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BACKGROUND
Geometric phases: Modern theory of polarization

(King-smith and Vanderbilt, PRB 47, 1651 (93); R. Resta, Rev. Mod. Phys, 66, 899 (94)).

Polarization in multi-ferroic materials: puzzles
(Wang et al, Science 299, 1719 (03); Neaton et al, PRB 71, 014113 (05)). 

Charge Density Partitioning:
Maximally Localized Wannier Functions (Marzari and Vanderbilt, PRB 56, 12847 (97)).

Chemistry of Materials:
Topological analysis of charge density, Electron Localization Functions
(Bader, Atoms in the Molecules (89); Silvi and Savin, Nature 371, 683 (94)).

is known not to yield estimation of polarization!

In 2 and 3 D: localization length of MLWFs >  physical length-scale of the system.
In 1 D:  they are equal

Non-abelian Geometric Phases: a frame-work to address all above points
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Wannier Functions
• Fourier transforms of Bloch functions:

Wn(x) = ∑m∫ dk ψkm (x) e iθ(k,m)

Arbitrary phases θ(k,m) of Bloch fn: non-uniqueness of Wn
Smoothness of Bloch functions as a function of k determine the 

localization properties of Wn

• Marzari and Vanderbilt (1997):
Ω = <r2> -<r>2

Θ(k,m) chosen to minimize Ω

• Ω is finite for insulators (> physical length-scale2) and ∞ for metals

PROBLEM: Origin of phases
- Random phases from diagonalization
- Phases natural to the geometry of the QM problem

OUR SOLUTION:
• We obtain Bloch functions that are smooth and periodic in k:

1. Starting with k0, we obtain Bloch functions at all k using
parallel transport.

2. Aperiodic factors associated with geometric phases are   
analytically filtered out.
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Geometric phases: Wannier functions in 1-dimension
- Generate Bloch functions at k, using parallel transport
from k0

- Filter out the geometric phase factors

eiГ Non-Abelian geometric phase matrix

Wannier functions: eigenfunctions of Г

(Bhattacharjee and Waghmare, Phys Rev B 71, 045106 (05)).

Wannier centres: eigenvalues of Г : <x>

k0



Many crossing 
bands lead to Non-
Abelian phase 
matrix Г

Г = Im(Log(<m, λ=0 | n, λ=1>))

recovered once the loop is closed!



Ref. Bhattacharjee and Waghmare, Phys. Rev. B 71, 045106 (2005).

results naturally

=



Discretized Parallel Transport and Г

〉〈=∆+ ∆+ kknmkmn uukkkS ,|),(Overlap matrix S :

kiS Γ= ReOverlap matrix, S, in terms of R and Γk as,
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Bloch functions of the form :

Eigenvalues of Г matrix, τi  = eigenvalues of PrP * (2π/a)

Determination of R and Γ matrices 
Singular Value Decomposition of overlap matrix, S=U∑V†

Rotate wave functions at k+∆k by M = (UV† )* → S’ = R’
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Parallel transported
wave functions
satisfy “parallel 
transport” gauge:

Connecting Bloch functions at k and k+∆k

(Equivalent to Sgiarovello, Peressi, Resta, PRB64, 115202 (2001)).
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Issues with computation of polarization



Polarization: Berry phase
(Ref. King-smith and Vanderbilt, Phys. Rev. B47, R1651 (1993); R. Resta, RMP 66, 899 (94)).

P=1/V ∫ρ(r) dr : does not work for an infinite crystal

P has to be defined through a change ∆P, arising from an 
adiabatic flow of charge when a system is changed from one 
state to another:

∆P =  J (λ) d λ = P(λ2)-P(λ1)
P(λ) =   i e/(2π)3 ∑n∫ <ukn(λ) | d/dk | ukn(λ)> dk

= γ(λ) + e R/V  (R: direct space lattice vector)
P forms a lattice

A Consequence: 
1. P of a centrosymmetric phase can be nonzero! 

P -> -P + eR/V         P = eR/V/2: half integer quantum P

∫
2

1

λ

λ



Eg. Biferroic InMnO3
(isostructural to YMnO3)

• P=19 µC/cm2 (as obtained using Berry phase)
But the reference paraelectric str:

P  = half integer quantum = 27 µC/cm2

► ∆ P = 8 µC/cm2  should be a measured P
Serrao, Waghmare, Rao, et al, J. Appl. Phys 100, 076104 (2006).

Implications for Real Materials: Biferroics

A similar consideration holds true for YMnO3!
Van Aken, Spaldin et al, Nat. Mat. 3, 164 (2004).



2. Measured polarization is dependent on the path
followed by the system during a measurement,
such as a switching transition path.

Metallic state

Path followed by the system during
hysteresis measurement

∫ δP = eR/V (Ref. Waghmare, PhD thesis (1996)).

Has observable signatures in Raman spectra
(Ref. Sood and Waghmare in preparation).



Interpretation of absolute polarization estimated in MTP with observed P
(order parameter of ferroelectrics) is tricky, and should be done with care.

Can the non-abelian geometric phases (Г matrices) help?
Band-by-band decomposition of P. 

Eg. Superlattices (Vanderbilt et al, PRL 06).

Here: How to use Г matrices in obtaining P that is easier to connect with
experimental P?

(Nirat Ray and U. V. Waghmare, a preprint).



Unit cell is doubled in directions 
PERPENDICULAR

to the direction along which we 
calculate polarization

Z

Atomic positions in reduced units

0.114Oz

0.1170x, Oy

0.039Ti
0.0Pb

P determined with modern theory of polarization 
depends on the choice of unit cell!

Example: PbTiO3 in tetragonal phase

PTO Four Unit Cells

PTO Single Unit Cell



0.15
(mod 0.52)

0.15PbTiO3 Four 
unit cells

1.19
(mod 2.10)

-0.90PbTiO3 Single 
unit cell

Calculated using 
PWSCF 
(C/m2)

Calculated using 
ABINIT
(C/m2)

Pz as calculated using different DFT codes
(Modern Theory of P)

P determined within the Modern Theory of Polarization 
depends on the choice of unit cell.

Note that changes in P (if smaller than quantum P) are independent of the unit cell!



Our scheme to determine P

Electronic polarization

Centre of ionic charge defined as:

Each eigenvalue of Γ matrix folded between [-0.5,0.5) is shifted by -1 
or +1 so that it is closer to the centre of an ionic charge

Ω
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Electronic Polarization

Ionic polarization

Ionic positions (di) are remapped between [-0.5,0.5)
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Pion

(With Nirat Ray)

Justification: Implicitly, use paths expressed in the space of ionic displacements



PbTiO3 Four 
unit cells

PbTiO3 Single 
unit cell

0.15

-0.90

Calculated 
using ABINIT

(C/m2)

0.15
(mod 0.52)

1.19
(mod 2.10)

Calculated 
using PWSCF 

(C/m2)

-0.90

-0.90

Present 
scheme
(C/m2)

• Polarization which is independent of the choice of unit cell !!

• Easier to interpret

Present scheme:



• Discontinuity in the Polarization as calculated in MTP, when the 
|polarization| becomes greater than half the quantum of 
polarization

Polarization as a function of parameter “s”
A two unit supercell of PbTiO3 is evolved from the paraelectric
(s=0) to the ferroelectric phase (s=1)



Implications for Real Materials: 
Materials with chemical disorder, Solid solutions,  

Biferroics, etc

• Zr substituted PbTiO3 forming a solid solution with 
PbTi0.75Zr0.2503

Present Scheme
C/m2

ABINIT
C/m2

-0.950.099 (0.52)PbTi0.75Zr0.25O3

PbTi0.75Zr0.2503

Zr at centro-symmetric 
positions, and Ti off-centred

by 0.04 Å



Problem in 2 or
higher dimensions:
Nonzero Berry
phases

What about Wannier functions in 3-D ???

Parallel transport of Bloch functions along different closed paths in the
Brillouin zone generate different phase factors and it is no longer possible
to generate Bloch functions that are smooth in k using parallel transport
as a function of k.

More than one path to go from one Bloch vector to another in D>1 !



WFs in higher dimensions: Basic Idea

(Bhattacharjee and Waghmare, Phys. Rev. 71, 121102(R), 2006.)

(With the same symmetry
as physical space)



Auxiliary Subspace: Definite Geometric Properties

A || Transport between Auxiliary and Physical Subspaces

Nonzero                                     Zero
Geometric Phases



Wannier functions

Applicable to insulators, metals, molecules, cluster, 
any dimensionality, unoccupied states

Localization comparable with the MLWFs.
Further localization can be achieved through Joint 
Diagonalization of x, y, z (Cardoso, J. Math. Anal. App. (96)).

“bonding orbitals”



Examples of Wannier Functions

Silicon Aluminium

Diborane (B2H6) Copper
(Bhattacharjee and Waghmare, Phys. Rev. B 71, 121102(R), 2006.)



Bond Orbital Position Population (BOPP)

From Wannier functions to Atomic Orbitals: Bonding

BOPP: covalency, charge transfer and local polarizability

(Similar to COOP of Roald Hoffman)



Anomalously Large Effective Charges

Pb

Ti

O

PbTiO3 : A Ferroelectric material

~ Ionic materials, with ionic charges of 
+2 (Pb), +4 (Ti) and -2 (O).

But the dynamical charge of Ti (Z*):
dipole: µ = Z* dTi Force: F = Z* E

is anomalously large: Z* (Ti) = 7.1

This is a generic feature of most ferroelectric
perovskite oxides, eg. BaTiO3, KNbO3.

What is the origin?

Gives large dielectric ( α Z*2)  and electromechanical ( α Z* ) couplings

Pb

Ti

O

T < Tc

T > Tc



Tetragonal PbTiO3 & BaTiO3

Inter atomic charge transfer through π like orbitals

O

Ti

e e

|WF|2 integrated in YZ plane

Ti  not
displaced
Ti 
displaced

PbTiO3 :   7.02 a.u. 
BaTiO3 :   7.13 a.u. 

X

+1.43
+1.49

+0.53
+0.52

O 2py/pz O2px

Z*x(Ti)

Ti

π σ

WF1 WF2



WF3  σWF2 σWF1 π

0.010.010.06Nonlocal
Changes

0.410.300.27Covalency

-0.10-0.060.00Local  (O)
Polarizability

0.210.331.10Charge 
Transfer

BOPP Analysis: PbTiO3

BOOP Analysis O Ti2Ti1

In the O-centered WF1, population of 3dxz state of 
Ti1 atom increases by 0.038 e, whereas  that at Ti2 decreases by 
0.034 e: large part of anomalous charge ~ 2 e! 



Mechanism of anomalous effective charge:

Transfer of a small fraction of electrons
from one Ti to the neighboring one is 
facilitated by the oxygen p orbitals
perpendicular to the -Ti-O-Ti- chain.

Like “charge double-exchange”

Local charges 
remain the same

Bhattacharjee,
Waghmare,
submitted to JACS.

Ti
O

► Why perovskites are so great: O(2)-TM-O(2) chains in all three directions!



Distribution of Electron Charge Centres (DECC):
A gauge invariant scheme for charge partitioning;
A new way of looking at bonding

(With Joydeep Bhattacharjee and Shobhana Narasimhan, 
cond-mat/0612468).

Thanks to a referee from Nature whose comments forced us to 
generalize the DECC formulation.



Distribution of Electron Charge Centres (DECC)

Conventional thinking of Crystal Structure:
Where are the atoms?

We ask:
Where are the electrons?

• As Гx and Гy  do not commute, it is not possible to determine both x and y
coordinate of electron charge centre simultaneously.
This is partly why  Ω(MLWF)  >  Ω(physical);

Ω(physical) accessible by linear response (Waghmare et al, PRB 67, 125111 (03)).

• Only a joint probability may be formulated: eg. x and y coordinates are (xi , yj)

• Coordinate axis are not unique! Eg. x and x+y are also good choices.
Sum over all possible choices limited by the lattice.
ie. sum over all possible primitive unit cells.

A primitive real space lattice unit cell ↔ G-vector (rec. lattice) shortest along its dir.
→ sum over all “G”s (like in a path integral)



Distribution of Electron Charge Centres (DECC)

133221))((1)( lnnmml
K lmn

lmn
GG

vvvvvvdk
N

D
G

kkkkkkkTrr ∫ ∑∑ −= δ

- Use eigenvalues and vectors of P ri P given by geometric phase matrix
- Use quantum joint probability distribution function

(Barut, Foundations of Physics, 18, 999 (1988)).

Eigenvalues and eigenfunctions of ri (Гi’s).

b1

b2G

G: a rec. lattice vector shortest along its dir.
b1, b2: two linearly independent vectors forming

the shortest path to G
define a rec. space primitive cell

a1, a2, a3 are the corresponding vectors in real space.

For each {b1, b2, b3} (G), obtain non-abelian geometric phase matrices Гi’s, whose
eigenvalues give a point in real space as an electron charge centre:

<><><> : Bargmann invariants (Ref. Simon and Mukunda, PRL 70, 880 (93)).
∑G can be suitably terminated: eg. G < Gcut



Properties of DECC

• DECC has the symmetry of the system; symmetrization
can save much of computation.

• It is a real function (but can be negative).
• For an insulator, peaks of DECC function are well-

isolated and a given set of peaks contains integer 
quantum (e) charge.

• Generalization to metals involves including occupation 
numbers (with appropriate powers) in parallel transport.

• N-electron M-center bond defined by the peaks of 
DECC associated with M nuclei and containing N
electrons.

• ∫dr D(r) r gives polarization.
• ∫dr D(r) = Ne.



DECC for ionic insulators

Zstatic-electron Uni-centerd bond

Charge contained in a set of peaks localized on an atom: static charge

Difference in DECC with atomic displacements: change in P → Z*



DECC for covalent systems

A covalent bond:
2-electron 2-centered bond

2.56 e

0.34 e
Note the complete shell
containing 8 electrons for 
each atom!

Negative values at the 
anti-bonding sites:

Violation of L’Espegnat
inequality in QM

We interpret covalent bonds
are truly quantum mechanical
in nature!



DECC for metals

Covalency scale (Number of shared e /atom):  Al > Mo > Pb > Cu

►Explanation for Al has greater mechanical shear strength than Cu (Yip et al, Science (2002)).

1.4 e

10.4e

0.6 e 1.42e

12.52 e

1.66 e



DECC for molecular systems

3-center banana bond

2 e

1.9 e1e

1.2e

∑ electrons associated with each to C = 8.



Summary

Non-abelian geometric phases
1. Help with estimation of polarization
2. Used in formulating Wannier functions
3. Have been used in formulating a new        

scheme for charge partitioning: DECC
4.      Link with bonding and  chemistry of 

materials


