

SMR.1824 - 15

13th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods

11 - 13 January 2007

Pressure induced structural transformation in nano-particles and carbon nano-tubes

Xin-Gao GONG Fudan University Department of Physics 220 Handan Road 200433 Shanghai CHINA

These are preliminary lecture notes, intended only for distribution to participants

Pressure induced structural transformation in nano-particles and carbon nano-tubes

Xin-Gao Gong

Department of Physics, Fudan University, Shanghai-200433, China

Acknowledgement: D. Y. Sun, Z.H. Wang, ISSP, CAS J. Min, X.F. Zhang, X. Ye Fudan University Z.F. Liu, CUHK, Hong-Kong F. Liu, Utah University Supported by: National Natural Science Fundation

National Program for Basic Reaearch

Outline:

- Introduction
- Constant-pressure MD method for finite system
- Some applications:
 - (1) Melting of nano-particles
 - (2) Solid-solid transition in nano-particles
 - (3) Pressure-induced hard-soft transition of CNTs
- Summary

Why finite systems under pressure?

• Nanocrystal has much larger surface to volume ratio, influence elastic and thermodynamic properties

How different the small is?

• Helping to understand the micro-mechanism of bulk material

Carbon Nano-tube under the pressure:

Exp. Observation Breathing mode disappeared at P=1.7 GPa

Peters et al. PRB, 61(5939)

Structural transformation of CdSe

Wurtzite to rock salt transformation pressure vs. size of CdSe nanocrystals (Alivisatos group).

Pressure induced H₂ dissociation in tube bundles:

Chan, Chen, Gong and Liu, PRL, 8720(2001)

• Conventional constant-pressure MD:

Parrinello-Rahman

$$H = \sum_{i=1}^{N} \frac{1}{2} m_{i} \dot{\vec{R}}_{i}^{2} + \Phi(\{\vec{R}_{i}\}) + \frac{1}{2} \mu \dot{\Omega}^{2} + P\Omega$$

Where volume: $\Omega = \vec{a} \times \vec{b} \cdot \vec{c}$

Finite system without any periodicity:???

We propose:

JPCM 14, L487(2002)

$$L = \sum_{i}^{N} \frac{1}{2} m_{i} \, \dot{\vec{R}}_{i}^{2} - \Phi(\{\vec{R}_{i}\}) - P_{ext} \Omega(\{\vec{R}_{i}\})$$

Where volume is the whole volume of the finite system.

If we write the volume of the system into in following form $\Omega = \Omega(R_{ij}^3)$

One can easily prove that:

$$P_{ext} = P_{int} = \frac{1}{3\Omega} \left(\sum_{i}^{N} m_i \dot{\vec{R}}_i^2 - \sum_{i}^{N} \vec{R}_i \cdot \nabla \Phi \right)$$

Motion of Equations:

$$\frac{d^2 R_i}{dt^2} = -\nabla_i \Phi - P_{ext} \nabla_i \Omega$$

Main Features:

Computation overhead is small! Parameter free! Easy to code, either in DFT based code or MD! How to calculate volume of a finite system:

$$\sum_{i}^{N} \vec{R}_{i} \cdot \nabla \Omega = 3\Omega \qquad \Omega = \Omega(R_{ij}^{3})$$

A simplest scheme: atomic sphere to approximate WS cell (not too bad for the metal system)

$$\Omega = \sum_{i} \gamma_{i} \frac{4\pi}{3} \sum_{j \neq i} \left(\frac{r_{ij}}{2}\right)^{3} \qquad \gamma_{i} \text{ constant,} \\ r_{ij} \text{ interatomic distance}$$

A good approximation: the volume of the polyhedron

Recent Progress by M. Cococcioni et al. : PRL(2005)

The volume is defined from the charge density:

$$V_q = \int d\mathbf{r} \vartheta(\rho(\mathbf{r}) - \alpha),$$

If the step function is approximated by a gaussian:

$$\Phi_V(\mathbf{r}) = P \frac{\delta V_q}{\delta \rho} |_{\rho = \rho(\mathbf{r})} = \frac{P}{\sigma \sqrt{2\pi}} e^{-(\rho(\mathbf{r}) - \alpha)/2\sigma^2}.$$

Constant Pressure in Ab-initio MD

Melting of small Ni particles under pressure: (classical MD with Sutten-Chen potentials)

Pressure (GPa)

Si cluster under pressure

- Si_{35} saturated with 36 hydrogen atoms
 - Si₃₅ structure is cut from bulk silicon.
 - Constant pressure is exposed on Si atoms.

Si_{35} cluster under pressure

Si_{35} cluster under pressure

Metallization driven by pressure
—HOMO-LUMO gap decreases

Si₈₇ cluster under pressure

Pressure Induced Structure transformation of large CdSe particles

Classical Potential:

The two-body potential consists of long-range Coulomb part and a shortrange part. The phase transformation of bulk CdSe from wurtzite structure to rocksalt structure occurs at about **2.5** GPa, in agreement with experimental measurements.

E. Rabani, J. Chem. Phys. 116, 258 (2002)

Domains after transformation

Strain domains after the structural transformation in spherical nanocrystals. The grain boundary is show as green atoms

The snapshots of the MD simulation for the faceted $Cd_{1162}Se_{1162}$ nanocrystal transforming from five-fold coordination structure to rocksalt structure.

The hysteresis behavior

Averaged bond angle distribution of spherical $Cd_{502}Se_{502}$ nanocrystals.

Size effect on the transformation pressure

Variation of the transformation pressure with radius for nanocrystals at 300 K. With increasing nanocrystal size, the transformation pressure approaches the bulk value from above.

Volume as a functions of external pressure for spherical $Cd_{502}Se_{502}$ nanocrystal. The data can be fit with a linear volume compressibility of $B_0 = 38.5$ GPa for wurtzite and $B_0 = 68.8$ GPa for rocksalt

Bulk modulus

Physical constants	Wurtzite	Rock salt
B ₀ (GPa)	37±5	74±2
B'0	11±3	
$V_0 ({\rm m}^3)$	5.62×10 ⁻²⁹	4.36×10 ⁻²⁹
$c_1 (N/m)$	0.34	0.63
$c_2 (N/m) (Å^2)$	84	83

Radius 21 angstrom

S. H. Tolbert and A. P. Alivisatos, J. Chem. Phys. **102**, 4642 (1995).

Schematic show of carbon tube under hydrostatic pressure

Periodic boundary condition in axial direction

PRB70, 165417(2004)

Pressure Induced hard-soft transition in CNTBs

Shape Changes under pressure

Softening the breath mode of the Carbon tube:

Size dependence of transition pressure

Elastic model for tube under pressure:

• Elastic energy of the tube per unit length:

$$E = \frac{D}{2} \oint \frac{1}{\rho^2} dl + \frac{C}{2} \oint (\frac{\oint dl - L_0}{L_0})^2 dl + PA_1$$

where $D = Yh^3/12(1-\nu^2)$ and $C = Yh/(1-\nu^2)$

- Y: Youngs modulus
- v: Poisson ratio
- h: thickness of tube
- A: area of tube cross section
- L_0 : perimeter of thue cross section

Size dependence of transition pressure and bulk modulus: Simulation and modeling

Conductivity of CNT Under Pressure:

Conceptional Pressure Sensor:

Double Wall Carbon nano-tube Under Pressure:

outer tube: uniform pressure inner tube: response to the VdW potential

YE et al. PRB72, 035454(2005)

The long radius, short radius of tube as a function of pressure for (9,9)@(14,14) nanotube. At the same pressure, outertube and innertube collapse from circle to oval

Pressure as a function of the reduced volume for DWCNTs at 300 K. The discontinuity of the slopes indicates hard-soft transition under hydrostatic pressure

Transition pressure for Double-walled tubes

Response pressure as a function of the external hydrostatic pressure for (5,5)@(10,10) DWCNT(left) and (5,5)@(10,10)@(15,15) TWCNT(right). The fitted relation of leftpanel relation is y=0.31x-0.36, we define x as the pressure transmission efficiency

Ye et al. PRB (2007)

Raman spectra of double-walled carbon nanotube in the region of optical mode at different hydrostatic pressure.

The radius of the inner tube is **5** angstrom, the pressure coefficient of the inner tube is 3.11 cm-1/GPa, the outer tube is 5.59 cm-1/GPa. The pressure coefficient of the inner tube is 45% samller than the outer tube's

P. Puech, H. Hubel, D. J. Dunstan, R. R. Bacsa, C. Laurent, and W. S. Bacsa, Phys. Rev. Lett. **93**, 095506 (2004).

Tube lattice Under pressure:

	Enery/atom (eV)		PV/atom	enthalpy/atom	
	E	E_1	E_2	(eV)	(eV)
A	-7.366	-7.330	-7.318	0.012	-7.354
В	-7.378	-7.342	-7.341	0.021	-7.357
Δ	0.012	0.012	0.023	0.009	0.003

Zhang, Liu and Gong, PRB70, 035422(2004), PRL93, 149601(2004)

Summary:

- A new algorithm for constant pressure MD for finite system, which provides a window to study the properties of finite-system.
- Applications:

Si cluster has a higher transition pressure than bulk. Larger clusters, lower P_c . Pressure driven Si cluster to simple hexagonal-like structure, not β -tin!

A hard-soft transition of carbon notube is identified.

• • • • • • • •

Thank You!

Martonark, Molteni and Parrinello Proposed(PRl, 2001):

$$L = \frac{1}{2} \sum_{i} \mu \int d\mathbf{r} |\dot{\psi}_{i}(\mathbf{r})|^{2} + \frac{1}{2} \sum_{I} M_{I} \dot{\mathbf{R}}_{I}^{2} - E[\{\psi_{i}\}, \{\mathbf{R}_{I}\}] + \sum_{i,j} \Lambda_{ij}(\langle \psi_{i} | \psi_{j} \rangle - \delta_{ij}) + \frac{1}{2} \sum_{I} m \dot{\mathbf{X}}_{I}^{2} - \sum_{I,J} V_{C-L}(|\mathbf{R}_{I} - \mathbf{X}_{J}|) - \sum_{I < J} V_{L-L}(|\mathbf{X}_{I} - \mathbf{X}_{J}|).$$

N_L: No. of atom for pressure transfer medium. Large enough!

V_{C-L}: Interaction between cluster and medium. Accurate!

V_{L-L} : Interaction for the atoms in the medium. **Good**!

simple, but large computational overhead !

Validity of the volume decomposition:

Comparison between the "exact" and atomic volume: The agreement is good!

Temperature Dependence: Structure of Ni₅₆₁ without Pressure

Temperature dependence: structure Ni₅₆₁ under pressure 10GPa

FCC-like structure to Icosahedral structure transition

0 K

513 K

559 K

592 K

603 K

636 K

"Phase Diagram of nano-particle Ni"

Under pressure: bcc-Ni locally appeared.

The critical transition pressure is defined by the conditions $\frac{d^2 E}{d\omega^2}|_{\omega=1}=0$ and $\frac{dE}{d\epsilon}|_{\omega=1}=0$, which give rise to

$$P_t = rac{3D}{R_0^3 (1+\epsilon_c)^3} pprox rac{3D}{R_0^3},$$

$$\epsilon_c = -\frac{5D}{2CR_0^2}.$$

The ratio of bulk modulus in hard and soft phase:

$$\frac{B_s}{B_h} = \frac{19}{12} \left(\frac{h}{R_0}\right)^2.$$
$$\frac{B_s}{B_h} \propto \left(\frac{h}{R_0}\right)^2 \approx 0.01$$

• Pressure:

powerful tool to explore the meta-stability, phase transitions of solids, new structures, new physics, new properties...

• size effect, surface effect:

more rich physics in meta-stability!