
introduce (5.2) into (5.1) we find that outside the source Ψ must fulfil

∇2Ψ E0 e
Ψ+2∇Ψ·∇E0 e

Ψ+(∇Ψ)2 E0 e
Ψ+∇2E0 e

Ψ+k2 ε0E0 e
Ψ+k2 εE0 e

Ψ = 0
(5.3)

The undisturbed field E0 fulfils the undisturbed wave equation [(5.1) with ε = 0 ]
and ensures the correct behaviour of the solution as r → 0 since Ψ → 0 there.
Hence

∇2Ψ + (∇Ψ)2 + 2∇ lnE0 · ∇Ψ = −k2 ε (5.4)

is an exact equation for the new unknown function Ψ outside the source.
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5.2 Perturbation series for the complex phase

Next we shall assume that ε is a small perturbation, which may be deterministic
or random, and expand the phase in a perturbation series

Ψ = Ψ1 + Ψ2 + ... (5.5)

The first-order equation from (5.4) is then given by

∇2Ψ1 + 2∇ lnE0 · ∇Ψ1 = −k2 ε (5.6a)

The second-order equation is subsequently obtained as

∇2Ψ2 + 2∇ lnE0 · ∇Ψ2 = −(∇Ψ1)2 (5.6b)

In the following we shall also make use of the average of Ψ2 which, according to
(5.6b) obeys the equation

∇2 〈Ψ2〉+ 2∇ lnE0 · ∇ 〈Ψ2〉 = −
〈
(∇Ψ1)2

〉
(5.6c)

These three equations are all of the same form:

∇2Ψm + 2∇ lnE0 · ∇Ψm = fm (5.7)

where the right-hand sides are

f1 = −k2 ε , f2 = −(∇Ψ1)2 , f3 = −
〈
(∇Ψ1)2

〉
(5.8)

and where, as a mere notation not to be confused with the third term in the
perturbation expansion, we have introduced

Ψ3 = 〈Ψ2〉 (5.9)

To solve (5.7) we now introduce new unknowns wm through

Ψm = E−1
0 wm (5.10)

Since E0 satisfies the undisturbed wave equation, our equation (5.7) is equivalent
to

∇2wm + k2 ε0 wm = fm E0 (5.11)

i.e. wm satisfy the “undisturbed equation” with new known right-hand sides.
Hence they can be written

wm =
∫
G(r, r′) fm(r′) E0(r′) dr′ (5.12)

and consequently

Ψm = E−1
0 (r)

∫
G(r, r′) fm(r′) E0(r′) dr′ (5.13)
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The explicit expressions corresponding to (5.8) are then the following:

Ψ1 = −k2 E−1
0 (r)

∫
G(r, r′) ε(r′) E0(r′) dr′ (5.14a)

Ψ2 = −E−1
0 (r)

∫
G(r, r′) [∇Ψ1(r′)]

2
E0(r′) dr′ (5.14b)

Ψ3 = 〈Ψ2〉 = −E−1
0 (r)

∫
G(r, r′)

〈
[∇Ψ1(r′)]

2
〉
E0(r′) dr′ (5.14c)

The full-wave solution (5.2) may now be expressed (omitting obvious spatial
arguments)

E = E0 exp
[
−k2E−1

0

∫
GεE0 dr′ − E−1

0

∫
G (∇Ψ1)

2
E0 dr′ + ...

]
(5.15)

If the corrections are very small we may expand the exponential function as
follows:

E ≈ E0

[
1− k2E−1

0

∫
GεE0 dr′ + 1

2k
4E−2

0

∫∫
GεE0 GεE0 dr′ dr′′

−E−1
0

∫
G (∇Ψ1)

2
E0 dr′ + ...

]
(5.16)

We see that this result is the same as the field in the approximation of single-
scattering, plus additional terms corresponding to higher-order scattering. Hence
we may conclude that the solution (5.15) obtained in Rytov’s method contains
a kind of partial (or approximate) summation of the multiple-scattering series.

For the following treatment we now separate Ψ into real and imaginary parts,
i.e. into level and phase fluctuations of the field, as follows:

Ψ1 = χ1 + i S1 , Ψ2 = χ2 + i S2 (5.17)

We may then use the statistical properties of χi and Si to express the statistical
properties of the total field. For the correlation functions

ψχ = 〈χ1χ1〉 (5.18a)

and
ψS = 〈S1 S1〉 (5.18b)

it is sufficient to know Ψ1 , but for expressing some moments of the entire field
at least the terms including Ψ2 are necessary.

Indeed, for the mean energy we have

〈E(r)E∗(r)〉 = |E0|2 〈exp [Ψ1 + Ψ2 + Ψ∗
1 + Ψ∗

2]〉 = |E0|2 〈exp [2χ1 + 2χ2]〉
(5.19)

60



Rewriting here χ2 = 〈χ2〉+χ2−〈χ2〉 and noting that χ2−〈χ2〉 is a higher-order
correction which may be neglected, we can write this average

〈E(r)E∗(r)〉 ≈ |E0|2 exp [2 〈χ2〉] 〈exp [2χ1]〉 = |E0|2 exp
[
2 〈χ2〉+ 2

〈
χ2

1

〉]
(5.20)

where in the last member we have used the property (3.58) for the zero-mean
normally distributed random function χ1 . Since χ2 and χ2

1 are both of order
ε2 , it is obvious that we need χ2 to express this average. Note that our result
(5.20) differs from the result

〈
|E|2

〉
= |E0|2 of geometrical optics; cf. (4.122).

These two results coincide in the case when 〈χ2〉 = −
〈
χ2

1

〉
. If they differ, (5.20)

corresponds to redistribution of energy which is not described by the dominant
term in geometrical optics.

The situation is the same for the mean field

〈E(r)〉 ≈ E0 〈exp [〈χ2〉+ i 〈S2〉+ χ1 + i S1]〉
= exp [〈χ2〉+ i 〈S2〉] 〈exp [χ1 + i S1]〉

= E0 exp
[
〈χ2〉+ i 〈S2〉+ 1

2

〈
χ2

1

〉
− 1

2

〈
S2

1

〉
+ i 〈χ1 S1〉

]
(5.21)

Since all terms in the exponent are of order ε2 we need Ψ2 also here.
Let us consider also the coherence function which is necessary for describing

pulse propagation:

Γ(r, ω1, ω2) = E0(r, ω1)E∗0 (r, ω2) 〈exp [Ψ(r, ω1) + Ψ∗(r, ω2)]〉 ≈ E0(ω1)E∗0 (ω2)

〈exp [χ1(ω1) + i S1(ω1) + χ2(ω1) + i S2(ω1)
+χ1(ω2)− i S1(ω2) + χ2(ω2)− i S2(ω2)]〉 (5.22)

where we have included terms up to Ψ2 as in the previous cases. Neglecting
also Ψ2 − 〈Ψ2〉 we obtain

Γ2(r, ω1, ω2) = E0(ω1)E∗0 (ω2) exp {〈χ2(ω1)〉+ 〈χ2(ω2)〉+ i [〈S2(ω1)〉 − 〈S2(ω2)〉]}

· exp
[
+ 1

2 F (ω1, ω2)
]

(5.23)

with

F (ω1, ω2) =
〈
{χ1(ω1) + χ1(ω2) + i [S1(ω1)− S1(ω2)]}2

〉
(5.24)

In general Ψ1 + Ψ2 is necessary for constructing this coherence function.

5.3 Forward scattering Fresnel approximation for
the complex phase

We shall consider here the most simple case of a homogeneous background with
fluctuations in the half-plane z > 0 and an incident field in the form of a plane
wave in the z-direction. Hence the incident field is

E0 = eikz (5.25)
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and the Green’s function is given by (2.35), i.e.

G(r, r′) = − 1
4π

exp[ik|r− r′|]
|r− r′|

(5.26)

The first-order complex phase is then according to (5.14a):

Ψ1(x, y, z) =
k2

4π
e−ikz

+∞∫
−∞

dx′ dy′
+∞∫
0

exp [ik|r− r′|+ ikz′]
|r− r′|

ε(x′, y′, z′) dz′

(5.27)
For our following discussion we shall denote the entire phase of this expres-

sion by P :

P (x′, y′, z′) = k
√

(x− x′)2 + (y − y′)2 + (z − z′)2 − k (z − z′) (5.28)

We note that it may sometimes be possible to evaluate the x′y′-integrals by the
method of steepest descents, and then the stationary points of the exponent are
given by

∂P

∂x′
=

k (x− x′)√
(x− x′)2 + (y − y′)2 + (z − z′)2

= 0 (5.29a)

∂P

∂y′
=

k (y − y′)√
(x− x′)2 + (y − y′)2 + (z − z′)2

= 0 (5.29b)

i.e. for a fixed point (x, y, z) of observation these points form a straight line
parallel to the z-axis and ending at (x, y, z) .

Since rapid spatial phase variations tend to cancel the contributions to inte-
grals of the type (5.27), it is of importance to investigate the regions where P
is constant. We shall consider the surfaces

P = k
√

(ρ− ρ′)2 + (z − z′)2 − k (z − z′) = `π , ` = 0, 1, 2, ... (5.30)

where as before we denote the transverse coordinates by ρ = {x, y} . Introducing
the wavelength λ = 2π/k , (5.30) is the same as

(ρ− ρ′)2 = `λ (z − z′) + 1
4`

2λ2 (5.31)

Hence we see that the surfaces of constant phase are rotational paraboloides
around the line through the point of observation and parallel to the z-axis. These
surfaces cross the line z′ = z at the positions z′ = z + `λ/4 . In particular, the
main Fresnel zone is the volume within the surface with ` = 1 , i.e. the region
of space where 0 < P < π .

We shall obtain the Fresnel approximation of (5.27) by expanding the square
root in the phase P for |ρ− ρ′| � |z − z′| , i.e. we shall make use of

√
(ρ− ρ′)2 + (z − z′)2 ≈ |z − z′|+ (ρ− ρ′)2

2 |z − z′|
(5.32)
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to obtain the phase

P =
{

1
2 k (ρ− ρ′)2/(z − z′) , z′ < z
2k (z′ − z) + 1

2 k (ρ− ρ′)2/(z′ − z) , z′ > z
(5.33)

In the denominator of (5.27) the approximation |z − z′| of the square root is
sufficient. We then use the result (5.33) to write (5.27) as a sum of two items:

Ψ1(x, y, z) =
k2

4π

+∞∫
−∞

dx′ dy′
z∫

0

exp
[
+ik (ρ−ρ′)2

2(z−z′)

]
z − z′

ε(r′) dz′

+
k2

4π

+∞∫
−∞

dx′ dy′
+∞∫
z

exp
[
2ik(z′ − z) + ik

(ρ−ρ′)2

2(z′−z)

]
z′ − z

ε(r′) dz′ (5.34)

It is easily seen that the phase of the second term oscillates much more rapidly
with z′ than the first term. The volume of integration to the left (for z′ < z)
contains the main Fresnel zone, whereas to the right (for z′ > z) it crosses into
a new zone for every λ/4 . Hence it its obvious that if the fluctuations are of
sufficiently large scale so that k`ε � 1 , the oscillations will almost cancel the
second integral in (5.34). Neglecting this integral we then obtain

Ψ1(x, y, z) =
k2

4π

+∞∫
−∞

dx′ dy′
z∫

0

exp
[
+ik (ρ−ρ′)2

2(z−z′)

]
z − z′

ε(r′) dz′ (5.35)

This is our desired Rytov’s representation of the first-order complex phase.
Physically this result corresponds to forward scattering where only the points
previously passed by the initial wave contribute to the fluctuating field. It is
an approximate solution of the first-approximation equation (5.6a), which with
the initial field (6.25) has the form

∇2Ψ1 + 2 ik
∂Ψ1

∂z
= −k2 ε (5.36)

It can be easily shown that (5.35) is an exact solution of the similar parabolic
equation

∇2
⊥Ψ1 + 2 ik

∂Ψ1

∂z
= −k2 ε (5.37)

which solution does not contain waves propagating in the direction opposite to
the incident field. The Fresnel propagator

exp
[
+ik

(ρ− ρ′)2

2(z − z′)

]
(5.38)

appearing in (5.35) is typical for solutions of parabolic equations.
The second-order complex phase Ψ2 is given by (5.14b), which can be treated

to give the same sort of integral as (5.35). However, we shall not here go into
details about this.
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5.4 Geometrical optics as a limiting case of Ry-
tov’s method

We saw in (5.29a,b) that x′ = x , y′ = y are stationary points of the expo-
nent in (5.27). This is also true for (5.35) and we shall now investigate under
what conditions the x′y′-integrations can be performed by the steepest-descent
method.

As we have already discussed, the major contributions to the x′-integral
come from the main Fresnel zone, i.e. from x′ which fulfil |x− x′| < `x , where

k `2x
2 (z − z′)

= π (5.39)

or
`x =

√
λ (z − z′) (5.39′)

For a fixed distance of observation z , this has its maximum for z′ = 0 and we
hence take

RF = `x =
√
λ z (5.40)

as the scale of the main Fresnel zone. It is now clear that the steepest-descent
method can be used in the x′- and y′-directions when the scale of the irregular-
ities is much larger than this parameter, i.e.

`ε � RF (5.41)

We shall show below that this is, in fact, the third condition of validity for the
geometrical-optics approximation. It may also be expressed in terms of the wave
parameter D introduced in (4.115) as follows:

D =
RF

`ε
=

√
λ z

`ε
� 1 (5.42)

When (5.42) is violated the general integral (5.35) has to be calculated. Next
we shall, however, demonstrate the steepest-descent evaluation of the transverse
integrations and show the limit of geometrical optics. To this end we expand
the relative permittivity of the fluctuations

ε(x′) = ε(x) +
∂ε(x)
∂x

(x′ − x) + 1
2

∂2ε(x)
∂x2

(x′ − x)2 + ... (5.43)

Then we have in this approximation, since the first derivative gives an odd
integrand,

+∞∫
−∞

ε(x′)
exp

[
ik (x−x′)2

2 (z−z′)

]
z − z′

dx′ = ε(x)

+∞∫
−∞

exp
[

ik (x−x′)2

2 (z−z′)

]
z − z′

dx′

+ 1
2

∂2ε(x)
∂x2

+∞∫
−∞

(x′ − x)2

z − z′
exp

[
ik (x− x′)2

2 (z − z′)

]
dx′ (5.44)
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The first integral here may be evaluated by deforming the path of integration
into a line through x tilted an angle π/4 in the complex x′-plane, i.e. x′ − x =
α exp(iπ/4) . In this way we obtain

eiπ/4

+∞∫
−∞

exp
[
− k α2

2 (z−z′)

]
z − z′

dα =
eiπ/4

z − z′

√
2π (z − z′)

k
(5.45)

The integration over y′ can be done in the same way, and hence (5.35) with
the first term in the Taylor expansion of ε(x′, y′, z′) yields a purely imaginary
result:

i S1 =
ik

2

z∫
0

ε(x, y, z′) dz′ (5.46)

This is exactly the first-order correction to the phase obtained in geometrical
optics aproximation, eq. (4.67). The second integral in (5.44) can easily be
evaluated if we make use of (5.45) as follows:

+∞∫
−∞

ξ2 exp[iβξ2] dξ = −i ∂

∂β

+∞∫
−∞

exp[iβξ2] dξ = 1
2 i e

iπ/4
√
π/β3 (5.47)

Together with the corresponding contribution in the y′-direction this gives the
real-valued result

χ1 = − 1
4

z∫
0

(z − z′) ∇2
⊥ε(x, y, z

′) dz′ (5.48)

The first-order level-correction in the geometrical-optics approximation is given
by (4.80). If we substitute ϕ1 according to (4.67)(with the unity background
dielectric permittivity) into this and perform an integration by parts, we obtain
exactly (5.48).

Hence we have verified that the first-order Rytov’s representation (5.35)
really gives the result of geometrical-optics in the limit (5.42) when the steepest-
descent method applies. To summarize, the steepest-descent evaluation of (6.35)
can be written

Ψ1 =
ik

2

z∫
0

ε(x, y, z′) dz′ − 1
4

z∫
0

(z − z′) ∇2
⊥ε(x, y, z

′) dz′ (5.49)

When (5.42) is violated diffraction effects are essential and then the general
integral (5.35) has to be calculated.
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5.5 Phase and level fluctuations, their mean val-
ues and correlation functions

When we separate the first-order Rytov’s representation (6.35) into real and
imaginary parts we get

χ1(r) =
k2

4π

+∞∫
−∞

dx′ dy′
z∫

0

ε(r′)
z − z′

cos
[
k

(ρ− ρ′)2

2 (z − z′)

]
dz′ (5.50a)

S1(r) =
k2

4π

+∞∫
−∞

dx′ dy′
z∫

0

ε(r′)
z − z′

sin
[
k

(ρ− ρ′)2

2 (z − z′)

]
dz′ (5.50b)

Since these are linear in the zero-mean quantity ε , we have 〈χ1〉 = 〈S1〉 = 0 .
In calculating the correlation functions we shall employ the transverse spatial

spectrum of the fluctuations; ε̃(κ, z′) with κ = {κx, κy} . The transverse spatial
Fourier transform of (6.35) takes the form of a convolution integral in the x-
and y-variables which may be considerably simplified by using the convolution
theorem to yield

Ψ̃1(κ, z) =
ik

2

z∫
0

ε̃(κ, z′) exp

[
−i

(κ2
x + κ2

y)(z − z′)
2 k

]
dz′ (5.51)

The level fluctuations may be expressed

χ1(r) = 1
2 [Ψ1(r) + Ψ∗

1(r)] (5.52a)

where we now shall use

Ψ1(r) =

+∞∫
−∞

Ψ̃1(κ, z) exp[iκ · ρ] dκ (5.53)

When we substitute (5.51) and (5.53) into (5.52a), we may also utilize the fact
that for real-valued fluctuations ε(r) we have

ε̃∗(−κ, z) = ε̃(κ, z) (5.54)

We then arrive at the following expression:

χ1(r) =
k

2

+∞∫
−∞

exp[iκ · ρ] dκ

z∫
0

ε̃(κ, z′) sin
[
κ2(z − z′)

2 k

]
dz′ (5.55)

where the simplifying notation κ2 = κ2
x + κ2

y has been used. In this result we
can immediately identify the transverse spectrum of the level for a separate
realization of the fluctuations:

χ̃1(κ, z) =
k

2

z∫
0

ε̃(κ, z′) sin
[
κ2(z − z′)

2 k

]
dz′ (5.56a)
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Analogously we may use the formula

S1(r) = 1
2i [Ψ1(r)−Ψ∗

1(r)] (5.52b)

to obtain the result

S̃1(κ, z) =
k

2

z∫
0

ε̃(κ, z′) cos
[
κ2(z − z′)

2 k

]
dz′ (5.56b)

We shall next use the result (5.56a) together with

χ1(r) =

+∞∫
−∞

χ̃1(κ, z) exp[iκ · ρ] dκ (5.57)

to construct the transverse correlation function for the level. Assuming statisti-
cal homogeneity in the longitudinal direction and noting that χ1 is real we have
by definition

ψχ(ρ1,ρ2, z) =

+∞∫
−∞

dκ1 dκ2 〈χ̃1(κ1, z) χ̃1(κ2, z)〉 exp[i (κ1·ρ1+κ2·ρ2)] (5.58)

Substituting (5.56a) into this, we get

ψχ(ρ1,ρ2, z) =
k2

4

+∞∫
−∞

dκ1 dκ2 exp[i (κ1 · ρ1 + κ2 · ρ2)]

·
z∫

0

z∫
0

〈ε̃(κ1, z
′) ε̃(κ2, z

′′)〉 sin
[
κ2

1(z − z′)
2 k

]
sin
[
κ2

2(z − z′′)
2 k

]
dz′ dz′′ (5.59)

The average appearing in the integrand is the transverse spectrum of the cor-
relation function of the permittivity fluctuations, i.e.

ψε(κ1,κ2, z
′, z′′) = 〈ε̃(κ1, z

′) ε̃(κ2, z
′′)〉 (5.60)

When we have statistical homogeneity this quantity has the form

ψε(κ1,κ2, z
′, z′′) = Fε(κ1, z

′ − z′′) δ(κ1 + κ2) (5.61)

Under these conditions (5.59) can be written

ψχ(ρ1,ρ2, z) =
k2

4

+∞∫
−∞

dκ exp[iκ · (ρ1 − ρ2)]

·
z∫

0

z∫
0

Fε(κ, z′ − z′′) sin
[
κ2(z − z′)

2 k

]
sin
[
κ2(z − z′′)

2 k

]
dz′ dz′′ (5.62)
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With ρ = ρ1 − ρ2 we finally get the following Fourier representation of the
correlation function

ψχ(ρ, z) =

+∞∫
−∞

Fχ(κ, z) exp[iκ · ρ] dκ (5.63)

with

Fχ(κ, z) =
k2

4

z∫
0

z∫
0

Fε(κ, z′ − z′′) sin
[
κ2(z − z′)

2 k

]
sin
[
κ2(z − z′′)

2 k

]
dz′ dz′′

(5.64)
Now we shall treat (5.64) in a similar way as we did with the integral in

Section 4.4.1. Hence we introduce new variables through

2 η = z′ + z′′ , ζ = z′ − z′′ (5.65)

so that (5.64) can be written

Fχ(κ, z) =
k2

4

∫
♦
Fε(κ, ζ) sin

[
κ2

2 k
(
z − η − 1

2ζ
)]

sin
[
κ2

2 k
(
z − η + 1

2ζ
)]

dζ dη

(5.66)
The symbol ♦ denotes the area of integration in the ζη-plane. With the spatial
scale `ε of the fluctuations the scale of the spatial spectrum will be `−1

ε , as we
have already stressed many times. Since Fε is practically zero for |ζ| > `ε it is
then sufficient to integrate over |ζ| smaller than this value if z � `ε ,. Since also
in practice κ < `−1

ε , the term κ2ζ/(4k) has a maximum value which is of the
order 1/(k`ε) � 1 for the large-scale inhomogeneities considered here. Hence
we can omit this term in both sines obtaining

Fχ(κ, z) =
k2

4

∫
♦
Fε(κ, ζ) sin2

[
κ2(z − η)

2 k

]
dζ dη (5.67)

Because of the restricted area of non-zero Fε , the integration over ζ can without
introducing large error be extended to ±∞ and then we may also take the
integration over η right up to the point z :

Fχ(κ, z) =
k2

4

z∫
0

dη sin2

[
κ2(z − η)

2 k

] +∞∫
−∞

Fε(κ, ζ) dζ (5.68)

The three-dimensional spatial spectrum corresponding to Fε is

φε(κ, κz) =
1
2π

+∞∫
−∞

Fε(κ, ζ) exp[−iκzζ] dζ (5.69)
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and in particular we have

φε(κ, 0) =
1
2π

+∞∫
−∞

Fε(κ, ζ) dζ (5.69′)

Hence

Fχ(κ, z) =
πk2

2
φε(κ, 0)

z∫
0

sin2

[
κ2(z − η)

2 k

]
dη (5.70)

Carrying out the straight-forward integration over η , we obtain from this

Fχ(κ, z) =
πk2 z

4

[
1− k

κ2 z
sin
(
κ2 z

k

)]
φε(κ, 0) (5.71a)

As our final result, the transverse spatial correlation function for the level is
then given by

ψχ(ρ, z) =
πk2 z

4

+∞∫
−∞

[
1− k

κ2 z
sin
(
κ2 z

k

)]
φε(κ, 0) exp[iκ · ρ] dκ (5.72a)

The calculation of the transverse spatial correlation function for the phase is
completely analogous with the above. Hence we obtain the corresponding result

FS(κ, z) =
πk2 z

4

[
1 +

k

κ2 z
sin
(
κ2 z

k

)]
φε(κ, 0) (5.71b)

ψS(ρ, z) =
πk2 z

4

+∞∫
−∞

[
1 +

k

κ2 z
sin
(
κ2 z

k

)]
φε(κ, 0) exp[iκ · ρ] dκ (5.72b)

The results (5.71a,b) and (5.72a,b) are valid generally; not only for very
large-scale inhomogeneities when geometrical optics pertains, but also when `ε
is less than the Fresnel zone size so that diffraction effects are essential.

It is now interesting to investigate how the limiting case of geometrical optics
can be obtained from these results. We know that the largest value of κ for which
φε is non-zero and which is then necessary in the evaluation of the integrals is of
the order `−1

ε . The argument of the sine function for this κ is z/(k `2ε) ∼ λ z/`2ε =
D2 . If the wave parameter fulfils D � 1 we may then use the expansion

k

κ2 z
sin
(
κ2 z

k

)
=

sin ξ
ξ

≈ 1− ξ2

6
+ ... (5.73)

In the case of level fluctuations the first term of this expansion is cancelled in
(5.71a). Hence we have to include the second term which gives

Fχ(κ, z) =
π κ4 z3

24
φε(κ, 0) (5.74a)
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For the phase fluctuations the first term is sufficient which yields

FS(κ, z) =
πk2 z

2
φε(κ, 0) (5.74b)

The resulting transverse spatial correlation functions (5.72a,b) are then given
by

ψG
χ (ρ, z) =

+∞∫
−∞

π κ4 z3

24
φε(κ, 0) exp[iκ · ρ] dκ (5.75a)

ψG
S (ρ, z) =

+∞∫
−∞

π k2 z

2
φε(κ, 0) exp[iκ · ρ] dκ (5.75b)

where the superscript G indicates that we have really obtained the geometrical-
optics limit from Chapter 4. Indeed, (5.75a,b) specialized to ρ = 0 are just eqs.
(4.112,113).

The opposite limit, when D � 1 , is the Fraunhofer limit of plane wave
diffraction. Then the sine can be omitted in the formulas (5.71a,b) for the main
part of the domain of integration, giving

FF
χ,S(ρ, z) =

π k2 z

4
φε(κ, 0) (5.76)

As a result we get the same expression for the level and phase fluctuations:

ψF
χ,S(ρ, z) =

+∞∫
−∞

π k2 z

4
φε(κ, 0) exp[iκ · ρ] dκ (5.77)

For intermediate values of D the general formulas (5.72a,b) must be used.
We restate them here again in a unified form:

ψχ,S(ρ, z) =
πk2 z

4

+∞∫
−∞

[
1∓ k

κ2 z
sin
(
κ2 z

k

)]
φε(κ, 0) exp[iκ · ρ] dκ (5.72′)

We remark that all these considerations pertain to the case of an incident
plane wave in the z-direction and homogeneous background with fluctuations in
the half-space z > 0 . For ionospheric propagation the mean properties of the
fluctuations depend on the height and in the quasi-homogeneous approximation
the fluctuation spectrum will then also be a function of η , i.e. φε(κ, κz, η) . In
this case we cannot take this quantity out of the integration in (6.70) and hence
we obtain instead of (5.72a) the expression

ψχ(ρ, z) =
πk2

2

+∞∫
−∞

exp[iκ · ρ] dκ

z∫
0

sin2

(
κ2 z

2 k

)
φε(κ, 0, η) dη (5.78a)
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and instead of (5.72b)

ψS(ρ, z) =
πk2

2

+∞∫
−∞

exp[iκ · ρ] dκ

z∫
0

cos2
(
κ2 z

2 k

)
φε(κ, 0, η) dη (5.78b)

Alternatively we may have a slow temporal change of the fluctuations, φε(κ, κz, t) ,
e.g. in the model of frozen drift. Then we have instead of (5.72’), if we specialize
to the variance with ρ = 0 , the expressions

σχ,S(ρ, z, t) =
πk2 z

4

+∞∫
−∞

[
1∓ k

κ2 z
sin
(
κ2 z

k

)]
φε(κ, 0, t) dκ (5.79)

The frequency spectra of these slow temporal changes are

σ̃χ,S(ρ, z,Ω) =
k2 z

8

+∞∫
−∞

[
1∓ k

κ2 z
sin
(
κ2 z

k

)]
φε(κ, 0, t) exp(iΩt) dκ dt

(5.80)

5.6 The moments of the total field

We have already derived the expression (5.20) for the mean energy in Rytov’s
method:

〈E E∗〉 = |E0|2 exp
[
2 〈χ2〉+ 2

〈
χ2

1

〉]
(5.81)

as well as (5.21) for the average total field

〈E(r)〉 = E0 exp
[
〈χ2〉+ i 〈S2〉+ 1

2

〈
χ2

1

〉
− 1

2

〈
S2

1

〉
+ i 〈χ1 S1〉

]
(5.82)

It can be shown that the particular relations

〈χ2〉 = −
〈
χ2

1

〉
(5.83a)

〈S2〉 = −〈χ1S1〉 (5.83b)

are valid when the incident field is a plane wave and the background is homo-
geneous. Then (5.81,82) specialize to

〈E E∗〉 = |E0|2 (5.84)

〈E(r)〉 = E0 exp
[
− 1

2

(〈
χ2

1

〉
+
〈
S2

1

〉)]
(5.85)

We then also easily find from (5.72’) that

〈
χ2

1

〉
+
〈
S2

1

〉
=
πk2 z

2

+∞∫
−∞

φε(κ, 0) dκ (5.86)
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5.7 Range of applicability of Rytov’s method

It is difficult to write down explicit and rigorous conditions for the validity of
the Rytov’s approximation. One condition concerns the validity of the Fresnel
approximation, i.e. our omission of the next higher term in (6.32). This is
justified provided that the phase error in the integrand is much less than unity;

k (ρ− ρ′)4

(z − z′)3
� 1 (5.87)

However, the main criteria of the validity of the results predicted in the
scope of Rytov’s approximation is a good fitting the appropriate results of the
experimental observations. In particular, while comparing experimentally ob-
served values of the variance of the log-amplitude (level) fluctuations with those
predicted by Rytov’s approximation, fairly good coincidence is observed up to
values of the variance fulfilling the inequality〈

χ2
1

〉
<∼ 1 (5.88a)

At this, comparison of the experimentally observed values of the scintillation
indes S4 with the same forecasted by Rytov’s approximation results in the range
of the validity of the latter given by the value of the order〈

χ2
1

〉
<∼ 0.1 (5.88b)

5.8 Simplest relationships for the dielectric per-
mittivity of plasma with the electron density
fluctuations

We already briefly faced this issue in the introductory part of Chapter 1. We
still confine ourselves here by the consideration of a cold collisionless plasma,
which relative dielectric permittivity in full 3-D case is defined by equation

ε = 1− e2 [N0(r) +N(r, t)]
mε0ω2

(5.89)

where the full electron density is divided into two parts. Density N0(r)
stands for the slowly varying in space distribution in the background medium
of propagation (ionosphere), and N(r, t) represents fluctuations of the electron
density in space and time (time dependence should be considered in the sense
of the slow time). The fluctuational item N(r, t) in (5.89) cannot be consid-
ered as the statistically homogeneous as the absolute values of fluctuations are
significantly dependant on the electron density of the background plasma. Al-
ternatively we may write

ε = ε0(z) + ε(r, t) = 1− e2N0(z)
mε0ω2

− e2N0(z)
mε0ω2

Nf (r, t) (5.90)
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where it is realistic and reasonable to assume the relative density fluctuations

Nf (r, t) =
N(r, t)
N0(z)

(5.91)

to be statistically homogeneous. It is possible to choose this function such that
the relative permittivity fluctuations are zero-mean, 〈ε〉 = 0 , but the fluctua-
tional part of the relative dielectric permittivity, at best, may only be considered
as quasi-homogeneous so that their correlation function has the form

ψε(r1, r2, t1 − t2) = ψε(r1 − r2, α(r1 + r2), t1 − t2) (5.92)

Here α is a small parameter.
According to the experience a significant part of random ionospheric inho-

mogeneities are of the turbulent type. In the inertial interval of wave numbers,
localized between k = 2π/L and K = 2π/`, the spatial spectrum of the iono-
spheric turbulence is characterized by the inverse power law as follows:

φε(κ, κz, z) =
Cε(z)[

1 + κ2
x

K2
x

+ κ2
y

K2
y

+ κ2
z

K2
z

]p/2
(5.93)

Quantities ` and L are the inner and outer scales of a turbulence.
Sometimes an exponential decrease is introduced for fluctuations smaller

than some inner scale or minimum size ` of the ionospheric blobs, i.e. for
κ > 2π/` . The spectral index p in (5.93) is generally of the order 3 – 4.

The spatial spectrum of the relative fluctuations of the ionospheric electron
density written like in (5.93) implies that random inhomogeneities are, generally
speaking, 3-D inhomogeneous (anysotropic) bodies, i.e. they may have differ-
ent values of ` anf L along different axes of an ortogonal co-ordinate system.
Anysotropy of the ionospheric random inhomogeneities is caused by the Earth’s
magnetic field, so that the inhomogeneities are field-aligned. In mid-latitudes
they have sigar-like shapes with the cylindrical symmetry in the plane orthogo-
nal to the magnetic field lines. However, physically more complicated processes
occuring in high-latitude and low-latitude ionosphere may result in full 3-D
shapes of the ionospheric random inhomogeneities. It should be additionally
pointed out that in some cases the inverse power law spatial spectrum may be
of a more complicated shape with two different values of the spectral index (two
slopes).

5.9 Extension of Rytov’s approximation to the
case of nhomogeneous background media

We have been dealing with the most simple case when the background medium
considered to be homogeneous. However, in the vast majority of the problems of
HF, VHF, UHF wave propagation in the ionospheric with the electron density
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fluctuations one has to treat the case, when the background medium is essen-
tially inhomogeneous. Meeting these needs Rytov’s approximation was gradu-
ally extended, finally, to the case of full 3-D inhomogeneous background medium.
The first extension was performed in [Zernov, 1980] in 2-D problem for the case
of plane-layered inhomogeneous background medium. The ray-centres variables
were used to construct the complex phases, where the bent paths of propaga-
tion defined by the inhomogeneous layered background medium were utilized
as reference rays to the appropriate ray-centred co-ordinate system. Further
extension was carried out by [Zernov, 1990], [Zernov and Lundborg, 1996].

They suggested the integral representation in terms of diffract-
ing component waves, where each diffracting component wave was
constructed employing the smooth perturbation technique. This
allowed investigation of the effects of the ionospheric electron
density fluctuations on the fields near caustics. Further gener-
alization of the method of smooth perturbation to the layered
medium for the 3-D case made it possible solving some realistic
problems of HF propagation in the ionosphere with the electron
density fluctuations [Gherm and Zernov, 1995, 1998], including HF
pulse propagation [Gherm et al., 1997a,b]. Finnally, one will find in
[Gherm et al., 2005a] the most general case of Rytov’s method, which
is valid for an arbitrary 3-D inhomogeneous background medium.

5.10 Pulse propagation

In treating ionospheric propagation of pulses we have to deal with
a frequency spectrum of waves, where each component may be
desribed, e.g., by the Rytov’s solution, or mentioned above method
of the geometrical optics. Here we shall follow the formalizm
of Rytov’s method. Later on, however, we shall see that the case
of strong scintillation requires other adequate treatment of the
frequency component waves. In particular, the two-freqency co-
herence function must be constructed by one of the methods capa-
ble of describing the case of strong amplitude fluctuations. Now,
according to the Rytov’s approximation

E(r, ω) = EG
0 (r, ω) exp[Ψ(r, ω)] = f0(z, ω) exp{i ϕ0[r, ω, α(ω)] + Ψ(r, ω)}

(5.94)
with the geometrical-optics representation (4.56) for a plane-stratified
ionosphere as the background field. Hence the background ampli-
tude f0 is proportional to (4.55) and the background phase is

ϕ0(r, α) = k α(ω)x+ k φ[z, ω, α(ω)] (5.95)

It is important here to note the frequency-dependence in α(ω)
which is there to ensure that the undisturbed component ray has
an initial direction allowing it to reach the point of observation.
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The transionospheric case is the simplest to consider; the treat-
ment of the ionospheric reflection channel requires some extra
precautions.

If we assume the spectrum p(ω) of the emitted pulse, we can
express the field at the point of observation as follows:

E(r, t) =

+∞∫
−∞

p(ω) f0(z, ω) exp {i ϕ0[r, ω, α(ω)] + Ψ(r, ω)− iωt} dω (5.96)

The mean energy of the field is expressed by

W (r, t) =

+∞∫
−∞

dω1 dω2 p(ω1) p∗(ω2) f0(z, ω1) f∗0 (z, ω2)Γ(r, ω1, ω2)

exp
{
i ϕ0[r, ω1, α(ω1)]− i ϕ0[r, ω2, α(ω2)]− i(ω1 − ω2)t

}
(5.97)

involving the two-frequency coherence function

Γ(r, ω1, ω2) =
〈
exp[Ψ(r, ω1) + Ψ∗(r, ω2)]

〉
(5.98)

We must account for at least the first and second approximations
of Ψ in constructing this coherence function, i.e.

Γ ' Γ2(r, ω1, ω2) = exp [A(r, ω1, ω2) + i B(r, ω1, ω2)] (5.99)

with

A(ω1, ω2) = 〈χ2(ω1)〉+〈χ2(ω2)〉+ 1
2

〈
[χ1(ω1) + χ1(ω2)]

2
〉
− 1

2

〈
[S1(ω1)− S1(ω2)]

2
〉

(5.100a)
B(ω1, ω2) = 〈S2(ω1)〉 − 〈S2(ω2)〉+

〈
[χ1(ω1) + χ1(ω2)] [S1(ω1)− S1(ω2)]

〉
(5.100b)

These general expressions can be simplified in some limiting cases.
In most cases the problem has a dominant frequency ωd , e.g. the
carrier frequency for narrowband pulses or stationary points,
giving the dominant contribution to the integral in (5.97) for
wideband pulses. Expanding the moments in a double Taylor se-
ries around ωd and omitting terms higher than the quadratic, we
may write the coherence function as follows:

Γ2(r, ω1, ω2) = exp
[
β0(ωd) + β1(ωd)(ω1 − ω2)− β2(ωd)(ω1 − ω2)2

]
(5.101)

In the most general case the expansion coefficients are given by

β0(ωd) = 2 〈χ2(ωd)〉+ 2
〈
χ2

1(ωd)
〉

(5.1020)
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β1(ωd) =
〈
∂S2(ωd)
∂ω

〉
+ 2

〈
χ1(ωd)

∂S1(ωd)
∂ω

〉
(5.1021)

β2(ωd) = 1
2

〈(
∂S1(ωd)
∂ω

)2
〉
− 1

4

〈
∂2χ2(ωd)
∂ω2

〉
− 1

2

〈
χ1(ωd)

∂2χ1(ωd)
∂ω2

〉
(5.1022)

By our way of writing the derivatives we understand that ω is to
be put = ωd after the differentiation is performed.

In the absence of caustics, as e.g. for transionospheric propa-
gation, the relations (5.83a,b) hold. The expressions 6.1090−3 are
then simplified to

βNS
0 (ωd) = 0 (5.1030)

βNS
1 (ωd) =

〈
χ1(ωd)

∂S1(ωd)
∂ω

〉
−
〈
∂χ1(ωd)
∂ω

S1(ωd)
〉

(5.1031)

βNS
2 (ωd) = 1

2

[〈(
∂χ1(ωd)
∂ω

)2
〉

+

〈(
∂S1(ωd)
∂ω

)2
〉]

(5.1032)

where the superscript NS stands for “non-singular”. In this case
we still have diffraction effects and phase fluctuations.

In the geometrical optics limit we have χ1 = 0 and because of
this the further simplification

βGO
0 (ωd) = 0 (5.1040)

βGO
1 (ωd) = 0 (5.1041)

βGO
2 (ωd) = 1

2

〈(
∂S1(ωd)
∂ω

)2
〉

(5.1042)

As we know, we have in this case only phase fluctuations and no
diffraction effects.

We shall use these representations of the coherence function in
the mean-energy integral (5.97). First we note that in the absence
of fluctuations, when Γ = 1 in (6.104), we still have the regular
ionospheric dispersion with the mean energy

W0(r, t) =

+∞∫
−∞

dω1 dω2 p(ω1) p∗(ω2) f0(z, ω1) f∗0 (z, ω2)

exp
{
i ϕ0[r, ω1, α(ω1)]− i ϕ0[r, ω2, α(ω2)]− i(ω1 − ω2)t

}
(5.105)

When we introduce the form (6.108) of the coherence function
into (5.97) it is possible to carry out the Fourier transformation
of the exponential function there with respect to the difference
frequency (ω1 − ω2) . Thus we may use the convolution theorem to
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obtain the following expression for the mean-energy in the gen-
eral case:

W (r, t) =
1

2
√
πβ2(ωd)

∫ +∞

−∞
exp

{
β0(ωd)−

[τ − t+ β1(ωd)]
2

4β2(ωd)

}
W0(r, τ) dτ

(5.106)
This result contains all the effects caused by the inhomogeneities
as described by the coefficients βi . The formula can be specialized
to various cases by using the appropriate one of the sets (5.102–
104) of these coefficients. It contains also the limiting case of
geometrical optics when β0 = β1 = 0 and only β2 is non-zero.

When 4β2 � T 2 , where T is the length of the pulse after passage
through the regular ionosphere, the exponent in (5.106) varies
rapidly compared to the regular pulse W0 and then the mean en-
ergy W is the same as the mean energy W0 of the regular iono-
sphere, only delayed somewhat due to the fluctuations and with
an extra amplitude factor:

W (r, t) = exp[β0(ωd)] W0[r, t− β1(ωd)] (5.107)

If, in particular, β0 = β1 = β2 = 0 then the regular result (5.105) is
recovered.

The condition that β2 be small implies weak fluctuations. We
shall consider some ways of directly calculating the double inte-
gral (5.97) for cases when β2 is considerable compared to T 2 .

The simplest case is for wideband pulses when the spectrum p(ω)
is a slowly varying function of frequency. Then it is possible to
obtain the result by means of the steepest descent method on the
following form:

W (r, t) =
π
√

2 |p(ω0)|2 f2
0 (ω0)

dβ1(ω0)
dω + d2

dω2

[
k0ϕ0(ω0)

] exp[β0(ω0)] (5.108a)

Time enters implicitly into this expression through ω0 which is
given by the equation for the saddle point

β1(ω0) +
d
dω

[
k0ϕ0(ω0)

]
= t (5.108b)

We see that when (6.115a) is valid the mean energy is independent
of β2 . This means that diffraction alone is responsible for the
pulse distortion. In more complicated cases of calculating (6.104)
the final result depends also on β2 ; see [Zernov and Lundborg,
1993].

In the case of narrowband signals the spectrum p(ω) is no longer a slowly
varying function. There is no general way to calculate the integral in this case,
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instead we choose a particular model of the initial pulse, viz. a carrier of center
frequency ωc and a Gaussian amplitude envelope of width T0 :

E00(t) = exp
[
− t2

2T 2
0

− iωct

]
(5.109a)

with the spectrum

p(ω) =
T0√
2π

exp
[
−T

2
0

2

(
ω − ωc

)2
]

(5.109b)

Expanding the exponent in the integrand of (5.97) in a double series around ωc

it is possible to obtain the following result

W (r, t) =
T 2

0 f
2
0 (ωc) exp [β0(ωc)]√

T 4
0 + 4T 2

0 β2(ωc) +
(

d2

dω2 [kcϕ0(ωc)]
)2

· exp

{
− τ2(ωc)T 2

0

T 4
0 + 4T 2

0 β2(ωc) +
(

d2

dω2 [kcϕ0(ωc)]
)2
}

(5.110a)

where τ is a translated time due to the propagation:

τ(ωc) = t− tg (5.110b)

with the group delay time

tg =
d
dω

[
kcφ0(ωc)

]
+ β1(ωc) (5.110c)

In this the regular dispersion is taken into account by the function [kcϕ0(ωc)]
′′ ,

which is related to the dispersive bandwidth [Lin et al., 1989] of the regular iono-
sphere; essentially the same quantity is denoted by P ′1 in [Lundborg, 1990].
The additional dispersive properties, caused by the fluctuations, are represented
by the functions β0(ωc) , β1(ωc) and β2(ωc) . By analogy with the regular dis-
persion, the quantity β2(ωc) can be used to define a fluctuational bandwidth.
When β0(ωc) 6= 0 and β1(ωc) 6= 0 , diffraction affects also the amplitude of the
pulse and the group delay time, as is easily seen from (5.110a,c). It is also easy
to see that when all dispersion terms are absent, we recover the energy of the
undisturbed pulse

Wp(r, t) = f2
0 (ωc) exp

{
− t2

T 2
0

}
(5.111)

which has the same shape as the initial pulse.
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Chapter 6

Diffusive Markov
approximation for the
parabolic equation

All the methods considered previously (except the stochastic screen method)
are based on the assumption that the local inhomogeneities of the dielectric
permittivity are weak. In contrast, the subject of the present Chapter is a
method which does not have this limitation. The small parameter of the problem
will now be the ratio of the correlation radius to the characteristic scale of the
mean field. The equations for the first two moments of the full field will be
derived directly using the smallness of the just-mentioned parameter.

In the subsequent treatment the technique of variational or functional deriva-
tives will be used. Therefore we define first the functional derivative and discuss
some of its applications.

6.1 The notion of variational derivative

We use for functionals, which give a mapping of the space of functions {u(x)}
onto the space of numbers, the notation ϕ[u(x)] . Then we may define the
variational derivative of ϕ[u(x)] through

δϕ[u(x)]
δu(x0)

= lim
∆x→0

max |∆u(x)|→0

ϕ[u(x) + ∆u(x)]− ϕ[u(x)]∫
∆u(x) dx

(6.1)

where ∆u(x) is a local arbitray change of the functional argument which is non-
zero only in a small interval around the point x = x0 , for which the derivative
is being calculated, and which has an infinitesimal absolute value.
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6.1.1 Variational derivative for linear functionals

Using the definition given, we shall first find the variational derivative for a
linear functional, which in the most general case may be represented as

L[u(x)] =
∫
A(x) u(x) dx (6.2)

where A(x) is the kernel of the functional. Then, according to the definition
(6.1), we have for the derivative

δL[u(x)]
δu(x0)

= lim
∆x→0

max |∆u(x)|→0

∫
A [u+ ∆u] dx−

∫
A u dx∫

{x0}∆u(x) dx

= lim
∆x→0

max |∆u(x)|→0

∫
A(x) ∆u(x) dx∫
{x0}∆u(x) dx

= lim
x→x0

A(x) = A(x0) (6.3)

The subscript {x0} on the integral signs in the denominators indicate that the
integration is to be performed over the interval around x0 where ∆u(x) is non-
zero. The integrals in the numerators, on the other hand, are performed over
the interval stated in (6.2).

6.1.2 Derivative of an arbitrary functional

The last member of (6.3) leads to a rule of great practical importance for cal-
culating the variational derivative of a function u(x) as a particular case of a
linear functional depending on the parameter x :

u(x) =
∫
δ(x− y) u(y) dy (6.4)

Using the rule (6.3) for the variational derivative, we easily find

δu(x)
δu(x0)

= δ(x− x0) (6.5)

In calculating the variational derivative of an arbitrary functional we may then
use the ordinary rules of derivation with the rule (6.5) in the last step. For
instance:
(i) For the linear functional L[u] we obtain once again

δL[u(x)]
δu(x0)

=
∫
A(x) δ(x− x0) dx = A(x0) (6.6)

(ii) For a quadratic functional Q[u(x)] =
∫
B(x1, x2) u(x1) u(x2) dx1 dx2 we

may obtain

δQ[u]
δu(x0)

=
∫
B(x1, x2) δ(x1 − x0) u(x2) dx1 dx2
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+
∫
B(x1, x2) u(x1) δ(x1 − x0) dx1 dx2

=
∫
B(x0, x2) u(x2) dx2 +

∫
B(x1, x0) u(x1) dx1 (6.7)

This gives
δQ[u]
δu(x0)

= 2
∫
B(x0, x) u(x) dx (6.8)

for a symmetric kernel B(x1, x2) .

6.2 Characteristic functional for a random func-
tion

The technique of variational derivatives can be employed in developing an al-
ternative description of random functions. To this end we shall now introduce
the characteristic functional for a random function. For simplicity we shall con-
sider the case of a one-dimensional random function ε(x) . Then we define the
characteristic functional Qε[u] of this random function through

Qε[u(x)] =
〈

exp
[
i

∫
ε(x) u(x) dx

]〉
(6.9)

where u(x) is an arbitrary determinitstic function. Keeping (6.6) in mind it is
now easy to see that

〈ε(x0)〉 =
1
i

δQε[u]
δu(x0)

∣∣∣∣
u=0

(6.10a)

〈ε(x1) ε(x2)〉 =
1

(i)2
δ2Qε[u]

δu(x1) δu(x2)

∣∣∣∣
u=0

(6.10b)

and in the general case

〈ε(x1) ... ε(x2)〉 =
1

(i)n

δnQε[u]
δu(x1) ... δu(xn)

∣∣∣∣
u=0

(6.10c)

Hence any moment of the random function can be described by means of the
characteristic functional (6.9).

6.2.1 The connection between the characteristic function
and the probability density function

In the particular case when u(x) has the special form

un(x) =
n∑

j=1

uj δ(x− xj) (6.11)
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we find the following expression for the characteristic functional:

Qε[un(x)] =

〈
exp

i n∑
j=1

uj εj

〉 (6.12)

with εj = ε(xj) . Assuming that the random function ε(x) is continuous and
defined over an infinite interval, (6.12) can be rewritten using the PDF’s of ε as
follows:

Qε[un(x)] =

+∞∫
−∞

wn(x1, ε1, ..., xn, εn) exp

i n∑
j=1

uj εj

 dε1...dεn (6.13)

From this last equation we understand that for continuous random functions
with infinite domain of definition, the characteristic functionals (6.12) and the
multidimensional PDF’s form Fourier transform pairs.

6.2.2 Characteristic functional for a Gaussian zero-mean
random field

As an example we shall construct the characteristic functional for the zero-mean
normally distributed random function.

Let the one-dimensional random function ε(x) be a normally distributed
random field with 〈ε(x)〉 = 0 . Then the quantity

q =
∫
ε(x) u(x) dx (6.14)

which appears in (7.9) is a normally distributed zero-mean random value and,
as in (3.58),

〈
eiq
〉

= exp
[
− 1

2

〈
q2
〉]

. Therefore we only have to construct the
variance

〈
q2
〉

for q from (6.14), which is as follows

〈
q2
〉

=
∫
ψε(x1, x2) u(x1) u(x2) dx1 dx2 (6.15)

As a result the final expression for the characteristic functional can be written
on the form

Qε[u] = exp
[
− 1

2

∫
ψε(x1, x2) u(x1) u(x2) dx1 dx2

]
(6.16)

We shall now check if (7.16) really gives the correct description of the zero-
mean Gaussian random field. Indeed, let us calculate

〈ε(x0)〉 =
1
i

δQε[u]
δu(x0)

∣∣∣∣
u=0

= exp
[
− 1

2

∫
ψε(x1, x2) u(x1) u(x2) dx1 dx2

]
·

82



[
− 1

2

∫
ψε(x0, x2) u(x2) dx2 − 1

2

∫
ψε(x1, x0) u(x1) dx1

]
|u=0(6.17)

While calculating the second derivative, one needs to differentiate only the
second factor in (6.17), since the derivative of the exponent yields zero due to
u = 0 . Then we finally get for the second moment the expected result

〈ε(x1) ε(x2)〉 = ψε(x1, x2) (6.18)

6.3 Parabolic approximation of the Helmholtz’
equation

It appears to be possible to construct closed equations for the moments of the
stochastic differential equation

∇2E + k2 [ε0(r, ω) + ε(r, ω, t)] E = 0 (6.19)

only in the case when the parabolic approximation can be introduced. We now
consider the simplest case with ε0(r, ω) = 1 . Then, if we again investigate the
large-scale inhomogeneities k`ε � 1 , we can attempt a solution of (6.19) on the
form

E(r, ω, t) = E0(r, ω) v(r, ω, t) (6.20)

with E0(r, ω) being the solution of the reduced equation (6.19) for ε = 0 . We
choose E0 as a plane wave, propagating in the diirection of the z-axis:

E0(r, ω) = eikz (6.21)

Substituting E in the form of (6.20) with E0 given by (6.21) into eq. (6.19),
we can easily obtain the following exact equation for the new unknown function
v :

∂2v

∂z2
+ 2ik

∂v

∂z
+∇2

⊥v + k2ε v = 0 (6.22)

Here v = v(ρ, z) , ρ = {x, y} and ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2 . The order of

magnitude of the first two terms in (6.22) can be estimated as follows:

2ik
∂v

∂z
∼ 2ik

v

`ε
(6.23a)

∂2v

∂z2
∼ v

`2ε
(6.23b)

and hence for the sum of these two the estimate

2ik
∂v

∂z
+
∂2v

∂z2
∼ 2ik

∂v

∂z

(
1 +

1
2ik`ε

)
(6.24)

This shows that the contribution of the second derivative of v is small for the
large-scale inhomogeneities. Then we finally obtain the approximate parabolic
equation

2ik
∂v

∂z
+∇2

⊥v + k2ε v = 0 (6.25)
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for the complex amplitude function v(ρ, z) of the plane wave (6.21) in the in-
homogeneous medium. We shall also use the integral form of the last equation

v(ρ, z) = v(ρ, 0) +
i

2k

∫ z

0

[
∇2
⊥v(ρ, ζ) + k2ε(ρ, ζ) v(ρ, ζ)

]
dζ (6.26)

where v(ρ, 0) is the given “initial” value of the field v(ρ, z) in the plane z = 0 .
[We again consider the situation when the inhomogeneities ε(ρ, z) occupy the
half-space z ≥ 0].

Eq. (6.26) shows that the field v(ρ, z) obeys the property of “dynamical
causality”, i.e., the field at the point of observation (ρ, z) depends on the prop-
erties of the medium ε(ρ, z′) at the points which lie “before” the point of obser-
vation (z′ < z). This yields the important relation for the functional derivative
of the solution of (6.25) [or (6.26)] with respect to the function ε :

δv(ρ, z)
δε(ρ′, z′)

= 0 , z′ > z (6.27)

which will be used later on.

6.4 Averaging of the parabolic equation

On the basis of eqs. (6.25,26) we shall now derive the equation for the mean
field 〈v〉 . Averaging (6.25), we obtain the equation

2ik
∂ 〈v〉
∂z

+∇2
⊥ 〈v〉+ k2 〈ε v〉 = 0 (7.28)

which is unclosed in the sense that it contains two unknown functions, 〈v〉 and
〈εv〉 . The last average is the mutual correlation of the random field ε and the
solution v of eqs. (6.25,26), which is itself a functional on this random field. For
this sort of correlation the Furutsu-Novikov formula can be used, which has the
form

〈ε(ρ, z) v(ρ, z)〉 =

+∞∫
−∞

dz′
+∞∫
−∞

dρ′ ψε(ρ, z,ρ′, z′)
〈
δv(ρ, z)
δε(ρ′, z′)

〉
(6.29)

if ε(ρ, z) is a Gaussian random function with the correlation function ψε(ρ, z,ρ′, z′) .
In our case with fluctuations in the half-space z > 0 with the property (6.27),
eq. (6.29) yields

〈ε(ρ, z) v(ρ, z)〉 =

z∫
0

dz′
+∞∫
−∞

dρ′ ψε(ρ, z,ρ′, z′)
〈
δv(ρ, z)
δε(ρ′, z′)

〉
(6.30)

Using the last expression another “unclosed” equation can be written instead
of (6.28) on the form

2ik
∂ 〈v〉
∂z

+∇2
⊥ 〈v〉+ k2

z∫
0

dz′
+∞∫
−∞

dρ′ ψε(ρ, z,ρ′, z′)
〈
δv(ρ, z)
δε(ρ′, z′)

〉
= 0 (6.31)
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which contains except 〈v〉 the unknown function〈
δv(ρ, z)
δε(ρ′, z′)

〉
= T1(ρ, z,ρ′, z′) (6.32)

In the general case another equation has to be derived for the new unknown
function T1(ρ, z,ρ′, z′) and this equation also will be unclosed. In this way one
can construct an infinite chain of equations, which can then be terminated after
an arbitrary number of steps. We can do this just on the first step to obtain the
diffusive Markov approximation, but we shall then need at least one more step
to assess the range of validity for the diffusive Markov approximation. First,
however, we derive the diffusive Markov approximation itself.

6.4.1 Approximation of δ-correlated random field

To close the equation (6.31) directly we assume as a model of the correlation
function ψε of the dielectric permittivity fluctuations the expression

ψε(ρ,ρ′, z − z′) = Aε(ρ,ρ′) δ(z − z′) (6.33)

with
+∞∫
−∞

ψε(ρ,ρ′, ζ) dζ = Aε(ρ,ρ′) (6.34)

This last relation gives the rule for calculating the function Aε(ρ,ρ′) in the
transversal variables.

The representation (6.33) provides the property of “statistical causality” for
the mean field 〈v〉 . With this formula taken into account one finds from (6.31)
the following equation which, as we can see, is local in the longitudinal variable:

2ik
∂ 〈v〉
∂z

+∇2
⊥ 〈v〉+ 1

2 k
2

+∞∫
−∞

dρ′ Aε(ρ,ρ′)
〈
δv(ρ, z)
δε(ρ′, z)

〉
= 0 (6.35)

The factor 1
2 in front of the integral has appeared due to the even property of

the delta function.
To find the quantity 〈δv(ρ, z)/δε(ρ′, z)〉 , we differentiate (6.26) with respect

to the function ε(ρ′, z′) . Then we find

δv(ρ, z)
δε(ρ′, z′)

=
i

2k

z∫
0

{[
∇2
⊥ + k2 ε(ρ, ζ)

] δv(ρ, ζ)
δε(ρ′, z′)

+ k2 v(ρ, ζ) δ(ρ− ρ′) δ(ζ − z′)
}

dζ

=
i

2k

z∫
0

[
∇2
⊥ + k2 ε(ρ, ζ)

] δv(ρ, ζ)
δε(ρ′, z′)

dζ +
i k

2
v(ρ, z′) δ(ρ− ρ′) (6.36)
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Taking into account the property (6.27) of dynamical causality, we may
finally write

δv(ρ, z)
δε(ρ′, z′)

=
i

2k

z∫
z′

[
∇2
⊥ + k2 ε(ρ, ζ)

] δv(ρ, ζ)
δε(ρ′, z′)

dζ+
i k

2
v(ρ, z′) δ(ρ−ρ′) (6.37)

We now put z = z′ in (6.37) and average to find the quantity〈
δv(ρ, z)
δε(ρ′, z)

〉
= +

i k

2
〈v(ρ, z)〉 δ(ρ− ρ′) (6.38)

When we substitute this into (6.35), we may there perform the integration over
ρ′ and obtain as our ultimate result the following closed equation for the mean
field

2ik
∂ 〈v〉
∂z

+∇2
⊥ 〈v〉+

i k3

4
Aε(ρ,ρ) 〈v〉 = 0 (6.39)

6.4.2 The solution of the mean field equation

Let us consider a totally statistically homogeneous random field ε(ρ, z) , i.e. we
have Aε(ρ,ρ′) = Aε(ρ− ρ′) and Aε(ρ,ρ) = Aε(0) . In this case we can rewrite
(6.39) as follows:

∂ 〈v〉
∂z

− i

2k
∇2
⊥ 〈v〉+

k2

8
Aε(0) 〈v〉 = 0 (6.40)

We shall look for solutions of this equation on the form

〈v(ρ, z)〉 = ef(z) w(ρ, z) (6.41)

with an unknown function f(z) and with w(ρ, z) satisfying the equation for the
field in the medium without fluctuations:

∂w

∂z
− i

2k
∇2
⊥w = 0 (6.42)

Substituting (6.41) into (6.40) we find the equation for f(z) :

df
dz

= −k
2

8
Aε(0) (6.43)

which can be easily solved to give

f(z) = −k
2

8
Aε(0) (z − z0) (6.44)

Obviously we can here put the constant z0 to zero corresponding to the begin-
ning of the half-space with fluctuations. Hence

〈v(ρ, z)〉 = exp
[
−k

2

8
Aε(0) z

]
w(ρ, z) (6.45)
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With the incident field given by (7.21), we see that the expression

w(ρ, z) = 1 (6.46)

the differential equation (6.42).
Putting together (6.20), (6.21), (6.41), (6.45) and (6.46), we then find the

mean field

〈E(ρ, z)〉 = exp
[
ikz − k2

8
Aε(0) z

]
(6.47)

Recalling also the definition (7.34) of Aε(ρ,ρ′) , which now gives us

Aε(0) =

+∞∫
−∞

ψε(0, ζ) dζ = 2σ2
ε `ε (6.48)

we finally obtain

〈E(ρ, z)〉 = exp
[
ikz − k2σ2

ε `ε
8

z

]
(6.49)

This coincides with the representation of the mean field in geometrical op-
tics, eq. (4.121), for the case of ε0 = 1 , but now the range of validity for (6.49)
is wider than what happened to be the case for the geometrical-optics represen-
tation. Later we shall investigate the range of applicability of (7.47,49) in more
detail.

It is also of interest to point out that in calculating the total scattering
cross-section for large-scale isotropic inhomogeneities, k`ε � 1 , one finds

σ0 =
k2Aε(0)

4
(6.50)

which is twice the extinction coefficient in (6.47) or the extinction coefficient for
the “intensity of the mean field”. At the same time it can be shown that the
conservation law for the mean energy of the field exp[ikz] v(ρ, z):

〈vv∗〉 = 1 (6.51)

follows from the parabolic equation approximation (6.25). Therefore the energy
of the fluctuational part of the field ṽ can be expressed as

〈ṽṽ∗〉 = 〈vv∗〉 − | 〈v〉 |2 = 1− exp[−σ0z] (6.52)

We see from this expression that for distances z > σ−1
0 the main part of the

wave intensity is connected with the random component.

6.5 Equation for the mean field in the case of
finite correlation radius

To discuss the range of validity for eqs. (6.39,40) and the solution (6.47), we
must derive a more general equation for the mean field, which takes the finite
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longitudinal correlation radius of the dielectric permittivity into account. This
can be done if we could find the function T1(ρ, z,ρ′, z′) from (6.32) in some
approximation, i.e. if we could solve at least the second equation in the chain
of unclosed equations for the mean field 〈v〉 . We need then the function T1 in
the area z ≥ z′ .

First we derive the equation for δv(ρ, z)/δε(ρ′, z′) in the case z > z′ .
We achieve this by taking the variational derivative of (6.25) with respect to
ε(ρ′, z′) . Then we get

2 ik
∂

∂z

δv(ρ, z)
δε(ρ′, z′)

+∇2
⊥
δv(ρ, z)
δε(ρ′, z′)

+ k2 ε(ρ, z)
δv(ρ, z)
δε(ρ′, z′)

= 0 (6.53)

While averaging the last equation we use once again the Furutsu-Novikov for-
mula for the correlation 〈ε(ρ, z) δv(ρ, z)/δε(ρ′, z′)〉 , which gives

〈ε(ρ, z) δv(ρ, z)/δε(ρ′, z′)〉 =

z∫
0

dz′′
+∞∫
−∞

dρ′′ ψε(ρ, z,ρ′′, z′′)
〈

δ2v(ρ, z)
δε(ρ′, z′) δε(ρ′′, z′′)

〉
(6.54)

If we now assume the δ-function approximation (7.33,34) in deriving the
equation for T1(ρ, z,ρ′, z′) , we then obtain from (6.53,54) the equation

2ik
∂

∂z
T1 +∇2

⊥T1 + 1
2 k

2

+∞∫
−∞

dρ′′ Aε(ρ,ρ′′)
〈

δ2v(ρ, z)
δε(ρ′, z′) δε(ρ′′, z)

〉
= 0 (6.55)

The second derivative in the integrand can be determined from (6.37) where
the change of variables z′ = z′′, ρ′ = ρ′′ has been made and where we have put
z′′ = z . Then (6.37) gives after averaging〈

δ2v(ρ, z)
δε(ρ′, z′) δε(ρ′′, z)

〉
=
ik

2

〈
δv(ρ, z)
δε(ρ′, z′)

〉
δ(ρ− ρ′) (6.56)

Finally we then find for the function T1(ρ, z,ρ′, z′) from (6.55), with (6.56)
taken into account, the equation

2ik
∂

∂z
T1 +∇2

⊥T1 +
i k2

4
Aε(ρ,ρ) T1 = 0 (6.57)

which has the same form as (7.39), or for the totally homogeneous fluctuations

2ik
∂

∂z
T1 +∇2

⊥T1 +
i k2

4
Aε(0) T1 = 0 (7.58)

The last of these equations must be supplemented by the initial condition at
the point z′ = z . This is given through (6.38), which we rewrite as

T1(ρ, z,ρ′, z) = +
i k

2
〈v(ρ, z)〉 δ(ρ− ρ′) (6.59)
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Through (6.58,59) we now have a complete formulation of the problem for
the function T1(ρ, z,ρ′, z′) which appears in the equation (6.31) for the mean
field 〈v〉 . Its solution can be written on the form

T1(ρ, z,ρ′, z′) =
k2

4π(z − z′)
exp

[
ik(ρ− ρ′)2

2(z − z′)
− k2 Aε(0)

8
(z − z′)

]
〈v(ρ′, z′)〉

(6.60)
Using (6.60) we finally find from (6.31) the following integro-differential equation
for the mean field:

∂ 〈v〉
∂z

=
i

2k
∇2
⊥ 〈v〉+

ik3

8

z∫
0

dz′

z − z′

+∞∫
−∞

dρ′

· exp
[
ik(ρ− ρ′)2

2(z − z′)
− k2 Aε(0)

8
(z − z′)

]
· ψε(ρ− ρ′, z − z′) 〈v(ρ′, z′)〉 (6.61)

6.5.1 Range of validity for the diffusive Markov approxi-
mation

In (.61) we have obtained an equation for the mean field 〈v〉 which is of a
more general form than the diffusive Markov approximation (6.40). If we now
investigate under what conditions the form (6.61) may be simplified to the form
(6.40), we can therefore describe the range of validity for the diffusive Markov
approximation.

First we have to understand under what conditions all functions under the
integration sign in (6.61) can be considered as slowly varying in the longitu-
dinal variable, in comparison with the longitudinal variation of the correlation
function.

Let the longitudinal correlation radius of ψε be `‖ . The longitudinal scale
of the other functions is expressed by the quantity [k2 Aε(0)]−1 . Then, if

[k2 Aε(0)]−1 > `‖ or k2 Aε(0) `‖ = k2 σ2
ε `

2
ε < 1 (6.62)

one can write

∂ 〈v〉
∂z

=
i

2k
∇2
⊥ 〈v〉+

ik3

8

z∫
0

dz′

z − z′

+∞∫
−∞

dρ′ exp
[
ik(ρ− ρ′)2

2(z − z′)

]
ψε(ρ−ρ′, z−z′) 〈v(ρ′, z)〉

(6.63)
If the exponential function in (7.63) changes fast in ρ′ compared to the ρ′-

dependence in ψε , we can calculate the integral in ρ′ by the steepest-descent
method. The condition for this is found to be

k `2⊥ � `‖ (6.64)

for the case of an incident plane wave, and the same condition together with
the condition

k a2 � `‖ (6.65)
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for an incident beam wave with beam width a . Condition (6.64) is always
fulfilled for isotropic inhomogeneities `‖ = `⊥ , for which (6.64) becomes the
condition of validity k`ε � 1 for the initial parabolic equation. With the in-
equalities (6.64,65) the steepest descent method in ρ′ gives from (6.63)

∂ 〈v〉
∂z

=
i

2k
∇2
⊥ 〈v〉 −

k2

4
〈v〉

z∫
0

ψε(0, z − z′) dz′ (6.66)

If we, finally, also require the following inequality to be fulfilled:

z � `‖ (6.67)

we recover from (6.67) exactly the diffusive Markov approximation. Hence we
conclude that the validity of this approximation is described jointly by the
inequalities (6.62,64,67). In particular (6.67) shows that the small parameter in
the diffusive Markov approximation is the ratio of the longitudinal correlation
radius and the characteristic longitudinal scale of the mean field.

6.6 Diffusive Markov approximation for the co-
herence function

We consider now the transversal coherence function

Γ(ρ′,ρ′′, z) = 〈v(ρ′, z) v∗(ρ′′, z)〉 (6.68)

To derive the equation for Γ we recall first that the complex amplitude v(ρ′, z)
satisfies the parabolic equation

2ik
∂v

∂z
+ ∆′v + k2ε v = 0 (6.69)

where ∆′ = ∇′2⊥ is the Laplacian in the transversal variables ρ′ . Then the
complex conjugate v∗(ρ′′, z) satisfies the equation

−2ik
∂v∗

∂z
+ ∆′′v∗ + k2ε v∗ = 0 (6.70)

Multiplying (6.69) by v∗(ρ′′, z) , (6.70) by v(ρ′, z) and subtracting the second
equation from the first, we obtain

2ik
∂

∂z
[v(ρ′, z) v∗(ρ′′, z)] + (∆′ −∆′′) [v(ρ′, z) v∗(ρ′′, z)]

+k2 h(ρ′,ρ′′, z) [v(ρ′, z) v∗(ρ′′, z)] = 0 (6.71)

with
h(ρ′,ρ′′, z) = ε(ρ′, z)− ε(ρ′′, z) (6.72)
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If we try to average (6.71), we face again an unclosed equation

2ik
∂Γ
∂z

+ (∆′ −∆′′) Γ + k2 〈h(ρ′,ρ′′, z) v(ρ′, z) v∗(ρ′′, z)〉 = 0 (6.73)

To calculate the correlation in the last term of this equation we can once again
use the Furutsu-Novikov formula (6.30) and the diffusive Markov approxima-
tion with the correlation function (6.33,34). As a result the diffusive Markov
approximation equation can be derived by analogy with eq. (6.40) on the form

∂Γ
∂z

− i

2k
(∆′ −∆′′) Γ +

πk2

4
Hε(ρ′ − ρ′′) Γ(ρ′,ρ′′, z) = 0 (6.74)

where
πHε(ρ′ − ρ′′) = Aε(0)−Aε(ρ′ − ρ′′) (6.75)

6.6.1 Solution of the equation for the coherence function

To solve eq. (6.74) let us introduce the new transverse variables

ρ = ρ′ − ρ′′ , 2ρ+ = ρ′ + ρ′′ (6.76)

Then we have instead of (6.76)

∂Γ
∂z

− i

k

∂2Γ
∂ρ ∂ρ+

+
πk2

4
Hε(ρ) Γ(ρ,ρ+, z) = 0 (6.77)

Let us further represent the solution of (6.77) as a Fourier series in the variable
ρ+ :

Γ(ρ,ρ+, z) =

+∞∫
−∞

γ(ρ,κ, z) exp[iκ · ρ+] dκ (6.78)

Substitution of (6.78) into eq. (6.77) gives the following equation for the Fourier
conjugate γ(ρ,κ, z) :

∂γ

∂z
+

κ

k

∂γ

∂ρ
+
πk2

4
Hε(ρ) γ = 0 (6.79)

Next we write the sum of the first two items in (6.79) in a symbolical operator
form

∂γ

∂z
+

κ

k

∂γ

∂ρ
= exp

[
−κz

k

∂

∂ρ

]
∂

∂z
exp

[
+

κz

k

∂

∂ρ

]
γ (6.80)

By means of this operator eq. (6.79) can be rewritten as

∂

∂z
exp

[
+

κz

k

∂

∂ρ

]
γ(ρ,κ, z) = −πk

2

4
exp

[
+

κz

k

∂

∂ρ

]
[Hε(ρ) γ(ρ,κ, z)]

(6.81)
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If we take into account that for an arbitrary function f(ρ) the relation

f(ρ + ρ0) = exp
[
ρ0

∂

∂ρ

]
f(ρ) (6.82)

holds with exp[ρ0 ∂/∂ρ] being the formal notation for the full Taylor series
expansion (translation operator), then we find from (6.81) the equation

∂

∂z
γ
(
ρ +

κz

k
,κ, z

)
= −πk

2

4
[Hε

(
ρ +

κz

k

)
γ
(
ρ +

κz
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(6.83)

The solution of this equation is easily found to be
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or, if we substitute ρ− κz/k in the place of ρ ,
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4
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Finally, taking the representation (6.78) into account, we obtain
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(6.85)
We note that γ(ρ,κ, 0) is the Fourier transform of the initial distribution of the
coherence function

Γ(ρ,ρ+, 0) = Γ0(ρ,ρ+) (7.86)

γ(ρ,κ, 0) =
1

4π2

+∞∫
−∞

Γ0(ρ,ρ+, 0) exp[−iκ · ρ′+] dρ′+ (6.87)

Then putting together (6.85) and (6.87), we find the ultimate expression for the
coherence function:
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This is the most general form of the solution of the equation (6.77) for the initial
distribution of the coherence function Γ0(ρ,ρ+) .

In the particular case when the incident field is a plane wave and

Γ0 = const. = I0 (6.89)
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eq. (6.81) yields after integration over ρ′+ first and then over κ :

Γ(ρ,ρ+, z) = I0 exp
[
−πk

2

4
Hε(ρ) z

]
(6.90)

In particular, for the mean energy W = Γ(0,ρ+, z) one obtains from (6.90)

W = I0 (6.91)

if we take the expression (6.75) for Hε(ρ) into account.

6.7 Final remarks on Markov parabolic momenta
equations

In the scientific literature one can find different points of view respectively the
range of validity of the diffusive Markov approximation for the random field co-
herence functions of the different orders. Our derivation of the first two Markov
equations (6.28) and (6.74, 75) was based on the Furustu-Novikov formula in
the form (6.29). This form of the Furutsu-Novikov formula is only valid under
the assumption of the normal (gaussian) distribution of fluctuations of the di-
electric permittivity. This may lead to the conclusion that Markov momenta
equations are only valid for normally distributed fluctuations of the dielectric
permittivity. However, in a series of works, e.g., [Lee,1975], or some papers by
Kljatskin the same form parabolic momenta equations were obtained without
employing the Furutsu-Novikov relationship, which works in favour of a wider
range of validity of the Diffusive Markov parabolic equations.

Furthermore, constructing the spaced position coherence function in the
scope of both the geometrical optics approximation and Markov approximation
gives the same result in the case of the plane incident wave and homogeneous
background medium. This complicates distiguishing the range of validity of per-
turbation theories and Markov approximation in the description of weak and
strong fluctuations. On the other hand, when dealing with the spaced position
and frequency coherence functions, the geometrical optics approximation fails to
properly describe the regime of strong fluctuations, whereas correct solution to
Markov equation for the two-frequency, two-position coherence function (which
is derived in the same fashion as for the single frequency case) shows substantial
reduction of the frequency correlation radius as fluctuations increase.

Numerous attempts have been undertaken to construct the comprehensive
analytical solution to the Markov equation for spaced position and frequency
coherence function. [Liu and Yeh, 1975] solved the equation numerically. One
of the first analytic solution to this equation was constructed by [Sreenivasiah
et al., 1976] for the quadratic model of the structure function of fluctuations.
In [1983] Knepp generalized this solution to the case of the spherical incident
wave written in small angle approximation. Later on, different approaches to
construct the solution to the case of more realistic models of the structure
function of fluctuations of the medium of propagation have been suggested by
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[Oz and Heyman, 1996, 1997a, 1997b, 1997c], by [Bronstein and Mazar,
2002]. To our understanding the most general results have been obtained here in
the papers by [Bitjukov et al., 2002, 2003], who developed the quasi-classic
method to solve the equation utilizing complex trajectories.As to our knowledge,
all known earlier results follow from this technique.

The technique of Markov parabolic momenta equations was also extended to
account for the inhomogeneous background channel of propagation. In [Mazar
abd Beran, 1984] the intensity of the fluctuating field in a stratified acoustic
channel of propagation was studied employing the the diffuse Markov equa-
tion for the spaced coherence function written in the rectangular co-ordinates.
Appearance of the work by Hill [1985], who formulated appropriate Markov
equations in courvilinear orthogonal variables of different types, gave rize to
the attempts of solving these equations in ray-centred variables [Mazar and
Felsen, 1987a, 1987b].

Finally, it should be emphasized once again that the comprehensive descrip-
tion of a random function is not confined by the definition of its second order
coherence functions. The fourth moment enables description of the intensity
fluctuations and, in particular, allows obtaining the spectral index, which is
commonly used to quantify the level of scintillation. The Markov parabolic
equations of the fourth order are less studied, and we can address those inter-
ested in more detail regarding the fourth order coherence function to the papers
by Gozani [1985, 1993] and a substantional amount of references available in
these papers.
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Chapter 7

Conclusions

7.1 Remarks on pure numerical treatment in
the problem of wave propagation in random
media

We did not consider as our task discussing in detail pure numerical methods
utilized when treating the problems of wave propagation in random media.
However, it’s of worth to say a few words on this subject. Among many of
thenumerical methods the multiple phase screen technique (MPST) is the most
commonly accepted and widely used by many authors to solve stochastic and
deterministic parabolic equations. Knepp [1983b] studied the temporal behav-
ior of stochastic waves by MPST. Kiang and Liu [1985] employed MPST to
simulate of HF wave propagation in the turbulent stratified ionosphere. Similar
problems of HF propagation in the ionospheric fluctuating reflection channel
were considered in the scope of MPST by Rand and Yeh [1991], Wagen and Yeh
[1986, 1989a, 1989b].

MPST has also been widely employed to solve various problems of tran-
sionospheric propagation of the fields of very high frequencies. In particular,
Grimault [1998] essentially modified the classical scheme of MPST writing the
appropriate parabolic equation and solving it by MPST in the spherical vari-
ables. Classical scheme of MPST was used by Beniguel [2002] in his global iono-
spheric propagation model of the field scintillation on transionospheric paths of
propagation.

7.2 About other approaches in the theory of
wave propagation in random media

The time provided for the discussion of the methods in the theory of wave prop-
agation in random media is enormously insufficient even for a very brief review
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of the techniques available in the theory of wave propagation in random me-
dia. We made our choice focussing on the one hand on different perturbation
theories, which obviously do not enable the description of the regime of strong
scintillation, but work well in many cases when the regime of strong scintillation
does not occur. On the other hand we found useful to also briefly outline for-
malizm of diffusive Markov momenta parabolic equations widely utilized in the
problems of high and very high frequency propagation in the fluctuating iono-
sphere, which also enables the description of the regime of strong scintillation.
We also paid special attention to the method of random (stochastic) screen and
its particular case the method of phase screen. This standing alone method is
remarkable in the sense that permits constructing the rigorous solution to the
field generated by the screen for any given distribution of the field on the screen.

At the same time we were forced to leave beyond the scope of present con-
sideration a wide variety of other approaches being also employed in wave prop-
agation in random media. It’s worth pointing out the technique using path
integrals [Flatte, 1983, Dashen, 1979]], where Feinman integral [Feynman
and Hibbs, 1965] is employed to construct the stochastic realizations of the
”‘solutions” of parabolic equation and its moments. Integral representations
of the wave fields are also widely used in the problem of wave propagation
in random media. Among them one will find Maslov’s integral representation
[Maslov, 1965], occillatory integral [Arnold, 1992], or interference integral
[Tinin etal., 1992], integral representing of the wave field in terms of diffracting
component waves [Zernov and Lundborg, 1996], or suggested by V.A.Fock
integral representing the solution of the Helmholtz’ equation in terms of the
solutions of the parabolic equation [Tinin, 2004].

7.3 Occuring scintillation propagation models

As to our knowledge, at the time being there are two officially distributed scintil-
lation propagation models. One of them is WBMOD, which is the model based
on the theory of the phase screen with the inverse power law spatial spectrum of
the phase fluctuations on the screen [Rino, 1979]. We are not aware of all the
details of this model as having no direct access to its commercially distributed
version. As far as we are aware of the model is valid to describe the case of weak
scintillation, and two modifications of this model are available for the equatorial
ionosphere [Secan et al., 1995] and for the high-latitude ionosphere [Secan
et al., 1997].

Another scintillation propagation model was developed by Beniguel [Be-
niguel, 2002]. It is accepted by ITU as the officially recommended scintillation
propagation model. This model is based on the multiple phase screen numerical
technique. It works in several steps. On the first step the random distribution
of the dielectric permittivity of the ionosphere is generated. Next, the random
phase screen is generated on the Earth’s surface by integrating the eikonal equa-
tion along the paths of propagation connecting the satellite with the points of
observation on the Earth’s surface. While integrating along a particular path
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it is accepted that the contribution into the phase advance along this path is
formed by the layer of the width of 100 km centred respectively the height of
the maximum of the electron density of the ionosphere. Then this phase screen
is conveyed from the Earth’s surface up to the level of the maximum of the elec-
tron density of the ionosphere. At the last step the formalizm of the classical
problem of generating the field in vacuum by a given random phase screen is em-
ployed to obtain the random field on the surface of the Earth. Having random
realizations of the field on the Earth’s surface, different statistical moments of
the field are constructed, e.g., correlation functions, power specrta, probability
density functions, S4, etc.

Along with the official scintillation propagation models mentioned we would
like to briefly mention another model also based on the multiple phase screen
technique [Grimault, 1998]. In this model the appropriate parabolic equation
for the random field is written and then solved by the multiple phase screen
technique in the spherical co-ordinate system, which is more appropriate for the
real geometry.

Finally, we will briefly describe our own scintillation propagation model,
which was developed in co-operation between the University of St.Petersburg,
St.Petersburg, Russia and the University of Leeds, Leeds, United Kingdom with
the participation of the Abdus Salam ICTP, Trieste, Italy. On the first stage
the model was solely based on the Rytov’s approximation [Gherm et al.,
2000]. Statistical moments of the field radiated at the satellite and propagated
through the 3-D inhomogeneous fluctuating ionosphere down to the Earth’s sur-
face were constructed by the Rytov’s method technique, which together with
the fact that Rytov’s phase and log-amplitude fluctuations are normally dis-
tributed enabled also generating the random time series of the field. However,
this model had an essential drawback expressed by the fact that the range of
validity of this model was limited by the case of small values of the variance of
the log-amplitude fluctuations. Alternatively, this meant that the case of strong
fluctuations (scintillation) could not be described by this model. On the other
hand, however, our numerous calculations in the scope of the complex phase
method (Rytov’s method) showed that for observation points lying inside the
ionospheric layer, fluctuations of the field amplitude for frequencies of the order
of 1 GHz and higher always have values which are within the range of valid-
ity of the Rytov’s approximation. This is true even in the case of very large
relative electron density fluctuations (up to 100 per cents) and high values of
TEC. For smaller relative fluctuations and values of TEC this is also true for
lower frequencies. This means that propagation in the ionospheric layer for the
frequencies mentioned may always be well described in the scope of the complex
phase method. In turn, this implies that at L band and higher frequencies the
regime that results in strong scintillation does not normally occur inside the
ionospheric layer, but may be formed in the region where the field propagates
from the ionosphere down to the Earth’s surface. This circumstance permits
utilization of the complex phase method to properly introduce a physically sub-
stantiated random screen below the ionosphere, and then to employ the rigorous
relationships of the random screen theory to correctly propagate the field down
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to the surface of the Earth, over which path the regime producing strong scin-
tillation may well be found. This technique was termed as a hybrid method
for scintillation on the transionospheric paths of propagation [Gherm et al.,
2005b]. This technique permits constructing both the statistical characteristics
of the field (correlation functions, probability density functions, power spectra
of phase and amplitude fluctuations, S4, etc.) and generate random time series
of the field.
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[1] A wideband HF simulator has been constructed on the basis of a detailed physical
model of propagation which can generate a time realization of the HF wideband
channel for any HF carrier frequency, bandwidth, transmitter receiver path and
background, and stochastic (irregularity) ionosphere models. To accomplish this, a
comprehensive solution has been obtained on the basis of the complex phase method
(Rytov’s method) to the problem of HF wave propagation for the most general case of
a three-dimensional (3-D) inhomogeneous ionosphere with time-varying electron
density fluctuations. A simulation is presented for a 1000 km path for which E and
low- and high-angle F mode paths exist. The time-varying field owing to each of these
paths is summed at the receiving location, enabling the calculation of the scattering
function and also the time realization of the received signal shown as a function
of both fast and slow time.

Citation: Gherm, V. E., N. N. Zernov, and H. J. Strangeways (2005), HF propagation in a wideband ionospheric fluctuating

reflection channel: Physically based software simulator of the channel, Radio Sci., 40, RS1001, doi:10.1029/2004RS003093.

1. Introduction

[2] With the advent of digital HF broadcasting (e.g.,
DRM) and communications via the ionosphere, signifi-
cantly higher data rates have become possible. However,
the channel has not yet been well characterized for
wideband (>8 kHz) digital signals. The ionospheric radio
propagation channel is very complex and the ultimate
success of new digital ionospheric radio systems will
depend on a good understanding of important parameters
of the channel such as Doppler shift, Doppler spread and
multipath dispersion. The time variation of these param-
eters is also important, particularly the faster variations
due to fluctuating ionospheric irregularities. Further
complications arise from the geographical variations of
the channel parameters with differences between equa-

torial, mid and high latitudes being particularly marked.
To this must be added diurnal, seasonal, solar cycle and
geomagnetic storm time variations. Because of the great
variation of the ionosphere with different times and
locations, it is also more difficult to adequately test out
new HF communication systems. To cover all possible
conditions, even for one fixed path, requires many trials
to be performed. For a system that it is desired to deploy
globally or for varying link distances and path locations,
the necessary trials generally become prohibitively costly
and time-consuming. Thus there is a need for a wideband
simulator able to characterize the ionosphere response
for any conditions, transmitter and receiver locations,
transmission frequencies and bandwidths and taking into
account not only the background ionosphere but all the
fluctuating electron density irregularities. This should be
able not only to generate realistic values of Doppler
spread and delay spread for different paths, but also
produce a time series output representative of the effect
of the medium on the transmitted signal.
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[3] Further, since based purely on physical models and
parameters, the simulator will enable the correspondence
between the characteristics of the received field and the
physical parameters of the model to be investigated. This
permits fine-tuning of the model by comparison of
received field and predicted output for a variety of
conditions as well as providing a way of estimating the
physical parameters from the characteristics of the re-
ceived field. The theoretical basis of such a simulator, as
outlined above, is described in section 2, the necessary
steps and equations to construct it are explained in
section 3 and the production of random time series
employing it and some preliminary results are given in
section 4.

2. Theoretical Basis for the Wideband HF

Simulator

[4] The problem of HF propagation in the ionosphere is
one of the classical issues in the theory of radio wave
propagation in near-Earth space. When treating HF prop-
agation in the real ionosphere, it should be considered that
the medium of propagation is a 3-D smoothly inhomo-
geneous (in terms of wavelengths of the HF band)
anisotropic dispersive background medium, which is
additionally disturbed by local deterministic and random
inhomogeneities of the ionospheric electron density over
a wide range of scales. As far as propagation in the
background smoothly inhomogeneous medium is
concerned, this problem can be considered to be accom-
plished as the methods to construct the high-frequency
asymptotic solutions to this sort of problem are fairly well
known. These are the classical geometrical optics ap-
proximation [Kravtsov and Orlov, 1980] or appropriate
integral representations of the wave field in terms of
geometrical optics type component waves known as the
interference integral [Orlov, 1972], or oscillatory integral
[Arnold, 1982] (see also classicalworks on high-frequency
asymptotic solutions in mathematical physics [Ludwig,
1966; Maslov, 1965; Kravtsov, 1968]).
[5] To treat the problem of the effects of local inho-

mogeneities of the ionosphere (including the effects of
random inhomogeneities) on HF propagation, a solution
to the scattering problem for the case of a 3-D inhomo-
geneous, dispersive and, strictly, anisotropic background
medium with local inhomogeneities must be constructed.
If the spatial scales of the local inhomogeneities are
greater than the appropriate main Fresnel zones size, the
scattering problem can still be solved in the geometrical
optics approximation. However, as the ionospheric tur-
bulence has a wide spatial spectrum characterized by an
inverse power law, a reasonable fraction of the random
inhomogeneities has spatial scales less than the appro-
priate Fresnel zone size. This means that the contribution

of diffraction should be properly accounted for when
treating the scattering problem. This together comprises a
very complicated problem for which a comprehensive
solution should be given for a variety of realistic models
of the ionosphere and geometry of propagation. This
explains why different empirical models have been
developed [Watterson, 1981; Vogler and Hoffmeyer,
1993; Mastrangelo et al., 1997; Sudworth, 1999; see
also Proakis, 1983], which are widely employed
[Angling et al., 1998; Messer, 1999; Nieto and Ely,
1999] to characterize the HF fluctuating channel of
propagation. By contrast to the empirical approach, we
present here a rigorous treatment of the HF propagation
in a 3-D inhomogeneous medium disturbed by fluctua-
tions of the electron density of the ionosphere.
[6] Concerning the way to properly account for the

wave polarization, when dealing with propagation in a
smoothly inhomogeneous isotropic medium without
fluctuations and considering power (quadratic) character-
istics of the field, the wave polarization does not affect
the result. However, when considering the scattering by
local random inhomogeneities, then, for a completely
rigorously treatment, the vector character of the scattered
field should be taken into account. However, there is a
physical reason to remain within the framework of the
scalar approximation. It is well known that the differen-
tial scattering cross section of the same inhomogeneity is
not the same for the scalar and vector field scattering, but
the difference almost vanishes in the case of the scatter-
ing by large-scale inhomogeneities, in other words, in the
case of forward scattering. The complex phase method
we have employed just describes this case. All the
inhomogeneities we consider are large scale in terms of
the wavelength. Thus we consider that it is a reasonable
basis to consider the problem in the scalar approxima-
tion, at least, to the zero-order approximation.
[7] The theoretical consideration of the problem of HF

propagation in the disturbed ionosphere can be split into
two parts. The first part is the HF propagation in the
background 3-D smoothly inhomogeneous medium (sec-
tion 2.1) and the second is the description of the effects
of scattering of the HF field by local random inhomo-
geneities of the ionosphere (section 2.2). We will also
present the description of the software simulator of the
fluctuating channel of propagation, developed on the
basis of rigorous treatment of the appropriate equations
governing the propagation.

2.1. Propagation in the Background Ionosphere

[8] As mentioned above, the description of the HF
propagation in the 3-D smoothly inhomogeneous
medium is the simplest part of the problem. Characteristic
scales of the background ionosphere in all the directions
are sufficiently large to allow the geometrical optics
approximation to be employed to describe the HF field.
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Appropriate codes for calculation of ray paths and ray
pencil divergences are available to enable the construc-
tion of simulated oblique sounding ionograms. These can
then be employed, using the appropriate model of the
background ionosphere, to determine possible paths
(modes) connecting transmitter and receiver locations.
Quantities such as divergences along the paths of prop-
agation are also used when determining the scattering of
the field by local random inhomogeneities along each
actual mode of propagation between a transmitter and
receiver.

2.2. Scattering of HF Field by Random Ionospheric
Inhomogeneities

[9] This is the most complicated part of the propaga-
tion problem. The simultaneous presence of several
scales of ionospheric density variations is very demand-
ing when treating the scattering problem. Generally
speaking, the solution should be obtained for the scat-
tering problem for the case of a 3-D inhomogeneous
dispersive background medium, accounting also for the
contribution of diffraction effects in the scattering by
local random inhomogeneities.
[10] The case of weak or moderate fluctuations of the

amplitude of the field can be treated in the framework of
perturbation theories. Among them the complex phase
method (or the generalized Rytov’s approximation) han-
dles the scattering problem in the most comprehensive
form as it can also account for diffraction by local
random inhomogeneities and partly accounts for multiple
scattering effects. Additionally, it enables construction of
the appropriate two-position, two-frequency correlation
and coherence functions of the random field for the
condition of a strongly inhomogeneous and dispersive
medium; a condition which is fully pertinent to the
ionosphere. These functions are the core quantities when
modeling the fluctuating channel of propagation both in
terms of the statistical moments of the field propagated
through the channel and random time sequences of the
field. The method limitation is determined by the range
of validity of the complex phase method, which can be
roughly stated as that the variance of the fluctuations of
the log-amplitude (level) of the field cannot be large.
This is a well known limitation of the Rytov’s approx-
imation (or the complex phase approximation, which is
its extension). In addition, for our application, puts
certain limitations on the variance of the electron density
fluctuations. The codes are arranged in a way that this is
controlled for any given path and conditions of propa-
gation. In turn, this means that there is no one particular
universal limit for the fractional electron density fluctua-
tions. However, for a typical one-hop path of propaga-
tion for a link distance of the order of 1000 km, it results
in a limit of the order of 1% for the r.m.s. of the fractional
electron density fluctuations. The same criteria needs to

be applied for high and low latitudes as for midlatitude
paths, but in the former cases the possible occurrence of
strong scintillations can lead to a break down of the
theory’s validity.
[11] For the case of strong scintillation, such methods

as Markov’s parabolic equations for the statistical
moments of the random field [Ishimaru, 1978; Rytov et
al., 1978] and the path integral technique [Dashen, 1979;
Flatte, 1983] should be mentioned, which permit de-
scription of the effects of strong scintillation in some
cases. Many problems of wave propagation in random
media have been considered in the scope of these
methods and we cannot here provide a complete bibli-
ography. However, it is our current conviction that
neither Markov’s approximation, nor the path integral
technique is yet capable of handling the problem of
constructing spaced position and frequency coherency
in the ionosphere-type medium, i.e., for the essentially
inhomogeneous and dispersive background medium with
local random inhomogeneities embedded. This led us to
consider it best to confine the present treatment of the
problem of scattering of the HF waves by local random
ionospheric inhomogeneities within the framework of the
complex phase method, at the same time taking account
of the constraints of this method and its range of its
validity as discussed above. Toward the end of the paper
(in section 4.2) a numerical example is given for an
ionosphere including the effect of the geomagnetic field.
There is additional complexity for this case introduced
by the anisotropy of the medium of propagation. In this
paper we just present the theory for the isotropic case as
we consider that the complexity of the anisotropic case
requires special consideration. We intend to give a full
description of this in a subsequent paper.

3. Complex Phase Method: General Case of

3-D Inhomogeneous Background Medium

[12] The complex phase method is the extension of the
classic Rytov’s approximation [Rytov et al., 1978], dated
back to 40 s, to the case of the point source field and the
inhomogeneous background medium. The first extension
of the method was performed by Zernov [1980], who
considered the HF field in a stratified ionosphere, dis-
turbed by local inhomogeneities. The extended Rytov
approximation was further employed in a series of papers
[Gherm and Zernov, 1995, 1998; Gherm et al., 1997,
2001a] to construct and study the statistical moments of
the random HF field in the plane-stratified ionosphere
disturbed by fluctuations of the electron density.
[13] Obviously, the following extension of the method

must include the general case of a 3-D inhomogeneous
medium. In particular, this is necessary when character-
izing the HF fluctuating ionospheric channel of propa-
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gation, which is horizontally inhomogeneous (i.e., con-
taining horizontal gradients of electron density). The
appropriate generalization has been recently performed
by Gherm et al. [2001b] in a paper written and issued in
Russian. Here we will briefly reproduce the milestones
of this extension.
[14] In the present consideration the scalar equation

r2E þ k2 e0 rð Þ þ e rð Þ½ �E ¼ Ad r � r00
� �

; ð1Þ

widely used to describe HF propagation, is employed,
where k is the wave number in vacuum, e0(r) is the
dielectric permittivity of the background medium and
e(r) is the dielectric permittivity of local inhomogene-
ities. r is the point of observation, r0 the variable of
integration and is the position of the source of the field
(the transmitter). Quantity A characterizes, in some
sense, the power of a source. In order to account for
the time dependence of the electron density fluctuations
function e(r) is also allowed to be a function of the slow
time in the quasi-stationary approximation.
[15] Depending on the given model of the background

medium e0(r), the undisturbed (incident) field E0(r),
which satisfies equation (1) with e(r) = 0, may have a
multipath structure, i.e., several paths of propagation
may occur, which connect the transmitter and receiver.
The field propagating along each of m paths can be well
described in the geometrical optics approximation, so
that the full undisturbed field is represented by the sum
of the geometrical optics type fields as follows:

E0 rð Þ ¼
X
m

EGO
0m rð Þ: ð2Þ

[16] Acceptance of the representation given by (2) for
the undisturbed field implies limitation to the case
when the observation points are far from any caustic
(far from the skip distance, if the transmitter and receiver
are located on the Earth’s surface). This implies that the
main Fresnel volumes for different paths of propagation
do not overlap. In the same fashion the Green’s function
for the undisturbed equation (1) is also represented in a
form similar to equation (2) by the sum of geometrical
optics contributions

G r; r0ð Þ ¼
X
m

GGO
m r; r0ð Þ; ð3Þ

providing r, r0 are not near any caustic.
[17] To account for the effects of local random inho-

mogeneities of the ionosphere on every geometrical
optics component E0m

GO of the undisturbed field, its own
complex phase ym is introduced for each component, so

that the full field disturbed by local ionospheric inho-
mogeneities is given as follows:

E rð Þ ¼
X
m

EGO
0m rð Þ exp ym rð Þ½ �: ð4Þ

According to the complex phase method each ym is
represented by the perturbation series in powers of the
disturbances e(r), and the technique of the method
permits solutions to the appropriate equations for
different orders of ym in the following invariant form
[Zernov, 1980]:

ym1 rð Þ ¼ �k2 EGO
0m rð Þ� ��1

Z
e r0ð ÞEGO

0m r0ð ÞGGO
m r; r0ð Þdr0;

ð5Þ

ym2 rð Þ ¼ � EGO
0m rð Þ� ��1

Z
rym1 r0ð Þð Þ2EGO

0m r0ð Þ
� GGO

m r; r0ð Þdr0: ð6Þ

We have presented here only the disturbed complex
phases of the first and second orders, which are
employed in the following treatment.

3.1. Geometrical Optics Field

[18] It is convenient to specify the representations (5)
and (6) in ray-centered variables (s, q1, q2), where the
reference ray is a given m th curvilinear path connecting
the communicating points in the 3-D inhomogeneous
background medium, so that every path gives rise to its
own ray-centered coordinate system. (From now on we
omit subscript m referring to the m th path of propaga-
tion.) In these coordinates variable s is measured along
the reference ray in the direction from the source to the
receiver, and q1 and q2 lie in the plane perpendicular to
the reference ray at each point. For this coordinate
system, Lamé coefficients are as follows:

hs q1; q2; sð Þ ¼ 1� q1
@

@q1
ln n s; 0; 0ð Þ

� q2
@

@q2
ln n s; 0; 0ð Þ; hq1 ¼ hq2 ¼ 1: ð7Þ

Here n2(s, q1, q2) = e0(s, q1, q2) and n(s, 0, 0) =
[e0(s, 0, 0)]

1=2 . In the following we denote n(s, 0, 0) =
n0(s). In the introduced ray-centered variables we take
the coordinates (0, 0, 0) for the transmitter and (s0, 0, 0)
for the receiver. The variable of integration r0 in the
integrals in (5) and (6) is now given by (s, q1, q2).
[19] To construct E0m

GO and Gm
GO in equations (5) and (6)

in the form of the geometrical optics approximation for
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type such as A0 exp (ikj), the appropriate eikonal
equation

@j
@q1

� �2

þ @j
@q2

� �2

þ 1

hs

@j
@s

� �2

¼ n2 s; q1; q2ð Þ ð8Þ

for the phase function j and the main transport equation
for the amplitude A0,

2rA0rjþ A0r2j ¼ 0; ð9Þ
must be solved for each path of propagation. The
solutions of equations (8) and (9) locally nearby the
reference ray are sought for in the form of a series in
the transverse variables q1 and q2 as follows:

j s; q1; q2ð Þ ¼
Z

n0 sð Þds

þ 1

2
b11 sð Þq21 þ b22 sð Þq22 þ 2b12 sð Þq1q2
� �

þ . . . ; ð10Þ
A0 s; q1; q2ð Þ ¼ A00 sð Þ þ . . . : ð11Þ

The representation (10) means that the finite curvature of
the front of the undisturbed (incident) field is accounted
for to the accuracy of the main terms, which are given by
the full quadratic form in the square brackets. The linear
terms vanish here because the medium is isotropic so that
the wave front must be orthogonal to the wave direction.
[20] Performing necessary expansions for n2 and hs in

a series in the transverse plane to the reference ray
variables and equating to zero coefficients at different
powers of q1, q2 yields for the amplitude A00(s)

A00 sð Þ¼ const � n�1=2
0 sð Þ � exp � 1

2

Z
b11 sð Þ þ b22 sð Þ

n0 sð Þ ds

� �
;

ð12Þ
where the functions b11(s), b22(s), b12(s) satisfy a set of
differential equations of Riccati type, which may be
conveniently written in the matrix form as follows:

n0
@B̂

@s
þ B̂ � B̂ ¼ Ĉ: ð13Þ

[21] In the last equation,

B̂ ¼ bikf g; i; k ¼ 1; 2; b12 ¼ b21; ð14Þ

Ĉ ¼ cikf g; cik ¼ 1

2

@2n2 s; 0; 0ð Þ
@qi@qk

� 3n20 sð Þ @ ln n s; 0; 0ð Þ
@qi

@ ln n s; 0; 0ð Þ
@qk

; i; k ¼ 1; 2:

ð15Þ
When considering the equations in (13), the solution
should reduce to the spherical wave near a source in the

small-angle approximation (assuming that the source is
in vacuum) as follows:

E00 ~rð Þ ¼ � A

4ps
exp iksþ ik

2s
q21 þ q22
� �� �

: ð16Þ

This is also the recipe as to how to properly choose the
constant and the limits of integration in (12). Then (10)–
(12) finally yield the following expression for the
undisturbed (incident) field

E0 rð Þ ¼ � A

4pr0
n
�1=2
0 sð Þ � exp � 1

2

Zs
r0

b11 þ b22

n0
ds

2
4

3
5

� exp ik

Zs
0

n0dsþ ik

2
b11q

2
1 þ b22q

2
2 þ 2b12q1q2

� �2
4

3
5;
ð17Þ

where b11(s), b12(s), b22(s) are properly chosen solutions
of equations (13)– (15). Formally this should be
considered in the limit when the small quantity r0 tends
to zero. This equation reduces to the spherical wave (16),
when n0(s) = 1. Small finite values of r0 are employed
when numerical solutions of equations are realized to
properly specify equation (13)–(15).
[22] In the same manner, the representation for the

Green’s function G(r, r0) with r = (s0, 0, 0) and r0 =
(s, q1, q2) may be written

G r; r0ð Þ ¼ � 1

4pr0
n
�1=2
0 sð Þ � exp � 1

2

Zs0�s

r0

b
g
11 þ b

g
22

n0
ds1

2
4

3
5

� exp ik

Zs0�s

r0

n0ds1 þ ik

2
b11q

2
1 þ b22q

2
2 þ 2b12q1q2

� �2
4

3
5:

ð18Þ

Here the variable s1 is measured along the same
reference ray, but in the direction from the receiver to
the transmitter. Making use of this variable, the elements
of the matrix B̂g = {bik

g }, bik
g = 1, 2, i, k = 1, 2 satisfy the

same set of equations (13)–(15) as the matrix B̂. If the
substitution s = s0 � s1 is performed under the sign of
integration, equation (18) becomes

G r; r0ð Þ ¼ � 1

4pr0
n

�1=2

0 sð Þ � exp 1

2

Zs
s0�r0

b
g
11 þ b

g
22

n0
ds

2
4

3
5

� exp �ik

Zs
s0

n0ds1 þ ik

2
b11q

2
1 þ b22q

2
2 þ 2b12q1q2

� �2
4

3
5:

ð19Þ
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When written by means of variable s, matrix B̂g satisfies
the set of equations

�n0
@B̂g

@s
þ B̂g � B̂g ¼ Ĉ; ð20Þ

which differs from the set of equations (13)–(15) only by
the sign at the first derivative.

3.2. First-Order Complex Phase

[23] Finally, putting together all the necessary repre-
sentations gives the following equation for the first-order
complex phase from equation (6):

y1 s0; 0; 0;ð Þ ¼ k2

4pr0

ZZZ
dsdq1dq2

e s; q1; q2ð Þ
n0 sð Þ

� hs s; q1; q2ð Þ

� exp
(
1

2

Zs0�r0

s

b11 � b
g
11

� �þ b22 � b
g
22

� �
n0

ds

þ ik

2

h
b11 þ b

g
11

� �
q21 þ b22 þ b

g
22

� �
q22

þ 2 b12 þ b
g
12

� �
q1q2

i)
: ð21Þ

To derive the last equation the relationship E0(s0 � r0, 0,
0) � E0(s0, 0, 0) has been used.
[24] To further transform equation (21) some necessary

relationships for the new matrix

B̂� ¼ B̂� B̂g ð22Þ

should be derived. Subtracting equation (20) from (13)
and performing simple transformations yields

B̂þ� ��1 @B̂þ

@s
¼ � B̂�

n0 sð Þ ; ð23Þ

where

B̂þ ¼ B̂þ B̂g: ð24Þ
Then, the integral expression, which is the first term in
the exponential in equation (21) is just:

Trace
B̂� sð Þ
n0 sð Þ
� �

¼ �Trace B̂þ sð Þ� ��1 @B̂þ sð Þ
@s

� �

¼ � @

@s
ln det B̂þ sð Þ� �

: ð25Þ

This allows us to finally write the quantity from equation
(21) in the following form:

y1 s0; 0; 0;ð Þ ¼ � k2

4p

ZZZ
dsdq1dq2

e s; q1; q2ð Þ
n0 sð Þ

� hs s; q1; q2ð Þ det B̂þ sð Þ� �1=2
� exp

(
ik

2

��
b11 þ b

g
11

�
q21 þ

�
b22 þ b

g
22

�

� q22 þ 2 b12 þ b
g
12

� �
q1q2

�)
: ð26Þ

To obtain this expression, the relationship

lim
r0!0

r0 det B̂þ s0 � r0ð Þ� �1=2¼ 1 ð27Þ

was used. Matrix B̂+, involved in calculations according
to (26), is given by equation (24), where, in turn,
elements of matrixes B̂ and B̂g satisfy sets of differential
equations (13)–(15) and (20) respectively. When and
where it is necessary to have the representation for the
second-order complex phase y2 the quantity k2 e in
equation (26) should be replaced by (ry1)

2.
[25] Formula (26) is the final result, which extends the

classic Rytov’s method to the case of the point source in
an arbitrary 3-D inhomogeneous medium. It permits
different limiting cases. In particular, when the back-
ground medium is homogeneous it yields the known
result for the complex phase of a spherical wave in a
homogeneous background medium, disturbed by a local
inhomogeneity e(r) [Tatarskii, 1971; Ishimaru, 1978]. In
this case b11 = b22 = s�1 = x�1, b12 = 0; b11

g = b22
g = (s0 �

s)�1 = (x0 � x)�1, b12
g = 0, and equation (26) yields:

y1 x0; 0; 0ð Þ ¼ k2

4p

ZZZ
dxdydz e x; y; zð Þ x0

x x0 � xð Þ
� exp ik0 y

2 þ z2½ �x0
2x x0 � xð Þ

	 

: ð28Þ

Another limiting case for the general representation (26)
is when the quantities (b11 + b11

g ), (b22 + b22
g ), (b12 + b12

g )
are large compared to the transversal characteristic
scales of the inhomogeneities e along all the path of
integration in variable s. Then integration in q1 and q2
in equation (26) may be performed explicitly employing
the steepest descent method to produce, to the first
approximation, the first-order correction of the geome-
trical optics approximation as follows:

y1 s0; 0; 0ð Þ ¼ ik

2

Zs0
0

e s; 0; 0ð Þ
n0 sð Þ ds: ð29Þ
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This is the case of local inhomogeneities with large
spatial scales compared to the main Fresnel zone size
along the path of propagation.
[26] To utilize the generalized complex phase given by

(26), a special numerical code has been produced to
solve the matrix equations (13) and (20), This was
combined with a general ray-tracing code for the 3-D
inhomogeneous background medium.

4. Simulation of Random Time Series and

Statistical Moments of the HF Field

[27] When characterizing the ionospheric fluctuating
HF reflection channel of propagation, both the random
time series and statistical moments of the pulsed signal
propagated through the channel are of interest.

4.1. Random Time Series

[28] A random realization of a pulsed signal propa-
gated through the fluctuating ionosphere can be repre-
sented as the following Fourier integral in the frequency
domain

U r;t; Tð Þ ¼
X
m

Zþ1

�1
P wð ÞEGO

om r;wð ÞRm r;w; Tð Þe�iwtdw:

ð30Þ
Here P(w) is the spectrum of a launched pulse, E0m

GO

represents the transfer function for a given m th path
in the undisturbed channel, i.e., the functions from
equation (2). Once the model of the 3-D background
ionosphere is given, the quantities E0m

GO are calculated
employing the appropriate ray-tracing code, which also
permits calculation of the ray tube divergence. A random
phasor Rm (r, w, T) is introduced in (30) to account for
the effects of fluctuations of the electron density of the
ionosphere. Variable t is the flight time of a pulse and T
denotes slow time dependence of fluctuations, which can
be treated in the quasi-stationary approximation. The
background channel is assumed to be stationary that is
time-independent. A corollary of this is the absence of
slow time dependence in the transfer functions of the
background channel in (30). The summation in (30) is
performed over all paths of propagation from a
transmitter to a receiver.
[29] According to the complex phase method, de-

scribed above, random phasors Rm (r, w, T) are repre-
sented utilizing complex phases as follows:

Rm r;w;Tð Þ ¼ eym r;w;Tð Þ; ð31Þ

where the first and second-order complex phases ym in
powers of the disturbances of the dielectric permittivity

are given by equations (5) and (6) and specified in ray-
centered variables by equation (26). Complex phases

ym r;w; Tð Þ ¼ cm r;w; Tð Þ þ iSm r;w; Tð Þ ð32Þ

are random functions with the real part cm representing
log-amplitude fluctuations and Sm giving the fluctuations
of the phase of the field.
[30] To produce the time series of a pulsed signal given

by the Fourier integral (30) for a point of observation r,
two real random functions cm and Sm must be generated
in the two-dimensional domain (w, T) for a given value
of r. This demands knowledge of the probability density
functions for cm and Sm, as well as their autocorrelation
and cross-correlation functions. In the scope of the
complex phase method, these functions are given as
follows:

Bc w1;w2; T1; T2ð Þ ¼ hc1 w1; T1ð Þc1 w2; T2ð Þi; ð33Þ

BS w1;w2; T1; T2ð Þ ¼ hS1 w1; T1ð ÞS1 w2; T2ð Þi; ð34Þ

BcS w1;w2; T1; T2ð Þ ¼ hc1 w1;T1ð ÞS1 w2; T2ð Þi: ð35Þ

All these functions can be found making use of the two
main autocorrelation functions of the first-order complex
phase By1 = hy1(w1, T1)y1*(w2, T2)i and By2 =
hy1(w1, T1)y1(w2, T2)i. Their explicit expressions will
be presented below.
[31] As far as the probability density functions for

the random functions cm1 and Sm1 are concerned,
equation (26) shows that cm1 and Sm1 are represented
by linear integrals over many random inhomogeneities.
This guarantees, according to the central limit theorem,
that both the random functions cm1 and Sm1 are normally
distributed.When averaging in (33)–(35) it is also implied
that the electron density fluctuations along different
paths of propagation are not correlated. This is in a
reasonable agreement with the requirement that the main
Fresnel volumes of the neighboring rays do not overlap.
[32] If, additionally, the hypothesis of the ‘‘frozen

drift’’ of random inhomogeneities in the ionosphere is
adopted, slow time T is expressed through the position of
the inhomogeneity structures, so that actually appropriate
two-frequency, two-position autocorrelation and cross-
correlation functions must be constructed. We have
studied in detail these type of functions in the scope of
the complex phase method for the case of a plane-layered
background medium [Gherm et al., 1997; Gherm and
Zernov, 1998]. Having the representation (26), which
extends the complex phase method to the case of a
fully 3-D inhomogeneous medium, appropriate statistical
moments of the complex phase can be constructed
for an arbitrary 3-D inhomogeneous background
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medium. In particular, the abovementioned correlation
functions By1 and By2, which permit expressing the
correlations (33)–(35), are of the following form

By1
�
w1;w2; T�

� ¼ pk1k2
2

Zs0
0

ds

e0
�
s
�

�
Z

dkndktBe
�
s; 0; kn; kt

�
� exp �ikn�Dn � vnT�

�þ ikt
�
Dt � vtT�

��
� exp

(
i
�
k1 � k2

�
2k1k2

�
k2nDn

�
s
�þ k2tDt

�
s
�

þ 2knktDnt
�
s
��)

; ð36Þ

By2 w1;w2; T�ð Þ ¼ � pk1k2
2

Zs0
0

ds

e0 sð Þ

�
Z

dkndktBe s; 0; kn; ktð Þ exp
� ikn Dn � vnT�ð Þ þ ikt Dt � vtT�ð Þ½ �

� exp
n
� i
�
k1 þ k2

�
2k1k2

�
k2nDn sð Þ

þ k2tDt sð Þ þ 2knktDnt sð Þ�
o
: ð37Þ

Here k = w/c and Be(s; 0, kn, kt) is the three-dimensional
spatial spectrum of the electron density fluctuations with
zero value of the spectral variable, Fourier-conjugated to
the difference variable along the path. It is also a function
of the central variable along the reference ray. The
spectral variables kn and kt are Fourier-conjugated to the
spatial variables q1 and q2 lying in the plane perpendic-
ular to the reference ray at each point. The quantities Dn

and Dt are the components of the vector of distance
between the rays corresponding to the frequencies w1 and
w2, which also depend on s. Additionally, the hypothesis
of the ‘‘frozen drift’’ of random inhomogeneities is
utilized, so that vn and vt are the components of the
frozen drift velocity also depending on the point along
the reference ray, and T� = T1 � T2 is the difference in
slow time. The central slow time T+ is not involved in
equations (36) and (37), because of the assumption of the
statistical homogeneity of the fluctuations. The coeffi-
cients Dn, Dt, and Dnt are the elements of the matrix D̂ =
(B̂+)�1, which is the inverse of the matrix B̂+(24). These
also depend on the variable s.

[33] In the numerical calculations, a turbulence model
of the ionospheric fluctuations is considered having an
anisotropic inverse power law spatial spectrum of the
form

Be s;Kð Þ ¼ C2
N 1� e0 sð Þ½ �2s2N sð Þ 1þ k2tg

K2
tg

þ K2
tr

K2
tr

 !�p

2

: ð38Þ

Here CN
2 is a known normalization coefficient. Ktg =

2pltg
�1, where ltg is the outer scale of the turbulence along

the geomagnetic field, and Ktr = 2pltr
�1, where ltr is the

outer scale of the turbulence across the magnetic field.
Function e0(s) is the distribution of the dielectric
permittivity of the background ionosphere along the
reference ray in the 3-D inhomogeneous background
ionosphere and sN

2 (s) is the distribution of the variance
of the relative fluctuations of the electron density of the
ionosphere along the reference ray in the 3-D inhomo-
geneous ionosphere. As a result, functions (36) and (37)
are, with a very high degree of generality, valid for
arbitrary three-dimensional models of the background
ionosphere and fluctuations of the ionospheric electron
density.
[34] All the abovementioned results permit to uniquely

produce random series of functions cm and Sm in the
domain (w, T), if, additionally, the cross correlation (35) is
also properly accounted for. To generate the time series,
spectra of the correlation functions of cm and Sm (power
spectra) are calculated in the domain (t, W), where t is
Fourier-conjugated to w and W is Fourier-conjugated to T
correspondingly. Complex valued Fourier spectra of ran-
dom realizations of cm and Sm are assumed to have their
absolute values equal to the square roots of the appropriate
calculated power spectra and arguments uniformly dis-
tributed in the interval 0–2p. A correct cross correlation
of the cm and Sm realizations is then provided by the
proper choice of two basic sequences of random numbers
having their cross-correlation coefficient defined by the
mutual correlation of cm and Sm [see, e.g., Devroye,
1986]. In turn, these permit generation of random values
of the phasor Rm (r, w, T ) in the same domain, and finally
to generate the random series of a signal that has propa-
gated through the fluctuating ionosphere employing the
appropriate methods of numerical calculation of the inte-
grals in equation (30).
[35] Below we shall present some results of a simula-

tion obtained using the developed technique and simu-
lator. All the results have been calculated for a single-hop
path of length 1000 km oriented to the west from St.
Petersburg, Russia. The IRI model for July at 0700 LT
was chosen for the transmitter site at St. Petersburg and
for the receiver site 1000 km to the west of St. Peters-
burg. For this path, horizontal gradients of the electron
density resulted in a difference of 0.5 MHz in foF2
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between the transmitter and receiver. The carrier
frequency was 8.1 MHz.
[36] The fluctuations of the ionospheric electron den-

sity were characterized by the inverse power law aniso-
tropic spatial spectrum with the spectral index of 3.7, the
scale of random inhomogeneities across the geomagnetic
field of 3 km and the aspect ratio of 5. The variance of
relative fluctuations of the electron density was assumed
to be uniform along the path of propagation and equal to
3 � 10�6. The hypothesis of frozen drift of the random
inhomogeneities was utilized with the same horizontal
longitudinal and latitudinal velocity of 0.5 km/s. The
bandwidth of the rectangular transmitted pulse was
20 kHz.
[37] In the first step, the oblique sounding ionogram

was constructed for the chosen model of the background
ionosphere, which indicated possible high- and low-
angle F and E mode paths of propagation. In Figure 1,
the random walk as a function of T is shown for the
phasor corresponding to the E mode propagation path for
a fixed frequency component w, whereas Figure 2
demonstrates the same for the phasor of the high-angle
F mode path. Clearly, the spread of possible random
values of the phasor on the plot of Figure 2 is signifi-

cantly wider due to the higher density of the background
ionosphere at the altitude of the F layer, leading to the
higher values of the absolute fluctuations of the electron
density.
[38] In a similar way, phasors for all possible paths of

propagation, connecting transmitter and receiver for the
given conditions (the model of the background iono-
sphere and geometry), are produced. Then, calculating
numerically the quantity U(r, t, T) according to the
integral (30) random time sequences of a pulsed signal
propagated through the fluctuating ionosphere are gen-
erated for different moments of slow time provided that
the spectrum P(w) of the transmitted signal is specified.
In Figure 3 the results of generating the random sequen-
ces for a transmitted rectangular pulse are presented, as a
function of the flight (fast) time, for different moments of
slow time.

4.2. Scattering Functions

[39] The scattering function of a pulsed signal is
introduced [Proakis, 1983; Vogler and Hoffmeyer,
1993; Mastrangelo et al., 1997; Gherm et al., 2001a]
as the appropriate Fourier transform of the autocorrela-
tion function of the random channel impulse response on

Figure 1. Random walk of the phasor Rm (r, w, T) for the E mode. The fluctuations of the field are
weak.
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the difference slow time variable. Utilizing (30), the
autocorrelation function of a pulsed signal on slow time
T can be written as follows:

YU t; T1; T2ð Þ ¼
Z

P w1ð ÞP* w2ð Þ
X
m

fm w1ð Þfm* w2ð Þ

�YRm w1;w2; T1; T2ð Þ exp ik1jm w1ð Þ½
� ik2jm w2ð Þ � i w1 � w2ð Þt�dw1dw2:

ð39Þ
Here the spatial variable r was suppressed and the
following relationships have been introduced:

EGO
0m wð Þ ¼ fm wð Þ exp ikjm wð Þ½ �; ð40Þ

YRm w1;w2; T1; T2ð Þ ¼ hRm w1; T1ð ÞRm* w2; T2ð Þi: ð41Þ
Equation (40) shows explicitly the amplitude and phase
of the field E0m

GO, which are calculated for each possible
mode of propagation, defined by the model of the
background medium. Relationship (41) is the definition
of the two-frequency two-time correlation function of the
random phasor Rm (w, T ).

[40] It is convenient to work with the central and differ-
ence variables in the frequency and slow time domains

wþ ¼ 1

2
w1 þ w2ð Þ; w� ¼ w1 � w2; ð42Þ

Tþ ¼ 1

2
T1 þ T2ð Þ; T� ¼ T1 � T2: ð43Þ

Utilizing new variables in (39) and performing Fourier
transformation on difference slow time T�, the following
equation for the scattering function (which is sometimes
termed the wideband scattering function) is obtained:

S t; Tþ;wdð Þ ¼ 1

2p

Z
P wþ þ w�

2

� �
P* wþ � w�

2

� �
�
X
m

fm wþ þ w�
2

� �
fm* wþ � w�

2

� �
�YRm wþ;w�; Tþ; T�ð Þ
� exp �i t � tgm wþð Þ� �

w� þ iwdT�
� �

� dwþdw�dT�: ð44Þ
Here the summation is performed over all paths of
propagation from the source to the receiver. The

Figure 2. Random walk of the phasor Rm (r, w, T) for the high-angle F mode. This shows stronger
fluctuations of the field.
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scattering function of the channel S(t, T+, wd) depends on
the Doppler variable wd, (Fourier-conjugated to T�), the
group delay t and, generally, on the slow time T+. The
latter dependence vanishes when the random ionospheric
fluctuations are assumed to be statistically stationary.
Group delay time tgm(w+) is given by the equation

tgm wþð Þ ¼ @

@w
w
c
jm wð Þ

h i
w¼wþ

ð45Þ

and is calculated for each mode of propagation.
[41] In the framework of the complex phase method,

the frequency and time correlation functions of the
random phasor YRm in the integral (44) are expressed
through the statistical moments of the complex phase
[Gherm and Zernov, 1998; Gherm et al., 2001a] as
follows:

YRm wþ;w�; Tþ; T�ð Þ ¼ V wþ þ w�
2

� �
V* wþ � w�

2

� �
� 
exp �Yy

�
wþ;w�; Tþ; T�

��� 1
�
;

ð46Þ

V wð Þ ¼ exp hy2 wð Þi þ 1

2
hy2

1 wð Þi
� �

: ð47Þ

The function Yy denotes the autocorrelation function of
the complex phase, with the main term being obtained
employing the complex phase method within the
relationship

Yy
�
wþ;w�; Tþ; T�

� ¼
*
y1 wþ þ w�

2
; Tþ þ T�

2

� �

� y1* wþ � w�
2

; Tþ � T�
2

� �+
:

ð48Þ
The functions (46)–(48) have been studied in detail in the
work of Gherm and Zernov [1998] for the case of plane-
layered background medium. The scattering function (44)
has been studied in the work of Gherm et al. [2001a], also
for the layered background medium. The extension of
the complex phasemethod obtained above for the case of a

Figure 3. Realization of the received signal plotted in slow time and fast time variables.
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3-D inhomogeneous background medium (equation (26))
naturally permits the extension of the technique of
calculation of the scattering functions to the general case
of a 3-D background. The statistical moments of the
complex phases involved in equations (44) and (46)–(48)
are given through the representations (36) and (37). They
have all been derived analytically for the general case of
an arbitrary 3-D inhomogeneous background medium.
The derivation is based on the general equation (26) for a
random realization of the complex phase. The calculations
are then performed numerically for a given model of the
background ionosphere. In Figure 4, the scattering
function is presented in the form of a contour plot,
calculated according to the described technique as the
appropriate statistical moment of the signal.
[42] Finally, there is also another possible method of

obtaining the scattering function, namely from the ran-
dom time series as represented in the plot shown in
Figure 3. This is a numerical processing of the simulated
time series of a signal analogous to what is really done to
real experimental data. The result is presented in Figure 5
in the form of a contour plot. In both Figures 4 and 5, the
adjacent contours are separated by 5 dB and range from 0
to �30 dB. Strictly speaking, these plotted values in
Figure 5 are not statistical moments, but a sort of
realization of the scattering function, obtained after
averaging over a finite number of realizations of the
received signal. If the period of this averaging is
increased, then the number of random realizations will

also increase and the resulting plot will converge to the
true scattering function, which is the rigorous statistical
moment presented in Figure 4.
[43] As far as the effects due to the magnetic field of the

Earth are concerned, we have confined this consideration
to the isotropic refractive index case. However, the ap-
propriate extension of the theory (of the complex phase
method) has also been developed to describe the effects of
ordinary and extraordinary modes, so that the magneto-
ionic splitting can also be accounted for. It was not really
practical to give the detailed description of the anisotropic
version including the theory and simulator in the frame-
work of a single paper. An additional paper is planned to
be devoted to this subject. Some results for the anisotropic
case have been recently reported in the work of Gherm et
al. [2003]. To conclude this paper, in Figure 6 the
anisotropic case is briefly presented for conditions anal-
ogous to the isotropic case in Figure 5. Again, the
retrieved scattering function is represented in the form
of a contour plot. It is clearly seen that the high-angle F
mode (the uppermost local maximum) is split into o
components and e components, whereas low-angle F
mode and E mode are not resolved into o components
and e components.

5. Practical Use of the Simulator

[44] The inputs required for the simulator are the
geographic location of the transmitter and receiver, the

Figure 4. Scattering function calculated theoretically as a statistical moment of the field.
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nature of the transmitted signal and the characteristics
of the background and stochastic ionosphere (time-
varying irregularities) components. The background
ionosphere can be fully 3-D such as being represented
as a fit to the IRI model over a given latitude and
longitude range. Alternatively, it can be specified in
terms of the parameters of a number of Chapman,
parabolic or quasi-parabolic layers which can include
linear latitudinal and/or longitudinal gradients of elec-
tron density and/or height of the electron density
maximum. Slow time variation such a layer movement
or TIDs can also be incorporated and will result in
Doppler shift whereas the time-varying irregularities
result in Doppler spread. The stochastic component of
the ionosphere is specified in terms of the variance of
the fractional electron density, the exponent of the
inverse power law spatial spectrum, the outer scale
of the irregularities along and transverse to the geo-
magnetic field direction and the direction and speed of
the irregularities in three dimensions. The E and H
field patterns of the transmitting and receiving anten-
nas can be taken into account when determining the
strength of the transmission at different azimuths and
elevations and when summing the E fields of the
different modes at the receiver. The initial azimuth
and elevation angles of the signal for each multipath
component are determined by the homing-in program
and so are known. This information can also be

obtained from the ray-tracing program for the end of
the ray path at the receiver location. Either vertical or
horizontal antennas can be used for the link.

6. Conclusions

[45] The general description of HF propagation in the
ionosphere with 3-D inhomogeneous background and
local random inhomogeneities embedded presented
above comprises the physical basis for producing a
software simulator for the wideband ionospheric fluctu-
ating reflection HF channel. The simulator is capable of
producing both random time sequences of a pulsed signal
propagated through the fluctuating ionosphere and its
statistical moments, e.g., scattering functions. The pro-
grams are arranged in the way that any given 3-D model
of the background ionosphere can be utilized and mul-
timode propagation can be included for any geometry of
propagation. The software simulator utilizes the inverse
power law spatial spectrum of fluctuations of the electron
density of the ionosphere with given spectral index and
different spatial scales of inhomogeneities along and
across the magnetic field. Fluctuations are assumed to
be statistically homogeneous in time (stationary). The
simulator is capable of producing results for signals with
bandwidths up to 0.5 MHz. A noise model, described by
Lemmon and Behm [1991], has also been added. Bulk
plasma motion of the background ionosphere can also be

Figure 5. Scattering function retrieved from the field realization shown in Figure 3.
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included, giving a Doppler shift in addition to the
Doppler spread resulting from diffraction by the moving
irregularities.
[46] This propagation model and simulator, since

based purely on physical models and parameters, also
enables the correspondence between characteristics of
the received field and the physical parameters of the
model to be investigated. This permits fine-tuning of the
model by comparison of received field and predicted
output for a variety of conditions as well as providing a
way of estimating the physical parameters from the
characteristics of the received field.
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