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1 The Coherent Photon States

The single-mode states of physical importance are not the indivisual number
states | n) (because the electromagnetic wave generated by practical light source
do nat have definite mimbers of photons), but the linear superposition of states
| n). There is a wide variety of possible superposition states.

A superposition state can be constructed for which uncertainties in the ex-

pectation values of the phase operators CGS(b and s’i\nqb are both equal to zero.
Such states have An = oco. They cannot be excited in any real cxperiment.
Another kind is the coherent statc. A coherent state has equal amount of un-
cortainities in amplitude and phase. A field in coherent state is in & minimum
uncertainity state. For coherent state an electric field variation approaches that
of classical wave of stable amplitude and fixed phase, in the limit of high exci-
tation. They are improtant because, they are the closest quantum mecahnical
approach to a classical electromagnetic wave. A single mode lager operated well
above threshold generates a coherent state excitation.

The coherent state | ) is the eigen state of the positive frequency part of
the clectric feld operator or the cigen state of the destruction operator of the
field. ‘
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comparing eqr{a) and (b)
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Another way of proving the above relation which interpret | ) as a super-
position of mumber state is,
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Putting ir Eqn(l) we can write as
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Some other representations of the coherent state
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where D (@) is called the displacement operator.
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1.1 Baker-Hausdorff identity
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or by using
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The operator D () is a unitary operator. ie.
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It acts as a displacement operator upon the amplitudes a and at ie
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using these equations we get
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1.2 Properties of coherent states

Properties of a cavity mode excited to a coherent state | @) can be detrmined
by the method applied to the number state | nY.
1- The mean number of photon in the coherent state | a) is given by
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50 we can write
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Root-mean-square deviation is
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Where |c1f,|2 is the mean number of photons in the cavity mode and uncer-
tainty spread about the mean is equal to the square root of the mean number
of photons.

ii}- Photon statistics: photon distribution function:

The probability of finding n-photons in the ficld | e} is
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is a poisson distribution.
iii)- Cohcrent state is the minimum cncrgy state: i,e
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and
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B and i} are hermitain and represent observable quantities,
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consequence of this.s, j, k are orthogonal and independent o
divide space in 5 directions they would not be orthogonal and independent of
each other. Therefore over complete. i,e. there are many more coherent states

| o) than there are states | n).
Completeness relation:
For number states

3 [ n)n =1

Similarly the set of all coherent states | ) is a complete set and satisfy the

completencss relation,
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Coherent states are not orthagonal, but are normalized. i,e.

«) form an over complete set of states and lack of orthogonality is a
f each other. If we
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The completeness property is essential for the utility of a set of states.| ) is
a complete but not orthogonal. As a result any coherent state can be expanded
in terms of other states.
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This shows that the coherent states are overcomplete.
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2 Sqﬁeezed states of the radiation field

It is possible to generate states in which fluctuations are reduced below the sym-
metric guantum limit in one quadrature component, at the expense of enhanced
fluctuations in the canonically conjugate quadrature such that the Heiscnberg
uncertainty principle is not voilated. Such states of the radiation field are calied
squeezed states.

Consider two hermitian operators A and B which satisfy the commutation
relation

jA, Bl =4C

According to the Heisenberg uncertainty principle, the product of the uncer-
taintics in determining the expectation values of two variables A and B is given
by.

AAAB > 3 [(O)

A state of the system is called a squeezed state if the uncertainty in one of
the ohservables (say A) satisfies the relation

(84) < 51(0)]

If in addition to the above condition the variances satisfy the minimum
uncertainty relation i,c.
1
AAADB = 3 [{C]
then the state is called an ideal squeezed state.

In a squeezed state , therefore the quantum fluctuations in one variable are
reduced below their value in a symmetric minimum uncertainty state.

(A4 = (ad) = £ |iC)]

at the expense of the corresponding increased fluctnations in the conjugate
variable such that the uncertainty relation is not voilated.

2.1 Quadrature amplitude operators

Let us define Hermitian amplitude operators.
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X; and X, arc dimensionless position and momentum operators
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= X +iXs

2> as

= X ~iXs
The operators X; and X, are Hermitian and satisfy the commutation rela-
tion .
i
[XJ.JX'Z] = 5
These operators are also called guadrature operators. In terms of Xy and
X, quantized single mode field can be written as

E{t)= % (X coswt + Xy sinwt)

The Hermitian operators X; and X, are the amplitudes of the two quadra-
tures of the field having a phase difference m/2.

From the commutation relation of X and Xs, we get the nncertainty rclation
for the two amplitudes i,e.

1
AX1AX > 1

A squeezed state of the rdiation field is obtained if

1
(AX) < 3 fori=lor2
An ideal squeczed state is obtained if in addition to the above equation, the

rclation .
AXIAX, = 1

also holds . Example of an ideal squeezed state is the two-photon coherent
state. The-quadrature operators allow us to represent a beam of light graphi-
cally. These so called phasor diagrams are very popular in quantum optics. Any
state of light can be represented on a phasor diagram of the operators , ie. a
plot of X; versus Xy. Unlike classical vacuum, quantum mechanical vacuum is
represented by a circle at the origin. ((X1), {X2)) every point in this circle will
represent a wave. In quadrature representation cach point represents a wave.

Now consider how does different states look kke pictorially

i}- Vaccum

AXy = (J{XE) - (X1)?

T
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Similarly

AXIAXy, =
ii})- Coherent States:
(X)) = ={e|atalla)
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(X1}

() = glalo-a'le)

|| cos ¢

1 x
'2'5((1—05)

|l sin ¢

i

(X3 = Z{n|e®+a'+ad +ala|a)

(o + o + 200" + 1)

| =

. 1 .
(X3 = -3 (o + o' 4 2a0* +1)

= AXE=(X]) - (X0)?
" 1 L
(a? + 2 + 200" + 1) — 3 {(a? + o™ + 200")

Bl ]

Similarly )
2 _ -
AXy = 1

13



which means that there is equal amount of uncertainty in both the quadra-
tures. Tt represent a circle with displacement |, Displacement operator dis-
placed the vacuum by an amount « that creates a coherent state, Thercfore
coherent state is a displaced vacuumn state.

|y =D ()| O)

Coherent state has both amplitude and phase uncertainties.
Is Coherent and Fock state are squeezed states?
First consider the coherent state

(A1) = (o] XF|a) - (o] X1 | @)’
= %I(cx | o +at? + aa’ +ala | @) — ?11 ({ex | (a + al) | CY))Z
_ 1
)
Similarly
. 1
(8%2)" = 5
AX1AX2 = %

i,e. minimur uncertainty relation holds.
Coherent state is not a squeezed state.

Fock state:
(AX.)? = (n| XE )= ((n] X[ n))?
= %(2?1 +1)
Simailarly
(AX,)® = i (2n+1)

This implics that Fock states | n) are not squeezed states.

A coherent state with identical uncertainties in both X; and X3 has a con-
stant value for the variance of clectric field. A squeezed state with reduced
noige in X; has reduced uncertainty in the amplitude at the expense of large
uncertainty in the phase of electric ficld.

A squeezed state with reduced noise in Xy has reduced uncertainty in the
phase at the expense of large uncertainty in the amplitude of the clectric field.
Tf we have a state such that AX? or AX3 < % then the state is a squeesed
state. According to heisenberg uncertainty principle, vacuum is a circle. Area
of the circle shoukd be the same, otherwise it will voilate Heisenberg uncer-
tainty principle. In order to squeeze a coherent state we will define a squeezing

operator,
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2.1.1 Generation of squeezed state:

One example of generation of a squeezed state is the “Degenerate paramctric
process”. The two photon Hamiltonian can be wirtten as

H =h{gat® — g*a?)
where g is the coupling constant . The state of the field is written as
| W (0)) = el o)

and this leads to define the unitary squeezed operator.

2,1.2 Squeeze operator:

The squeezed states can be generated by using the unitary squeezed operator.

S(¢) = exp (%c*a? - %m”) (1)

this is a unitary operator ie.

where ¢ = re'” . We want to find the values of AX? and AXZ or (AY{ and
AY} for a rotated frame). For this we first find

st(¢) a5 () = eé(C“”—C‘““)aeé(c'rﬁ—ol”) @
using
e = 314 A A Bl + =
¢'Be™* = B+[A, B+ 57 A4 B + 57 (4, [A, [4, BI] + ..

Let we define

and

1
[4,B] = 3¢ [,d] ®)
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[a,(LT"] = peitb
[G‘f,a‘n—-l] = _,nan—'i
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= [4,B] = %C (—2@*) = —¢al

Now we have to find
[A,[4, 8] =7

Ist term of A i,e. 1¢al? commutes with |4, B]
1
e

1.
= Leclatal]

(4,4, B]

= g(&n)
= [¢)a (4)

Now for
(4, (4, (4, B =

the second term of A will commute with [4, [A, B]] therefore we have
1, .

[gﬁﬂua [ a}

= EC |C| [G‘ sa‘]

1 2
= §C|C|_ [—2a']
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Using these relations we getf
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ST(C)QS(C) = a«—gfaf+é—|](§|2a.—£%af+...
1 1 2
= a|:1+§IC|2+E|C|4}—GT[C+§‘L§TI+]
as )
¢ =rel? = |¢l=r

- 3,50

ST(QGS(C) = a{1+%1'2+mr4+ ..... :|—rﬂ [IBW"FT; + e }
= acoshr — ale? sinhr

Similarly

N
sti)als(¢) = a coshr — e Pasinhr
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As we defined

X, = z(atal)
1
Xy, = E(a—cﬂ)
= o =X +iX2
(LT = X]_—?'»X'_)_

Rotate the axes by an amount #/2. Rotated axes Yiand Ys in terms of
Xyand X, arc written as

¢ f
X, cos 3 + X5 sin 3

.8 #
Y, = —X151r1§+X2cos~2~

¥

Y1 +iYe

Ii

g .. @ LB, 8
X, (cos§ — i sin ;2—) + X (smi +icos §)

, #
= X U2 40X,y (—i sin§ + cos -gu)

= (X +iXa)e
is the rotated complex amplitude at an angle 6/2.

ST (X1 +iX2) 8(¢) = ST(¢)aS(¢)
SHO (X +iX2)S(6) = acoshr — ate? sinhr

For rotated frame we have

SHO (X1 +iX2) 728 (() = acoshre /% — gte®/? sinh r
$1(0 s+ 0) =2 (S5 ) e (57

Y

_ (aemw/'z _ atew/'z) %

+ (ae“wm + aﬁem/z) F—:

2
As
YT = X1cos%+Xzsing
1 7 1 .8

= -2-(a-{-aﬁ)cos-ﬁ+E(a-—a1)sm§
= L voqg—iqinﬁ +laT cosg+i~:ing
T R\ TR T 2 7%y
_ Ly ege ot 072
= 2(ae +a'e ) (a)
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= ST(O)(V1 +iYa) S ({) = Yie™" +iYae”

where

L —ingr i
iYy = 5 (ac ale ) (b)

The squeczed operatot attenuates onc component of the (rotated) complex
amplitude and it awmplifics the other component. The degree of attcrmation
and amplification is detcrmined by = || which is called squeeze factor. The
squeezed state | «, ¢} is obtained by first squeezing the vacuum and then dis-
placing it.

| o,y =D () 5() |0}

where a? is the intensity of the state, ¢ is the orientation of the squeezing
axis and r the degree of squeezing. The reverse order of D (o) and § {¢) in
the above equation is also possible. This results in the so called two photon
correlated state. A coherent state is generated by linear terms in ¢ and af in

the exponent
D(a)0)=| o)

where
D (Qf) — emﬂwu‘a

the squeezed coherent state requires quadratic terms.

2.1.3 Quadrature variance:
Now we will find AY2and AYZ, in order to find the A¥; we need to find (a),
{at), (%), (a%?) and {a'a). We will find these one by one
(@) = {aac | CLlOﬁ,C)
0| D¥(e) ST (Q)aS () D{a) | )

{a | (acoshr — ale?sinhr) | a)

il

(| a| e)coshr —{o | al | a)e? sinhr

i

acoshr —a*e!? sinhr

(%) = (0] D' (a) §7(¢)a®S () D (a) | 0)

= (0] D' () §T(¢) a8 (¢) 5T ($)aS () D (@) | 0)

= (a | (acoshr — a'e® sinhir)? | @)

= (o | (a® cosh? » + ¢*¥at? sinh? r — aale® coshrsinhr
—atae? coshrsinhr) | o)

2 ,i0

= o? cosh? r + P sinh® 7 — 2|q| cosh r sinh

e coshrsinhe

= (@
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Now

{ata) = (| $T(Q)a*5 () 81 () aS () | )
= {a}(a' coshr — e"Pasinhr) (acoshr ~ ale® sinhr) | a)
= |af® (cosh®r + sinh®r) ~ (a*)* e sinhrcoshr
—ofe™¥ coshrsinhr + sinh® 7
As from Equ{e) and {b)
_ Ly 2 %872
i = 5 (ac +a'e )
_ L ege ot 02
Yo = 7 (ae a'e )

(Y

[(a>6—iﬂ/2 + (an)em/z]

(a coshr — e ¥ a* sinh r) e~i0/2 4 3 (af"‘ coshr — e ¥asinh 7') elf/?

823 = B2 =

[(a%)e™ + (a)e + 2(a’a) + 1]

W |

(¥f) =
Now

I
——
-
s
|
—
i
=
fu

(AY1)2
and

_— AYlAY-z = i

A squcezed coherent state is therefore an ideal squeezed state. In the complex
amplitude plane the coherent state exror circle is squeezed into an error ellipse
of the same area. The principle axes of the ellipse lie along the Yi,and Yz axcs,
and the prineiple radii are AY; and AY,.

FO( %\ %U\Qﬁ' Aec SCL&_Q\( Q\k& au\oau&f
(QMV\&U&W\ G\o\scs clh 4 3)

19



