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1 Quantization of the Free Electromagnetic Field

Dirac combined the wave and particle like aspects of light. Wave nature shows
all the interference phenomena. Particle nature shows the exitation of a specific
atom absorbing one photon of energy.

Classical field fails to explain

—_

. Spontaneous emission
2. Atomic decay

3. Lamb shift

4. Photon statistics

An interesting consequences of the quantization of the radiation is the fluc-
tuations associated with the zero-point energy or so called vacuum fluctuations.
These fluctuations have no classical analog and are responsible for many inter-
acting phenomena in quantum optics.

1.1 Spontaneous Emission and Atomic Decay

A phenomena which we described phenomenologically in our treatment of semi-
classical theory requires a quantum field. Spontaneous emission is often said to
be the result of stimulating the atom by vacuum fluctuations.

1.2 Lamb Shift

According to the classical description of the field (Dirac theory) the 2S %and
2P 1 states in the hydrogen atom should have equal energies. Experimentally
the two levels differ by approximately 1057 MHz. a fully quantized treatment of
the field and atomic systems gives impressive agreement with the experimentally
observed shift, because of the radiative correction due to the interaction between
the atomic electron and the vacuum shift the 25 1 level higher in energy by around
1057 MHz relative to the ZP% level.

1.3 Photon Statistics

In order to explain the photon statistics the concept of a particle, the photon
is either necessary or convenient. For the quantization of the electromagnetic
field in free space, it is convenient to begin with the classical description of the
field based on Maxwell’s equations. In MKS system

V.D = 0
V.B = 0
0B
E = ——
V x 5
0D
H = —
V x 5



where in free space

D = €0E

here €y and p are the free space permitivity and permeability respectively and

1
Hoc = 2

where ¢ is the speed of light in vacuum. Using these Maxwell,s equations we
know that E (r,t) and also B (r,t) satisfies the wave equation

1 0°FE
2 ot?
Following the Dirac approach we associate each mode of the radiation field

with a quantized simple Harmonic oscillator. Energy of the Harmonic oscillator
(classically) is given by the hamiltonian

ViE =0

1 p?
H== 2.2
2 o
and quantum mechanically it is written as
A2
1 AZ D
H = —mw? —
2mcu T + o

2 Mode Expansion of The Field

2.1 Quantization of Field Inside the Cavity of Length L

Electric field is linearly polarized in the x direction. Expanding the field in the
normal modes of the cavity

E, (z,t) = Z Ajqj (t)sin (kjz)

j corresponds to different modes such that

A 2 j
L :ja; A= % and L = %,Wherej =1,2,3,..
Where q; is the normal mode amplitude with the dimensions of length (position)
and
1/2
A - 2w?mj
/ VEO
jme
h i = ckj=—
where w; ck; T



is the cavity eigen frequency. V = LA is the volume (A is the transverse area
of the optical resonator) m; is a constant with the dimensions of mass, included
to make an anology with SHO nothing to do with mass of photon. The E.M.F
is assumed to be transverse with electric field polarized in the x-direction. Such
field satisfies

V.E=0

The nonvanishing component of the magnetic field in the cavity is obtained by
using Maxwell’s 4rth equation i.e,

oD oF
H = — = B
Vo ot~ ot
AA A
i j k
VxH = 2 9 9
ox Jy 0z
H, H, H,
B /z\ OH, 0H, n(OH, OH, 2 oH, 0H,
N y 0z 0z oz ox y
x-component of (V x H), is written as
OH. 0Hy,\ _ . 0F,
dy oz ), ot
H, =0, z is the direction of propagation
OH, 0 .
_B_Zy = ey ;quj (t)sin (k;z)
=« Y Ajg; (t)sin (k;2).
J
As
sin (kjz) = fk—Ja cos (kjz),
putting the value of sin(k;z) in the above equation we can write
6Hy - 6 q7 (t) €0
27 = o zj:AJ ( k cos (k;z) |,

»
H, = ;Aj (%) cos (kjz).
The classical Hamiltonian of the field i.e, the (total energy of the field ) is

1
H= 5/vdT (B2 + poH})



where the integration is over the volume of the cavity. Substituting the values
of E; and H,, in the above equation and performing the integration we get,

1 .2
H = 3 Z (mjw?q? + quj)
J
2
p,
= 2 E (mjw q] J])

where p; = mj(']j is the canonical momentum of the jth mode. The above
equation expresses the hamiltonian of the radiation field as a sum of indepen-
dent oscillator energies. Each mode of the field is dynamically equivalent to a
mecahanical harmonic oscillator.

3 Quantization
The present dynamical problem can be quantized by identifying ¢; and p; as
operators, which obey the commutation relations
AA .
[qj,pj/} = hd;y.
AA AA
[qj,qjl} = [pj,pjl} =0.
It can be transformed as

. 1

a; = ——— (m;w;q; +1p;) exp (iw,t
j \/W( jw;jqj + ipj) exp (iw;t)

and
a1 (mjw ip;) exp (—iw;t)
. = SW 5 X
J 2mjhwj / qu pg P !
g = (aj exp (—iw;t) +a'; exp (zwﬂ)) Iy
~ mngh . /\T .
P, = —i (aj exp (—iw;t) —a'; exp (@wjt))

The commutation relations between a; and at follow from those between q; and
ﬁ Rl

A oAt 1 . AA . AA
1 . . . .
= Zmte; [—imjw; (ih) + imjw; (—h)]
= 1.



Similarly
A AA
[aj,aj/] = aTj,aTj/ =0

A A
ajaly | = 8

+
The operators aanda are referred to as the destruction and creation operators,
they are not hermitian. Substituting the value of ¢; and p; in the equation for
Hamiltonian we get

H = Z §mj‘*’? <m) (a? exp (—2iw;t) + a’; exp (2iw;t) + aja} + a;f-aj
J
1 s T NN
—I-% (— m]2wj) (a? exp (—2iw;t) + a’; exp (2iw;t) — Qja;- - a;aj
j
hew. AA
= Z (TJ) (%a} + (l;-?%)
J
As
A AT
{aj,aj} = 1

VR
>
<.
S>>
I
S
>
.
> S———
Il
—_

L=+

_ A
= a;a; +1
thus we can write

A
1
H = Zhwj (a;(Azj + 5)
J

t
In terms of ajand é\Lj, the electric and magnetic fields can be written as

E(zt) = > ¢ (aj exp (—iw;t) + Gt exp (mjt)) sin (k;2)
J
Hy(z,t) = —ieocz €5 (?ij exp (—iw;t) —a'j exp (iwjt)) cos (k;z)

J

where the quantity

()"
6]_ €0V

has the dimensions of an electric field.



3.1 Quantization of Field Inside a Large Cavity of Finite
Length L

Consider the field in a large but finite cubic cavity of side L. We consider the
running wave solutions instead of the standing wave solutions. The classical
electric and magnetic field can be expanded in terms of plane waves.

E(rt)= Z € rEROE exp (—iwgt + ik.r) + c.c
k
using Maxwell’s equation i.e,

oD
H=—
V x 5

we get

A
1 k x €L

H(rt)=— epay exp (—iwgt +ik.r) + c.c
TR

where the summation is taken over an infinite discrete set of values of wave
vector k = (ky, ky, k), €, is a unit polarization vector, oy, is a dimensionless

amplitude and
by 1/2
= <2€0V>

Periodic boundary conditions require that

27N, 2mn 2mn
L Y L’ L
where n,ny, n, are integers 0,+£1,+2,---. A set of numbers (n,,n,,n.) defines

a mode of electromagnetic field. For transverse field
V.D=0

which requires

k

er=0
There are two independent polarization directions of /e\k for each k. Changing
from a discrete distribution of modes to a continous distribution i.e,

3
L
T —o (_> [
27
k
where factor of 2 accounts for two possible states of polarization. The num-
ber of modes available in a cavity is infinite, however the number of modes

whose frequency lies between w and w + dw is finite. This is the same num-
ber of field modes having the magnitude of k, between k and k + dk. Making



transformation from rectangular coordinates (ky, k., k) to the polar coordinates
(ksin 0 cos ¢, ksin 0 sin ¢, k cos 0) , the volume element in k-space is written as

&k = k*dksin0dfde
w2

= —dwsinfdfdg.
C

The total number of modes in the volume L? in the range between w and w + dw

is given by
L 3 Qd s 27
dN = 2(-) “’3“/ sin0d0/ do
2 c 0 0

L3w?
= ——dw
m2e3

Radiation field is quantized by identifying oy, and o by the harmonic oscil-

T
lator operators akand CALk respectively, which satisfiy the commutation relation
T
[ak, ] 1

The quantized electric and magnetic fields takes the form

E(rt) = Z €bE Ry EXP (—iwgt +ik.r)+ H.C
k
1 k x /E\k A . .
H(rit) = — Z erpag exp (—iwgt +ik.r) + H.C
Ho 77 Wk

where H.C is Hermetian conjugate. Seperating positive and negative frequency
parts of these field operators

Et (rit) = Z @kekak exp (—iwyt + ik.r)
k
+
E= (rit) = Z lekak exp (iwgt — ik.r)
k

where E (r,t) is the annihilation operator and E~ (r, t) is the creation operator.



4 Fock or Number States of Radiation Field

Consider a single mode of the field of frequency w having creation and an-
nihilation operators a and @ respectively. Let |n) be the energy eigen state
corresponding to the energy eigen value F,, i,e.

1
hw (aTa + 5) [n)

= Enln) (1)

Hn)

applying operator a from the left of the eigenstates we have
1
Haln) = tw (aTa + 5) aln) (2)
[a,aT] = adt—dla=1
= adf—1=4dla
Putting in Eq. (2) we get
T 1
Haln) = hw|aa —1—|—§ aln)
= hw (aa*a —a+ g |n)

)
= ahw (aTa—l— % — 1) n)

1
= a(tw(ala + 5) —hw) |n)
= a(F, —hw)|n)
= (B, —hw)a|n)
where a |n) is an energy eigen state with eigen value (E, — hw) . Operator a low-

ers the energy and therefore it is called annihilation, destruction or absorption
operator.

a
:>‘n_1>:a_|n>a

n

is an energy eigen state but with the reduced eigen value i,e.
E,1 = (BE,—tw)
Hin—-1) = E,_1|n—1),
and «, is a constant which will be determined from the normalization condition,
n—=1|n-1)=1.

If we repeat this procedure n times we move down the energy ladder in steps of
hw until we obtain
Ha|0) = (Ey —hw) a|0)



E) is the ground state energy . E,, —hw is smaller than Eg i,e, F,, —hw is negative.
Since energy eigen value cannot be negative

al0) =0

The state |0) is called the vaccum state. (in which no photon is excited).

1
hw (a*a + 5) |0)

1

H |0)

1
= FEy= §hw

is the energy of the ground state. Now we go step by step up as

E,1 = FE,—hw
E, = E,_1+hw
For n =1 we can write
E1 = EO + hw

1
= ihw—&—hw = ghw

Similarly
FEy = FEi+hw
5
It can also be written as
1
E2 == (2 + §)hw,

&

3

Il

3

_|_
DO =
N~

=

&



|n) is also an energy eigen state of the number operator
n=aa
The normalization constant can be now calculated

n—1jn-1)=1

as
a
n—1 = —|n
n-1) = =)
o1 = ld
ag
T
o1 | ney = oldai)
ko,
1
= 5 (n|a'a|n)
|ovn|
n 2
1 = 2<n|n> |an| =n

a = /ne?
If we take the phase of the normalization constant o, to be zero then o, = \/n

alny = a,|n—1)
= Valn-1)

now for operator af

1
Hal|jn) = thw (aTa—l— 5) al |n)

|
=
S
N
g—c—
Q
Q
-
+
N———
=

using aa’ = afa + 1,

(hw <aTa + %) a'ln)) = (E,+hw)dl |n)

Thus a' |n) is also an energy eigen state of the field with eigen value E,+hw.
We define

A
a

n+1 = —n
n+1) ﬂn‘ )
E,p1 = E,+hw

= Hn+1)=E,1|n+1)

10



using the same procedure we get
a'n)y=vn+1|n+1)

A repeated use of the above equation gives,

(af)”
In) = Nl | 0)

The energy eigen states |n) are called fock states or photon number states. They
form a complete set of state i,e.

Y In)(n] =1
n=0

The energy eigen value are discrete in contrast to classical electromagnetic
theory where energy can have any value. State vector is written as the super-
position of energy eigen states. i,e

) =3 culn)

where ¢,, are complex coefficients. The energy FEy = %hw is called zero-point en-
ergy. The energy levels for Q.M oscillations associated with the electromagnetic
field are given as

————————— En_;,_l = <7’l =+ —> hw
aft
1
—————————— E, = <n + —> hw
al 2
1
————————— En—l = <7’l — 5) hw
5
7777777777 E2 = §hw
3
7777777777 E1 = §hw
1
7777777777 EO = §hw

The operators a and a' are not hermitian but some of the combinations are
Hermitian such as,



Different energy eigen states of the field are orthagonal. The only non-vanishing
matrix elements of a and a'are of the types;

(n=1 1] aln)=vn
m+1 | at|n)y=vn+i

An important property of | n) is that the expectation value of the single mode
linearly polarized field operator vanishes. Using

E, (z,t) = e(ae™ ™" + a'e™?) sin kz,

or
E (’I”, t) _ é_ae—zwt-i-zkm + €*aTezwt—zk.r

(n|E(r,t)|n)=cn|a|n)e @Hrr L ox(n|al | n)et=—kr =0

Now in order to find the average value of (E?), we write

(n | E?|n)=le|” (n|aal +ala | n) + 2e 20207 (5 | g2 | n)
+€2e2zwt—21k.r<n ‘ ZZ‘TL)
1
(E%) = (2n+1)5|2:2(n+§) le?
AE? = (E?) —(E)?

1
2 <n+§) |E|2,

as (E)? = 0. For n =0 i,e. in vaccum
AE? 0,

but is equal to
AE? = |¢|?

From these equations we conclude that the mean value is zero but fluctuations
are present. These fluctuations are considered to be responsible for spontaneous
emission, Lamb shift etc.

12



5 Multimode Field

The wave function of a single mode field can be written as a linear superposition
of photon number states | n).
| 0) = caln)
n

H:ZHk
k

For multimode field

where

1
Hk = hwk (aiak + 5)

The energy eigen state of Hy, is

1

The general eigen state of H = 3  Hi. can therefore have ng; photon in the 1st
mode, ngs in the 2nd mode, ny; in the {th mode and so on and can be written
as

‘ Ng1, ME2, " ankh”')
Different cavity modes are independent, the state of the total field can be written
as the product of the individual modes i,e.
| me1s k2, oo Mk o) =| k) | nk2) | k) -

As the states of the individual cavity modes are normalized, this implies that
the total state of the field is also normalized. This state can be written in short
as

| k1) | mk2) [ nks) -+ = { i)}
The symbols {ny } denote the complete set of numbers that specify the excitation
levels of the harmonic oscillators with the cavity modes. The annihilation and
creation operators ay; and a,zl lower and raise the n;th entry alone.
akr | Mk k2, M) = N | s s M)
G’Ll | nk’lank%‘”anklv"'>:m|nk1ﬂnk2)”'ank(l+1)"">
The general state vector of the field is a linear superposition of these states.

| \II> = ZZ? "Z"'anl,nkg,m,nklu- ‘ N1, NE2, - NV~ - >

nk’1 nk’g nkl

= Z Cnry [ {ne})
{nk}

It can also be written as

13



6 State of the Field
6.1 The Mode Phase Operators

Classically an electromagnetic field consists of waves with well defined amplitude
and phase
E(r,t) =egexpi(k.r —wt+ ¢) + c.c

Quantized fields has fluctuations associated with both amplitude and phase of
the field. An elctromagnetic field in a number state | n) has a well defined
amplitude but completely uncertain phase

nln)=n|n)

where

The single mode quantum mechanical electric field operator is

N h O\ /2
E=¢ ( d ) (a exp (—iwt + ik.r) + a' exp (iwt — zk:r))

where € is a unit polarization vector. In an analogy to classical field seperate a
and a into a product of amplitude and phase operators. In quantum mechanics
there is no unique way or definition of the quantum mechanical phase operators,
But there are some conditions on the phase operator.
1- It should have same significance as classical phase in the appropriate limit.
2- Tt should be associated with hermitian operators (observable quantity).
Consider the phase operator €’ defined by the relation (Ref: Susskind and
Glogower (1964))

a= ﬁJrleiq5

The hermitian conjugate relation is

_ie [
at=c¢e n+1

The exponential operator defined, describe the quantum mechanical phase of
electromagnetic field,

el = (A + 1)_1/2a
and, e ¥ = a'(n+ 1)_1/2

Now from the relation
[a, aT] = adt—dta=1



The reverse order product of exponential operator is not equal to unity. Now we
have to check whether these phase operators are hermitian or not. Find ¢’ | n)
and e % | n)
e’ | my={m+1)""%a]|n)
= A+1)"Y3/n|n-1)

As we know that f(n) | n) = f (n) | n), we can write

€ ny=m-1+1""*/n|n-1)=|n-1)

e | ny=ad@+1)V?|n)=[n+1)

The non-vanishing matrix elements of phase operators are
n—1 ] e?|n)y=1
m+1 | e®n)y=1

and all other types of matrix elements are zero. It implies that ¢?and e "?do
not satisfy the relation.

. A . . A o\ ok

(@O =0G10]4)
where O = OF . They are not hermitain operators but can be combined to
produce another pair of operators.

1. o

cos$p = 5{61¢ +e)
A 1 . ,
sing = 5{6145 —e

whose non-vanishing matrix elements are
A A 1
<n71|cos¢|n>:<n|cos¢|n71>:§

and

A A 1
(n—l|sin¢\n>:—<n|sinq’)|n—1):?
i
These matrix elements do satisfy equation
. A . . A o\ %
(i10]4)=301014)

A
and operators C/O\S¢ and sing are hermitain. They represent the observable phase
properties of the electromagnetic field.

A

[n,cgsq’)} = —ising
[n,s{\n(b} = icgsqﬁ

15



Number and phase operators do not commute therefore it is not possible to
setup states of the radiation field that are simulataneous eigen states of the

operator. The amplitude of an electromagnetic wave associated with 7 and

A
phase associated with cgs¢ or sing cannot both be precisely specified. The
uncertainity relation

I
=

4, p)
AqAp >

Y

The uncertainity relation between n and phase operators are

1] A
AnAcos¢ > B (sing) ’
AnAsing > % ‘( gs¢>’

where A indicates the root mean square deviation. The uncertainity in the
photon number is zero for the state | n) i,e.

An = /TP — ()

(n ;\L|n>:<n|aTa\n>:n<n\n>:n

An = Vn?2—-n?2=0

For the phase operators,

(n|cgsq’)|n>=<n|si\n¢\n>:0

Diagonal elements of the phase operators are zero. Now the expectation values
of phase operators are

(n | cosé [ n) = (cgs@ =0
(n | siAn(;S | n) = (sg\n@ =0

and
A A 1
(n | COS2¢|n>=<7’L|SiH2¢|n>=§, forn #£0
1
= 3 forn=20

The root mean square deviation or uncertanities in phase are

Acosgb:Asinng:% for n=#£0

16



This value shows that phase angle can have any value between 0 to 27w. The
expectation value of field operator is zero

(E)=(n|E|n)=0

and the expectation value of E? is given as

(n | E*|n)=2¢l" (n+1/2)
heo 1/2

T <2€0V>

AE = \E%) ()

AFE

hw 1/2 1 z
(eo—v> (“*5>

Field amplitude of electromagnetic wave is given by

hw 1/2 1 3
E = _— —
o= (ar) (+3)

The actual position of the wave along the horizontal axis is completely undeter-
mined owing to the complete uncertainity in the phase angle. Field oscillates
like a sine wave of known frequency w.

Number states form a useful repersentation for high energy photons, e.g,
v—rays where the number of photons is very small. They are not the most
suitable representation for optical fields where the total number of photons is
large. Experimental difficulties have prevented the generation of photon number
states with more than a small number of photons.

Most optical fields are either a superposition of number states (pure state)
or a mixture of number states (mixed state). Despite this the number states
of the electromagnetic field have been used as a basis for several problems in
quantum optics including some laser theories. A more appropriate basis for
many optical fields are the coherent states. The coherent states have indefinite
number of photons which allow them to have a more precisely defined phase
than a number state where the phase is completely random.
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