

SMR.1824 - 17

13th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods

11 - 13 January 2007

Car-Parrinello MD Simulation Studies on Supercritical CO₂

Moumita SAHARAY

Jawaharlal Nehru Centre for Advanced Scientific Research Chemistry & Physics of Materials Unit Jakkur, 560 064 Bangalore INDIA

These are preliminary lecture notes, intended only for distribution to participants

Car-Parrinello MD Simulation Studies on Supercritical CO₂

Moumita Saharay and S. Balasubramanian

Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore.

Introduction to Supercritical CO₂

Phase diagram of CO₂

Tunability of CO₂ density

Applications of scCO₂

- scCO₂, an alternative to CFCs for dissolving PTFE
- scCO₂ replaces volatile organic solvents that could be carcinogenic – Used to make Decaf
- scCO₂: Nontoxic, recyclable, Liquid-like density, gas-like transport
- Nanoparticle synthesis
- Reaction medium for chemical synthesis (Nearly all named reactions)
- Binary mixture with co-solvent can enhance the solubility of polar compounds

Our investigations

- Effect of increasing pressure and solvent tunability of scCO₂
- Solute-solvent interactions in Ethanol/scCO₂
 binary mixture
- High pressure studies of binary mixture of Water (D₂O)/scCO₂

Effect of increasing pressure and solvent tunability of scCO₂

Computational details

- Kohn-Sham formulation of DFT using GGA, with BLYP exchange and correlation
- MT pseudo potential, Plane wave cutoff = 70 Ry, NVT, T = 318.15K, 32 CO₂,
- Time step = 0.096 fs, Total run length = 15 ps, Analysis = 12 ps, Equilibration = 3 ps

Pair Correlation functions

Near neighbour arrangement in scCO₂

isosurface value ~ 0.07 oxy / $Å^3$

Near neighbour arrangement in scCO₂

Intermolecular angle distribution

Effect of pressure on intramolecular geometry of CO₂

Effect of pressure on dynamics of CO₂

Effect of pressure on vibrational modes

Electron Donor-Acceptor Interactions in d-Ethanol-scCO₂ Mixtures

Moumita Saharay, S. Balasubramanian J. Phys. Chem. B 110, 3782 (2006)

Computational details

- Kohn-Sham formulation of DFT using GGA, with BLYP exchange and correlation
- MT pseudo potential, Plane wave cutoff = 70 Ry, NVT, T = 318.15K, 64 CO_2 (.7g/cc) 1 d-ethanol, 0.0154%
- Time step = 0.096 fs, Total run length = 10 ps, Analysis = 7 ps, Equilibration = 3 ps

 $\Delta E_{HYD} = -0.840 \text{ kcal/mol} (CPMD)$ $\Delta E_{EDA} = -2.627 \text{ kcal/mol} (CPMD)$

CO₂ Bending Mode

IR space observatory spectra, *Astron. Astrophysics (1999)* Spectral evolution of ice mixture composed of CO₂ and methanol

Dynamics in clusters

Total EDA bending mode

Monomer In-plane mode Out-of-plane

In-plane bending mode in bulk and dimer shows similar behaviour

VDOS for d-ethanol

Red shift in the OD stretching of ethanol in bulk w.r.t. isolated ethanol is due to association with CO₂

M.Saharay & S.Balasubramanian, J. Phys. Chem. B, 110, 3782 (2006)

High Pressure Studies on Binary Mixture of D₂O and Supercritical CO₂

Moumita Saharay, S. Balasubramanian J. Phys. Chem. B (submitted)

Computational details

- Kohn-Sham formulation of DFT using GGA, with BLYP exchange and correlation
- MT pseudo potential, Plane wave cutoff = 70 Ry, NVT, T = 318.15K, 31 CO_2 , +1 D_2O
- Time step = 0.096 fs, Total run length = 15 ps, Analysis = 12 ps, Equilibration = 3 ps

EDA vs H-bonded interaction

Dipole moment distribution of D_2O

Signature of D₂O miscibility in scCO₂?

Possibility of increased H-bonded interaction in high density

Effect of pressure on bending mode of D_2O

Effect of pressure on stretching mode of D_2O

Conclusions

- Structural evolution with increasing pressure : at least in the first coordination shell
- Deviation of CO₂ from non-linear structure decreases with increasing solvent density effect of polarization due to near neighbor interactions
- CO₂ can behave both as a Lewis acid as well as a Lewis base. This attribute is responsible for its association with other CO₂ molecules as well as with ethanol in the formation of EDA complexes
- The degeneracy of the v₂ mode of CO₂ gets lifted due to EDA interaction with other species
- Enhanced dipole moment -> Miscibility of D₂O in scCO₂ environment increases with system pressure
- Red-shift in stretching mode w.r.t. the monomer siginifies the weakening of intramolecular OD bond

Summary

- Formation of solvation shell
- Enhanced multipole moments
- Specific solute-solvent interactions between solvent and co-solvent

Acknowledgement

Prof. S. Balasubramanian

Dr. M. Krishnan

- Mr. B. L. Bhargava
- Ms. S. Saswati

CSIR, DST, JNCASR

THANK YOU

Molecular multipole moments

Dipole moment

$$\mu_i = 2\pi \int_{r=0}^{r_c} \int_{z=-z_c}^{z_c} \rho(\vec{r} - \vec{R}_i) \vec{r} r dr dz$$

 μi = dipole moment of i-th molecule

Quadrupole moment

$$Q_{mn}^{i} = 2\pi \int_{r=0}^{r_{c}} \int_{z=-z_{c}}^{z_{c}} (3r_{m}r_{n} - r^{2}\delta_{mn})\rho(\vec{r} - \vec{R}_{i})rdrdz$$

Q_{mn} = quadrupole moment component

$$r_{c} = 1.3 \text{ Å}; \ z_{c} = 2.8 \text{ Å}$$

M.Saharay & S.Balasubramanian, ChemPhysChem, 5, 1442 (2004)

Multipole moment distribution

M.Saharay & S.Balasubramanian, ChemPhysChem, 5, 1442 (2004)

Probability density map

M.Saharay & S.Balasubramanian, J. Phys. Chem. B, 110, 3782 (2006)

Crystal structure of CO₂

PA-3 crystal structure Density of CO₂ in crystal is 1.76 g/cc

orientation			position			
1	111		0	0	0	
2	1 -1 -1		1⁄2	1⁄2	0	
4	-1 1 -1		0	1⁄2	1⁄2	
4	-1 -1 1		1⁄2	0	1⁄2	

Suzuki et al. JCP, 55, 5349 (1971)

Car-Parrinello Molecular Dynamics

Kohn-Sham energy functional

$$\Psi_{i}(\mathbf{r}) = \Sigma \mathbf{C}_{k}^{i} \exp(i\mathbf{k}.\mathbf{r})$$

 $\mathbf{E}[\psi_i] = 2\sum_i \int \psi_i [-\frac{\hbar^2}{2m}] \nabla^2 \psi_i \mathbf{d}^3 \mathbf{r} + \int V_{ion} \mathbf{n}(\mathbf{r}) \mathbf{d}^3 \mathbf{r} + \frac{e^2}{2} \int \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \mathbf{d}^3 \mathbf{r} \mathbf{d}^3 \mathbf{r}' + \mathbf{E}_{XC}[\mathbf{n}(\mathbf{r})] + \mathbf{E}_{ion}(\mathbf{R}_I)$

Norm-Conserving Pseudopotentials

$$\begin{split} \psi_{ps}(\vec{r}) = \psi_v(\vec{r}) \text{ for } r \geq r_c \\ \int_0^{r_c} d\vec{r} r^2 \psi_{ps}^*(\vec{r}) \psi_{ps}(\vec{r}) = \int_0^{r_c} d\vec{r} r^2 \psi_v^*(\vec{r}) \psi_v(\vec{r}) \psi_v(\vec{r}) d\vec{r} r^2 \psi_v^*(\vec{r}) \psi_v(\vec{r}) \psi_v($$

Equations of motion

$$\begin{split} L &= T - V; T = \frac{1}{2}\mu \sum_{i} \sum_{k} (\dot{c}_{k}^{i})^{2}; V = E[c_{k}^{i}] \\ \frac{d}{dt} \frac{\partial L}{\partial \dot{c}_{k}^{i}} + \frac{\partial L}{\partial c_{k}^{i}} = 0 \ (1) \end{split}$$

Orthonormality constraint equations $\sigma_{ij} = \Omega^{-1} \int_{\Omega} d\vec{r} \psi_i^*(\vec{r}) \psi_j(\vec{r}) - \delta_{ij} = 0$ (2)

Combining (1) & (2) we get,

$$\mu \ddot{c}_k^i = -\frac{\partial E}{\partial c_k^i} - \sum_j \lambda_{ij} \frac{\partial \sigma_{ij}}{\partial c_k^i}$$

Snapshot of CO₂ molecules

Cluster geometries

species	angle	method	bond length (Å)	dimerization energ (kcal/mol)
CO ₂ monomer	180.0 (O=C=O) 180.0 (O=C=O)	CPMD Gaussian98	1.176 1.169	
CO ₂ dimer (slipped parallel)	$78.9 (O_1 - C_2 - O_2)$ 100.9 (C ₂ - O ₂ - C ₁)	CPMD	~1.176	-0.170
	$84.1 (O_1 - C_2 - O_2)$ 138.5 (C ₂ - O ₂ - C ₁)	Gaussian98 ref 29		
		Gaussian98 ref 12		-0.290
ethanol-CO ₂ EDA complex	$123.1(\theta_1)$ $128.5(\theta_2)$	CPMD	2.833 (O _e C _C)	-2.627
	$120.9(\theta_1)$ $129.7(\theta_2)$	Gaussian98	2.746 (O _e C _C)	-2.720
6.0-0	$114.7(\theta_1)$	Gaussian98 ref 23	2.754 (O _e ←C _C)	-2.417
ethanol-CO ₂ h-bonded complex	179.4 (O=C=O)	CPMD	2.212 (Ос-Не)	-0.840

LDA vs GGA

Weak interactions can be better understood by GGA

Deviation and Inclination

Structure factor

Aims

- Is there a solvation shell ?
- Is polarizability important ?
- What is the pressure effect on solubility ?
- How to enhance the solubility of polar compounds ?

Molecular multipole moments

M.Saharay & S.Balasubramanian, ChemPhysChem, 5, 1442 (2004)

Conclusions

- Structural evolution with increasing pressure : at least in the first coordination shell
- Nearest neighbors show higher probability for distorted T-shaped orientation, whereas molecules in the 2nd coordination shell are mostly orientated in slipped parallel geometry w.r.t. central molecule
 : ---> resemblance of crystal structure in high density
- Deviation of CO₂ from non-linear structure decreases with increasing solvent density —> effect of polarization due to near neighbor interactions
- Increase in reorientational relaxation time with pressure
- Low frequency spectrum of CO₂ indicates solvent cage effect in high density —> a feature of supercritical CO₂

Intramolecular angle distribution

M.Saharay & S.Balasubramanian, J. Phys. Chem. B, 110, 3782 (2006)

Conclusions

- Ethanol-CO₂ EDA complex is more stable than the hydrogen bonded complex
- The CO₂ molecule that interacts with ethanol tends to adopt nonlinear geometry more readily than the one in the neat solvent
- CO₂ can behave both as a Lewis acid as well as a Lewis base. This attribute is responsible for its association with other CO₂ molecules as well as with ethanol in the formation of EDA complexes
- The O-D stretching mode of ethanol is red shifted due to these interactions.
- The degeneracy of the n₂ mode of CO₂ gets lifted due to EDA interaction with other species

Intramolecular geometry of CO₂

Conclusions

- Both hyd-bonded and EDA type interactions play crucial role in microscopic behavior of D₂O
- Enhanced dipole moment -> Miscibility of D₂O in scCO₂ environment increases with system pressure
- Blue-shift in D₂O bending mode w.r.t. the monomer -> signature of hyd-bonded interaction
- Red-shift in stretching mode w.r.t. the monomer siginifies the weakening of intramolecular OD bond

Summary

- Formation of solvation shell
- Enhanced multipole moments
- Specific solute-solvent interactions between solvent and co-solvent

Reorientational correlation function

1.33 g/cc 1.03 g/cc 0.84 g/cc

Solvation

3 steps for solvation :

• creation of free space to hold the solute

- solvent reorganization
- solute-solvent interactions;

Molecular association can be observed experimentally by studying :

- **1.** Relaxation time of system as well as the probe
- 2. Spectral shifts due to association