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1 The radiative density operator

The number and coherent state excitations are pure states of the radiation
field. The number state is given by a particular state | n) and coherent state is
expressed as a linear combination of the basic number states | n). The state of
the total electromagnetic field is formed by a product of the indivisual modes.

There exists mode excitations that are not expressable as definite linear
superpositions of complete set of basic states | n). Some times in quantum
mechanics we do not make a definite predictions of the state of the emitted
field. We used the probabilistic discription that the radiation will be found in a
range of states, each corresponding to a linear combination of the basic number
states, then the state of the field is called a statistical mixture.

Statistical distributions are introduced into quantum mecahnics by means
of the density operator. Consider a cavity electromagnetic field for which there
is a known probability Py, that the field is in a state | ¥). Here U is a label
that runs over a set of pure states sufficient to describe the field.

For a single cavity mode the states | U) could be the number states | n) or the
coherent state | a) or they could be some other type of pure state. For complete
cavity field, the states | U) would be all possible products of the single-mode
states, with one state for each mode of the cavity included in each of the basic
states | U). The state described by the probability Py is a statistical mixture
, the magnitudes of the Py for a given set of pure states | ¥) contains all the
available information about the state.

Consider some abservable that is represented by a quantum mechanical op-

A A
erator O. The average value of O for a pure state | ¥) is given by

0)= (w0

The expectation value for a mixed case is obtained by taking an ensemble aver-
age as well.

(0 =S Py (w0 W)

Now using completeness relation
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where

p=> Pu| W)V

is the density operator for a mixed case. Thus the radiation is in general de-
scribed by the density operator.

p=> Pu| W)V

where Py is the probability of being in the state | ¥). The expectation value of
A
any field operator O is then given by

A A

(O)y=Tr <Op)
where T'r stands for trace. The trace of an operator is the sum of its diagonal
matrix elements for any complete set of states.
1.1 Density operators for pure states

A pure state can be regarded as a special case of a statistical mixture in which
one of the probabilities Py is equal to unity, and all the remaining are zero.

p=| W)V |

The radiation field is definitely in a particular pure states | ¥) in this case. For
pure state density operator only

A2 A
p=p

For a field in one of the number states | n), where n photons are definitely
present, the density operator is

p=|n)n|

The only non-vanishing matrix elements for the number states is
(nlpln)=1
A
and average value of an observable represented by operator O is

Tr (| ny(n | 8)

= @|0|n)

)

The density operator for of the coherent states | ) is written as



From the normalization of the coherent states
A
(alpla)=1

Since different coherent states are not orthogonal, {(« | ?) | @) is not the only

non-zero matrix element of ,/3 Indeed every coherent state matrix element of ﬁ
is non-vanishing.

Consider a general matrix element of the pure coherent-state density oper-
ator for the number states.

’

)1/2

A
(nlpln)=e

—|a
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The density operator for the coherent state has non-vanishing off-diagonal ma-
trix elements for the number states. This is an example of the importance of
choosing the appropraite state | ) in which to express the density operator, so
that no information about the state of the system is lost.
It is not possible to describe the pure coherent state | ) fully in terms of a
diagonal density operator based on number state| n). Such a density operator

would have zero off diagonal matrix elements (n | 2 | n’) and information
contained in above equation for n # n’ could not be reproduced. The off
diagonal matrix elements of the density operator are particularly important in

A
the calculation of average values of operators (O), which themselves have non-

zero off diagonal matrix elements (n | 6 | n), .for example expection value of
electric-field operator (E) A state of the radiation field can have a non-zero
vanishing average electric vector only if the density operator has non-zero off-
diagonal matrix elements. The diagonal number-state matrix element of the

density operator (n | ﬁ | n), is the probability that n photons are excited in the
state of the field described by ﬁ

1.2 Pure states of the complete radiation field

If each cavity mode has a definite number of photons excited the state |¥) is
one of the states |{n;}) and density operator is

po= e} (i}
= |nk1> | nk2> |nk3>""a<nk3 | <nk2 | <nk‘1 |

If each cavity mode is excited to a definite coherent state, then the state of the
total field is

| {ar}) =l ar) | ar,) | o), - -
and corresponding density operator for the multi-mode coherent state is

p =l {anh){fan} |

other pure states are similarly treated.



1.3 Statistical mixture states of the radiation field:

Consider the thermal excitation of the photons in a single mode of a cavity
maintained at temperature T. The density operator based on the number state

is
A
p=> Puln)n|

where P,, is the probability that n photons are excited in the state of the
field described by p.

(o () Do (£5) 0

The number state | n) is the correct basis for the density operator in this
case because the thermal probability distribution gives information only on the
probabilities of finding a system in its various energy eigen states. The density
operator for the thermal photon distribution has only diagonal number state
matrix elements, thus the average electric field is always zero.

In terms of (n), p is written as

/\_ 7<n>n n)yn
b= 2 Ty |

Consider the thermal excitation of all the cavity modes. Since the different
field modes are independent, the combeined density operator is a product of the
contributions of the different modes. The density operator

p= Z Py [ {nh) ({ne} |
{nx}

(ng)"*
Poy =11

o (L )™

(ng) is the mean number of photons excited in mode k. The density operator
for the radiation field in thermal cavity is

A el (gt | T —m™
p= {nzk:} | {neh) {ne} | l:[ 7 )

The above equation applies not only to the thermal photon distribution but
also to a wide range of excitations in which the statistical properties of the light
generation are suitably random. This density operator applies in particular to
the light beam emitted by chaotic source.



2 REPRESENTATION OF THE ELECTROMAG-
NETIC FIELD

Full description of the electromagnetic field requires a quantum statistical treat-
ment. The electromanetic field has an infinite number of modes and each mode
requires a statistical description in terms of its allowed quantum states. There
are number of possible representations for the density operator of the electro-
magnetic field. One represenation is to expand the density operator in terms of
the number states. The coherent states allow a number of possible represenation
via the P-function, the Q-function and the Wigner function.

2.1 Number state representation

Ip1 =35 n)n | p | m(m |
> b | )|

A
p

where

I=3 |n)n|=1

The expectation value of an operator is defined as
A A
(Oy="Tr <p0>
The expectation value of any normal order operator, for number state is

(a'a) = Tr (pa'a)

P=D Pum | 1) (m |
therefore

(ala) = D> ppm Tr (a'a|n)(m )
S pum (m | afa|n)
Zzpnm (n6nm)

= > npu,



2.2 P-reprsentation of Coherent state

_/\__ 2 2
p=1b1 == [ [Palaal bl 55| E0

Following Glauber,s convention, we define the R-representation as
R(a*,8) = (a| p | Bl 1)

the density operator may be written as
2 72
g_/d ad’f a)(B | R (a*,B) e (IolP+187)
T T
The diagonal coherent state representation is written as

ﬁ=/PmﬂﬂMMaW%

The function P (a, o*) is called the P-representation or coherent state represen-

tation.

2.2.1 Properties

1) The function P (o, @®) can be used to evaluate the expectation value of the

A
. A .
any normal ordered function of a and af (normal order means all the creation

AN

operators a' on the left-hand side and all the annihilation perators a on the

right-hand side).
2) P(a,a") is real.

Due to the hermiticity of the density operator p the distribution function

P (o, ™) is real.
3) P(a,a*) is normalized
Since we know

Tr(p) = 1
Tr(p) = /P(a,a*) (a|a) d*a
1 = /P(oz,oz*) d*a

The expectation value of an operator is defined as

(0) = Tr <p6>



In P-reprsentaion, expectation value of any normal ordered operator is given
by

(aTa) = Tr (aTap)

(O(ata)) = /P(a,a*) O (a,a) d*a

The function P (a, a*) can be used to evaluate the expectation value of any
A

normal ordered function of a and a. Simply we have to replace a' by o* and
a by a.

4) P (a,a*) is not necessarily non-negative definite.

The P-representation forms a correspomdence between the quantum and
classical coherence theory. This distribution function does not have all the
properties of the classical distribution functions for certain states of the field, it
can be negative. The study of interface between classical and quantum physics is
a facinating subject. This fact is better illustrated in quantum optics, where we
often faced with the problem of characterizing fields which are nearly classical
but have important quantum features. The coherent states are well suited to
such studies.

2.3 Procedure of finding P(«, a*)

In order to write P(a, a*) in terms of p, consider two coherent states
|3) and |—3).These are the eigen states of @ with eigen value 8 and —/3 respec-
tively.

(=BlplB) = /P(a,a*) (=) (a]B) d?ox

where

p= [ Pla.a®)ja) (ol
using

(alf) = e 5 e e
and
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(—Blay = e e
— <—ﬁ|p|ﬁ>:/e*|3\267|a|265a*,ﬁ*ad2a

= efl'g‘Q/d2a67(a6*7“*ﬁ)67|0“2d2a

e B

let

a = x4y
8 = a+ib
Ba* — B'a = 2iya — 2ixb

= (B BV = //P(x,y)e*(w%ry?)eQiyanizbdxdy

(—B|p|B) e!P” is the two dimensional fourier transform of P(a,a*)e~1*l". The
inverse fourier transform gives P(«, a*) in term of the density operator p.

i 6*(I2+y2) (a®+b%) 2ixb—2iya
Plasa®) = —5— [ (=8llBe ‘ dach
glal?

Pla,a®) = — /<—ﬂ|p|ﬂ>e“3‘ze<“ﬂ*—“ﬂ>d25
2.4 Examples of the Coherent state representation

2.5 Thermal field

A field emitted by a source in thermal equilibrium at temperature T is described
by a canonical ensemble.

—H

e*BT

= T —m
Tr(e*sT)
Where kpg is Boltzmann constant,and H is the free field hamiltonian.
e—(afa+d)

= p = —Tr[e_,y(aw‘,ﬁ_%)]
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Inserting unity

S e |n) {nl
r Tr(Ze 7 [n) (n])
S e In) {nl
m
S e In) {n
e

n

as Y " =——
n

= p=(1-¢") ZB_W [n) (n

= (1-em) YT [n) (n

This is the density operator for a single mode thermal field, p has zero off-
diagonal matrix element. The photon distribution function for thermal state
can be calculated using,

<n/|p|m> = kBT Zek?aw; /|n )y (n|m)

—hw —hwn

= (1—eFBT)e*BT §
—hwn

P(n) = (nlpln) = (1—eFat)eTa?

n/m

The average value of photons in thermal field is

(n)y = Tr(a'ap)
= (1—-¢77) Z e~ MTr(a’a|n) (n|)
= (1 — 6_7) Zne‘””

as

Zn: ne " = (g—f) Zn: e m



and

— ()= (-G
<7’L> - (1 —€ *y) (1 — 6_7)2
T @)
- 1
o e’ —1
) = 1
_hw 1
e B = W +1
o )
14+ (n)

as

=The probability of finding n-photons in the field is

P () = (0 1p1) = pu = s

=—The photon distribution in a thermal field is described by the Bose Ein-
stein distribution.

2.5.1 P(a,a*) for thermal field
As P(a,a*) in terms of p is given by

10
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For thermal field
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Putting in the above equation, the matrix element of p can be written as

10 = 3 g CE e B

e & =R )\
N 1—|—<n>Z n! (1 (n))

n=0

1812
14+ (n)

+
e(e*‘ﬂ‘z/(1+1/<n>))

Putting this value in equation for P(a, a*)

Pla,a) = L/eeﬂg/(1+1/<n>)e—526|/32€—[3a*+a,6*d2ﬁ
’ - (14 (n)
|a\2 2
o e e—\ﬁ\ /(1+1/<n>) *Ba*+aﬁ* 2
e e e e d
m2(1+ (n)) / g

This is a 2-dimensional Fourier transform of Gaussian funtion. Fourier trans-
form of Gaussian is a Gaussian.

Putting
6= ax+iy: a = a-+ib; we get —Ba*+f*a = —2i(xa+tyb) and d*3 = drdy
Using all these relations the above integration will reduce
to
1 2
P N — = —lal?/
(@.0°) = e ()

This is a perfect classical thermal distribusion. It gives a broad
peak. The P(a,a*) gives the probability distribution for the field amplitude
and the P-representation of the thermal distribution is given by Gaussian dis-
tribution.To describe white light completely we take a product over all k.

11
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1 _ Jow]
Pla,a*) = H e (k)
()

2.5.2 P-representation of a Coherent state

po= o) ol
P(n) = (nlp|n) = (n|as) (as| n) = Poisson distribution

(=BlplB) = (=Blao) (el B)

—  (lac=IBIP—ao 5 +Bas)

Putting this in equation for P(«, a*) we get

P(a,a™) = %ela\z—\ao\z/e—ﬂ(a*—a;)w*(a—ao)dzﬁ
m
= 6%(a—a)

= (o —al)b(a— ao)

Thus the P-representation of a coherent state is a two-dimensional
delta function.

2.5.3 P-representation for Fock state

The photon distribution function P(n) for a Fock state is obtain by using

p= [no)(no
(nlplm) = (n|no)(n.|m)
Prm = 5nn06mno
= 6nm
For n=m
P(n) = pp, =1

— (=Blpl B) = (=BIn) (n| B)

e 81"
n!
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The corresponding P-representation is therefore given by

* (71)n e\a|2 2n _—pBa* *a
Pla,a™) = o |87 e Pt g
elal®

- / (=B7)" (B)" e~ Pt a2

m2n!

|o¢\2 2n .
_ ¢ o /efwa —6"a) 23

m2n! damOa*™

e\a|2 o2n )
= T dargat @
e\a|2 92n

= Tl Gargamt (@706 —0)

For n > 0 this is clearly not a non-negative definite function and, there-
fore, a number state does not have a well-defined P-representation. If the
photon distribution P(n) = p,,,, is narrower than the Poisson distribution as in
the case of Fock state |n), the P(a, a*) becomes badly behaved. The P(a,a*)
for a Fock state is a 2n'™ deviation of 2-D delta function.

3 Non-classical state

If F(a, *) is a non-negative definite function

/F(oz,a*)P(a,a*)onz <0

Then P(a,a*) will take negative values. A state of the field is non-
classical if

(: F(a,a") )= /F(a,a*)P(a,a*)dQCx <0

Example:
or

In normal order



In terms of P-representation
2 2 2 Y 72
s An = (|a| - (n}) P(a,a")d*a

If : An?: <0, state of the field is non-classical.
Now consider Fock state of the field,

An?: = <aTaTaa> — <aTa>2

An?: = (n|d'dtaa|n) — (n|ata|n)?
An?: =n(n—-1)-n?

An?: =-n

This is a non-classical state of the field. For coherent state

AR =la* = |al* =0

Therefore, a coherent state is a classical state.
3.1 Q-Representation

Another field representation in terms of coherent state is Q-representation
and is defined as

Q(aa”) = = (alpl a)

This distribution function helps in determining the antinormally ordered
correlation functions.

(aa') = Tr (paa')
Inserting unity

(aa')

d*aTr (pala) (o] ab)

d*a(a|pla) aa*

I

/
/d aTr (pla) (a]) ac
/

d*a (o, 0") Q (o, 0)

This is just like P-representation for normal ordering.

14



3.1.1 Properties

1)Q (a, a*) is real because p is hermitian.
2) Q (o, *) is normalized i.e

/Q(a,a*)d%z =1

Qa.a®) = —Tr(pla)(al)

Ja@ada = = [#arr(pla) el

as

| =

—
ISH
[\v]
=
£
=
I
—

3)Q (o, @) is non-negative definite

Qaa) = ={alpla)

po= Y Pyl¥)(T
4

— Qo)== Y Puliwle)f?
P

As Py > 0 and [(¢] oz>|2 is always positive ,therefore, @ (o, a*) is always
positive.

3.1.2 For Coherent state
. 1
Q(aa®) = = (al o) o)
]. _|a_a ‘2
— —e o
T
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3.1.3

3.1.4

where

For Thermal field

Q(a,0") =~ T

P= 2 T gy

For Number state

Q(a0) = = {al na) ()

jof*" e—ler”
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