

SMR.1824 - 14

13th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods

11 - 13 January 2007

First-principles calculations of capacitors at finite bias

Massimiliano STENGEL University of California at Santa Barbara Department of Materials CA 93117-5050 Santa Barbara U.S.A.

These are preliminary lecture notes, intended only for distribution to participants

First-principles calculations of capacitors at finite bias

Massimiliano Stengel and Nicola A. Spaldin

Materials Department, University of California, Santa Barbara CA 93106-5050, USA

Why capacitors?

- Capacitors are omnipresent in electronic circuits and devices
- Often they are the largest components, and reducing their size is crucial
- Size and thickness have reached a regime where classical and phenomenological models are no longer reliable (<10 nm)

Outline

- Motivation from the experiments
- Theoretical methods
- Results
- Conclusions

Classical capacitor

- Miniaturization \rightarrow we have to increase C/A
 - Thinner films
 - Materials with higher permittivity ϵ

Thin-film high-ε devices

C. S. Hwang, JAP 92, 432 (2002).

- Finite intercept for t \rightarrow 0: here C/A = 30 fF/µm²
- Linear behavior: 1/C = at+b

Dielectric "dead" layer

- <u>Physical origin</u>: Intrinsic or defect-induced?
- <u>Role of the electrode</u>: elemental metals (Pt, Au) vs. metallic oxides (SrRuO₃)?
- <u>Practical question</u>: how can we avoid it?

Interfacial capacitance

Dead layer

- C_{interface} << C_{film} $-C \sim C_{interface}/2$

No dead layer

$$- C_{interface} >> C_{film}$$

 $-C \sim C_{film}$

We want an interfacial capacitance as high as possible!

What is the origin of C_i ?

- Imperfect screening at the interface
- Phenomenological model: metallic oxide electrodes (SrRuO₃) are intrinsically better than Pt because of lattice contribution to the screening

C. C. Black & J. J. Welser, IEEE Trans. 46, 776 (1999)

Many results support this model...

- Much higher C_i with SrRuO₃ electrodes compared to Pt, in agreement with the model
- These results seem to confirm the importance of ionic screening, which is absent in Pt

-Thin epitaxial (Ba,Sr)TiO₃ films -Capacitance & strain measured as a function of thickness

R. Plonka et al., APL 86, 202908 (2005)

...but others don't!

 No T shifts in BaTiO₃ single-crystal lamellae (as thin as t=75 nm) with Au electrodes!

Mat. 16, L451 (2004).

Outline

- Motivation from the experiments
- Theoretical methods
- Results
- Conclusions

Computational setup

- Supercell technique + <u>Periodic boundary</u> <u>conditions</u>
- Finite electric fields

$$E^{\mathcal{E}} = E_{KS} - \Omega \mathcal{E}.\langle P \rangle = E_{KS} - e \mathcal{E}.\langle x \rangle$$

Electric fields + PBC?

- An infinite crystal in a uniform external field does not have a ground state
- Scalar potential is *non-periodic*
- Recently solved for pure insulators*

*I. Souza, J. Iñiguez and D. Vanderbilt, PRL 2002 P. Umari and A. Pasquarello, PRL 2002

Polarization in insulators

 The position operator in a pure insulator can be expressed in *k*-space as a Berry phase*

$$\langle x \rangle_{Berry} = \frac{L}{2\pi} \operatorname{Im} \ln \det M$$

$$M_{mn} = \langle \psi_m | e^{i\frac{2\pi}{L}x} | \psi_n \rangle$$

*R. D. King-Smith and D. Vanderbilt, PRB 47, 1651 (1993)

Metallic slab in vacuum

 Polarization (dipole moment) can be calculated in real space with a saw-tooth function

$$\langle x \rangle = \int_{-L/2}^{L/2} x \rho(x) dx$$

- Saw-tooth function has unphysical discontinuities where $\rho(x)$ is large
- Partially filled bands at the Fermi level → the Berry phase expression does not work

Polarization in insulators (again)

In alternative to the Berry phase, the position operator can be written in real space using Wannier functions

$$\langle x \rangle = 2 \sum_{i} \langle w_i | x | w_i \rangle$$

 The goal is to find a localized representation (always possible in insulators)

1D band structure: three energy windows

Unit cell (x direction)

1. Conduction states are discarded

Unit cell (x direction)

2. MIGS are already localized!

Unit cell (x direction)

3. "Parallel transport" for fully occupied states

Finite bias potential

 Localized orbitals polarized individually by statedependent saw-tooth potentials in real space

M. Stengel and N. Spaldin, *Ab-initio theory of metal-insulator interfaces in finite electric field,* cond-mat/0506389 (2005).

Outline

- Motivation from the experiments
- Theoretical methods
- Results
- Conclusions

Test: MgO/Ag(100)

- Favorable lattice matching
- Well-studied interface between a simple metal and a wide-gap insulator

Capacitance & permittivity profile

Ideal classical behavior in the ultrathin limit!

$SrTiO_3/SrRuO_3$

- STO: insulating perovskite with high permittivity
 - $-\epsilon_{exp} \sim 20000 (0 \text{ K}), 290 (\text{RT})$

$$-\epsilon_{th} = 490$$

 SRO: metallic perovskite, very popular electrode for capacitor applications

SRO/STO: inv. permittivity profile

- $C_{cl} = 1610 \text{ fF/um}^2$, $C_{fp} = 258 \text{ fF/um}^2$
- No defects, ideal interface → <u>"intrinsic"</u> <u>dead layer</u>!
 M. Stengel and N. Spaldin, Nature 443, 679 (2006).

Influence of ionic relaxations in the SrRuO₃ electrodes

 Relaxation of electrode lattice reduces the dead layer by a factor of 2, but does not remove it!

Screening & depolarizing field

- Well-known concept for *ferroelectric* capacitors*
- At the electrode, the polarization charge of the dielectric is not completely screened
- The field contrasts *P*, thus suppressing the dielectric response

*J. Junquera & P. Ghosez, Nature 422, 506 (2003)

Soft-mode hardening effect

Dipolar-active optical modes shift to higher frequencies and mix

Pt or SrRuO₃?

Spin capacitors

- Ferromagnetic electrodes
- Spin-polarized carriers → storage of spin density!

J. Rondinelli, M. Stengel and N. A. Spaldin, in preparation

Conclusions

- New, powerful finite-field method
- Pt electrodes are <u>intrinsically</u> better than SrRuO₃ ones
- Bad performance of Pt in the experiments has to be ascribed to processing issues
- Challenge for the future: production of high-quality interfaces with <u>free-electron</u> <u>metals</u>