

SMR.1824 - 1

13th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods

11 - 13 January 2007

Non adiabatic vibrations in doped graphene

Francesco MAURI Universite' Pierre et Marie Curie Laboratoire de Mineralogie-Cristallographie de Paris Campus Boucicaut Case 115, 75015 Paris FRANCE

These are preliminary lecture notes, intended only for distribution to participants

Non adiabatic vibrations in doped graphene

Theory: M. Lazzeri, <u>F. Mauri</u>

IMPMC, Université Pierre et Marie Curie-Paris 6, CNRS

Experiment:

S. Pisana, C. Casiraghi, A. C. Ferrari Engineering Department, Cambridge University, K.S. Novoselov, A.K. Geim, Dep. of Physics and Astronomy, University of Manchester

Outline

-Graphene as one-atom-thick capacitor plate

-Raman in graphene as a function of the doping

-Adiabatic Born-Oppenheimer theory (static perturbation)

-Non-adiabatic theory (dynamic perturbation)

-Discussion

Graphene capacitor

Vibrational Raman

Ferrari, Meyer, Scardaci, Casirgahi, Lazzeri, Mauri, Piscanec, Jiang, Novoselov, Roth, Geim. Phys. Rev. Lett. 97, 187401 (2006).

Raman G-peak as a function of $\sigma(Vg)$

Pisana, Lazzeri, Casiraghi, Novoselov, Geim, Ferrari, Mauri, cond-mat/0611714

similar results in: Yan, Zhang, Kim, Pinczuk, unpublished

Graphene electronic structure

 π bands = conic at the **K** and **K**' points of Brillouin Zone

Dirac cones: linearized bands

$$\varepsilon_{\mathbf{k}+\mathbf{K}} = \pm \hbar v_F k$$
 $v_F = \text{Fermi velocity}$

DFT ab-initio calculations:

M. Lazzeri, F. Mauri, Phys. Rev. Lett., 266407 (2006)

-PBE functional, Fermi-Dirac electronic distribution, charged cell with uniform neutralizing background
-pseudopotentials, PW basis, 64x64 k-point mesh
-Quantum-espresso gnu package

Adiabatic DFT phonon calculation

M. Lazzeri, F. Mauri, Phys. Rev. Lett., 266407 (2006)

-phonon computed from the DFT forces resulting from the *static* displacement of the atoms from equilibrium (by *time-independent* perturbation theory)

-undoped theoretical frequency = 1554 cm^{-1} , (expt. 1584 cm^{-1})

Non-adiabatic DFT phonon calculation

M. Lazzeri, F. Mauri, Phys. Rev. Lett., 266407 (2006)

-the phonon is a dynamic perturbation oscillating at finite frequency

-the dynamical matrix is computed by *time-dependent* perturbation theory considering a periodic perturbation with a frequency of 1584 cm⁻¹

Interpreting the results

frozen-phonon point of view

Shaking the Dirac cones

Pisana, Lazzeri, Casiraghi, Novoselov, Geim, Ferrari, Mauri, cond-mat/0611714

-from the DFT electron-phonon coupling matrix-elements, in presence of a E_{2q} lattice distortion of amplitude **u**

$$\varepsilon_{\mathbf{k}+\mathbf{K}} = \pm \hbar v_F |\mathbf{k} - \mathbf{s}(\mathbf{u})| \qquad \mathbf{u} \cdot \mathbf{s} = 0 \qquad s = u \sqrt{2} \langle D_{\Gamma}^2 \rangle_F / (\hbar v_F)$$
$$\langle D_{\Gamma}^2 \rangle_F = 45.6 (\mathrm{eV} / \mathrm{\mathring{A}})^2$$

Shaking a filled Martini glass

Adiabatic

Non adiabatic

Shaking a filled Dirac cone

Pisana, Lazzeri, Casiraghi, Novoselov, Geim, Ferrari, Mauri, cond-mat/0611714

Adiabatic or non-adiabatic?

From transport measurements and fs-spectroscopy:

Electron mometum relaxation time: $\tau_m = 100-300 \text{ fs}$

Phonon period: T= 21 fs

2πτ_m>>T

the electrons do not have time to relax to the adiabatic ground state: non-adiabatic electron dynamics

Shaking a filled Dirac cone

Pisana, Lazzeri, Casiraghi, Novoselov, Geim, Ferrari, Mauri, cond-mat/0611714

$$\omega = \sqrt{\frac{1}{M} \frac{d^2 E(u)}{du^2}}$$

M = C mass E = electronic energy

Adiabatic case: the π -band energy does not depend on u.

 ω independent of \mathcal{E}_{F} .

Non-adiabatic case: the π -band energy increases with *u*.

 $\omega = \alpha |\varepsilon_F| + \omega_0$

$$\alpha = \frac{A \left\langle D_{\Gamma}^2 \right\rangle_F}{\pi M \omega_0 (\hbar v_F)^2}$$

A = unit cell area

Interpreting the results

perturbation-theory point of view

Perturbation theory

M. Lazzeri, F. Mauri, Phys. Rev. Lett., 266407 (2006)

$$\omega_{\mathbf{q}} = \sqrt{\frac{F_{\mathbf{q}}(\omega_0)}{M} + \dots} \qquad F_{\mathbf{q}}(\omega_0) = \frac{2}{N_k} \sum_{\mathbf{k}} \sum_{n,m} \frac{f(\varepsilon_{m\mathbf{k}} - \varepsilon_F) - f(\varepsilon_{n\mathbf{k}+\mathbf{q}} - \varepsilon_F)}{\varepsilon_{m\mathbf{k}} - \varepsilon_{n\mathbf{k}+\mathbf{q}} + \hbar\omega_0 + i\delta} \left| D_{m\mathbf{k},n\mathbf{k}+\mathbf{q}} \right|^2 \qquad D_{m\mathbf{k},n\mathbf{k}+\mathbf{q}} = \left\langle m\mathbf{k} \right| \frac{dV_{ks}(\mathbf{r})}{du_{\mathbf{q}}} \left| n\mathbf{k} + \mathbf{q} \right\rangle$$

For an optical zone-center phonon (**q**->**0**)

static case (adiabatic)

$$F_{0}(0) = \frac{2}{N_{k}} \sum_{\mathbf{k}} \sum_{m,n \neq m} \frac{f(\varepsilon_{m\mathbf{k}} - \varepsilon_{F}) - f(\varepsilon_{n\mathbf{k}} - \varepsilon_{F})}{\varepsilon_{m\mathbf{k}} - \varepsilon_{n\mathbf{k}}} |D_{m\mathbf{k},n\mathbf{k}}|^{2} \quad \text{inter-band contribution}$$
$$-\frac{2}{N_{k}} \sum_{\mathbf{k}} \sum_{m} \delta(\varepsilon_{m\mathbf{k}} - \varepsilon_{F}) |D_{m\mathbf{k},m\mathbf{k}}|^{2} \quad \text{intra-band contribution (phonon-induced variation of the Fermi surface)}$$

dynamic case (non-adiabatic)

$$F_{\mathbf{0}}(\omega_{0}) = \frac{2}{N_{k}} \sum_{\mathbf{k}} \sum_{m,n \neq m} \frac{f(\varepsilon_{m\mathbf{k}} - \varepsilon_{F}) - f(\varepsilon_{n\mathbf{k}} - \varepsilon_{F})}{\varepsilon_{m\mathbf{k}} - \varepsilon_{n\mathbf{k}} + \hbar\omega_{0} + i\delta} |D_{m\mathbf{k},n\mathbf{k}}|^{2} \quad \text{inter-band contribution}$$

Perturbation theory

M. Lazzeri, F. Mauri, Phys. Rev. Lett., 266407 (2006)

$$\omega_{\mathbf{q}} = \sqrt{\frac{F_{\mathbf{q}}(\omega_0)}{M}} + \dots \qquad F_{\mathbf{q}}(\omega_0) = \frac{2}{N_k} \sum_{\mathbf{k}} \sum_{n,m} \frac{f(\varepsilon_{m\mathbf{k}} - \varepsilon_F) - f(\varepsilon_{n\mathbf{k}+\mathbf{q}} - \varepsilon_F)}{\varepsilon_{m\mathbf{k}} - \varepsilon_{n\mathbf{k}+\mathbf{q}} + \hbar\omega_0 + i\delta} \left| D_{m\mathbf{k},n\mathbf{k}+\mathbf{q}} \right|^2 \qquad D_{m\mathbf{k},n\mathbf{k}+\mathbf{q}} = \left\langle m\mathbf{k} \left| \frac{dV_{ks}(\mathbf{r})}{du_{\mathbf{q}}} \right| n\mathbf{k} + \mathbf{q} \right\rangle$$

For an optical zone-center phonon (**q**->**0**)

static case (adiabatic)

contribution to ω in graphene

$$F_{0}(0) = \frac{2}{N_{k}} \sum_{\mathbf{k}} \sum_{m,n \neq m} \frac{f(\varepsilon_{m\mathbf{k}} - \varepsilon_{F}) - f(\varepsilon_{n\mathbf{k}} - \varepsilon_{F})}{\varepsilon_{m\mathbf{k}} - \varepsilon_{n\mathbf{k}}} |D_{m\mathbf{k},n\mathbf{k}}|^{2} + \mathcal{O}|\mathcal{E}_{F}|$$

$$-\frac{2}{N_{k}} \sum_{\mathbf{k}} \sum_{m} \delta(\varepsilon_{m\mathbf{k}} - \varepsilon_{F}) |D_{m\mathbf{k},m\mathbf{k}}|^{2} - \mathcal{O}|\mathcal{E}_{F}| \quad \text{(Fermi-surface variation)}$$

dynamic case (non-adiabatic)

$$F_{\mathbf{0}}(\omega_{0}) = \frac{2}{N_{k}} \sum_{\mathbf{k}} \sum_{m,n \neq m} \frac{f(\varepsilon_{m\mathbf{k}} - \varepsilon_{F}) - f(\varepsilon_{n\mathbf{k}} - \varepsilon_{F})}{\varepsilon_{m\mathbf{k}} - \varepsilon_{n\mathbf{k}} + \hbar\omega_{0} + i\delta} |D_{m\mathbf{k},n\mathbf{k}}|^{2} \leftarrow +\alpha |\varepsilon_{F}| + \frac{\alpha \hbar \omega_{0}}{4} \ln \left(\frac{|2|\varepsilon_{F}| - \hbar \omega_{0}}{2|\varepsilon_{F}| + \hbar \omega_{0}} \right)$$

Perturbation theory

M. Lazzeri, F. Mauri, Phys. Rev. Lett., 266407 (2006)

$$\omega_{\mathbf{q}} = \sqrt{\frac{F_{\mathbf{q}}(\omega_0)}{M}} + \dots \qquad F_{\mathbf{q}}(\omega_0) = \frac{2}{N_k} \sum_{\mathbf{k}} \sum_{n,m} \frac{f(\varepsilon_{m\mathbf{k}} - \varepsilon_F) - f(\varepsilon_{n\mathbf{k}+\mathbf{q}} - \varepsilon_F)}{\varepsilon_{m\mathbf{k}} - \varepsilon_{n\mathbf{k}+\mathbf{q}} + \hbar\omega_0 + i\delta} \left| D_{m\mathbf{k},n\mathbf{k}+\mathbf{q}} \right|^2 \qquad D_{m\mathbf{k},n\mathbf{k}+\mathbf{q}} = \left\langle m\mathbf{k} \right| \frac{dV_{ks}(\mathbf{r})}{du_{\mathbf{q}}} \left| n\mathbf{k} + \mathbf{q} \right\rangle$$

For an optical zone-center phonon (q->0)

static case (adiabatic)

contribution to ω in graphene

$$F_{0}(0) = \frac{2}{N_{k}} \sum_{\mathbf{k}} \sum_{m,n \neq m} \frac{f(\varepsilon_{m\mathbf{k}} - \varepsilon_{F}) - f(\varepsilon_{n\mathbf{k}} - \varepsilon_{F})}{\varepsilon_{m\mathbf{k}} - \varepsilon_{n\mathbf{k}}} |D_{m\mathbf{k},n\mathbf{k}}|^{2} + \alpha |\varepsilon_{F}|$$

$$-\frac{2}{N_{k}} \sum_{\mathbf{k}} \sum_{m} \delta(\varepsilon_{m\mathbf{k}} - \varepsilon_{F}) |D_{m\mathbf{k},m\mathbf{k}}|^{2} - \alpha |\varepsilon_{F}| \quad \text{(Fermi-surface variation)}$$

$$\frac{\text{dynamic case (non-adiabatic)}}{F_{0}(\omega_{0}) = \frac{2}{N_{k}} \sum_{\mathbf{k}} \sum_{m,n \neq m} \frac{f(\varepsilon_{m\mathbf{k}} - \varepsilon_{F}) - f(\varepsilon_{n\mathbf{k}} - \varepsilon_{F})}{\varepsilon_{m\mathbf{k}} - \varepsilon_{n\mathbf{k}} + \hbar\omega_{0} + i\delta} |D_{m\mathbf{k},n\mathbf{k}}|^{2} + \alpha |\varepsilon_{F}| + \frac{\alpha \hbar \omega_{0}}{4} \ln \left(\frac{|2|\varepsilon_{F}| - \hbar \omega_{0}}{|2|\varepsilon_{F}| + \hbar \omega_{0}} \right) \right)}{|2|\varepsilon_{F}| + \hbar \omega_{0}} |\varepsilon_{F}| + \frac{\alpha \hbar \omega_{0}}{4} \ln \left(\frac{|2|\varepsilon_{F}| - \hbar \omega_{0}}{|2|\varepsilon_{F}| + \hbar \omega_{0}} \right) |\varepsilon_{F}| + \frac{\alpha \hbar \omega_{0}}{|2|\varepsilon_{F}| + \hbar \omega_{0}} |\varepsilon_{F}| + \frac{\alpha \hbar \omega_{0}}{|2|\varepsilon_{F}| + \frac{\alpha \hbar \omega_{0}}{|2|\varepsilon_{F}| + \hbar \omega_{0}} |\varepsilon_{F}| + \frac{\alpha \hbar \omega_{0}}{|2|\varepsilon_{F}| + \frac{$$

Momentum relaxation time in metals

from Ashcroft and Mermin

Metal	momentum-relaxation-time (fs)		phonon-period/(2π) (fs) [from v Debye]
	77K	273K	
Li*	73	8.8	19
Na*	170	32	51
K*	180	41	76
Cu*	210	27	24
Ag*	200	40	36
Au*	120	30	45
Mg*	67	11	24
Fe*	32	2.4	18
Zn	24	4.9	33
Cd	24	5.6	64
Hg	7.1		76
Al*	65	8	19
Ga	8.4	1.7	32
In	17	3.8	59
TI	9.1	2.2	80
Sn	11	2.3	45-29
Pb	5.7	1.4	87
Bi	0.72	0.23	64
Sb	2.7	0.55	38

XX* = $2\pi\tau_m$ >T at low temperature (non-adiabatic effect expected)

Conclusions

- We measure a stiffening of the G peak with both electron and hole doping
- The DFT adiabatic calculation, which is the standard tool for the phonon determination, miserably fails
- The dynamic DFT calculation closely reproduces the observed stiffening
- In the adiabatic approximation the energy of a zone-center phonon is determined by two contributions:
 - the distortion of the electronic bands, associated with the phonon displacement,
 - the consequent rearrangement of the Fermi surface
- In graphene these two contributions cancel out exactly
- In general, whenever $2\pi\tau_m$ >>T the correct phonon treatment should not include the adiabatic Fermi-surface rearrangement
- The $2\pi\tau_m$ >>T condition occurs in many metals