

SMR.1824 - 18

13th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods

11 - 13 January 2007

Equation of state and raman frequency of diamond from quantum Monte Carlo

Richard NEEDS

Cambridge University Theory of Condensed Matter Group Cavendish Laboratory Department of Physics Madingley Road Cambridge, CB3 0HE U.K.

These are preliminary lecture notes, intended only for distribution to participants

Equation of state and Raman frequency of diamond from quantum Monte Carlo

Ryo Maezono

National Institute for Materials Science, Tsukuba, Japan Andrea Ma, Mike Towler, Richard Needs University of Cambridge, United Kingdom

Diffusion Monte Carlo (DMC)

Consider imaginary time Schrödinger equation

$$\left(-\frac{1}{2}\nabla^2 + V\right)\Psi(\mathbf{R},t) = -\frac{\partial\Psi(\mathbf{R},t)}{\partial t}$$

Expand $\Psi(\mathbf{R},t)$ in eigenfunctions of \hat{H}

$$\Psi(\mathbf{R},t) = \sum_{n=0}^{\infty} c_n \,\phi_n(\mathbf{R}) \, e^{-E_n t}$$

Kinetic term: diffusion process

Potential term: rate process

Importance sampling in DMC

Problem 1: Ψ is not a probability distribution \rightarrow fermion sign problem Problem 2: Rate process is poorly behaved

Solution: Work with distribution $f(\mathbf{R}, \tau) = \Psi(\mathbf{R}, \tau)\Phi_T(\mathbf{R})$ and deal with sign problem via fixed-node approximation

Hartree-Fock (black) and backflow (orange) nodes for 101 same-spin free fermions in a square box at a density of $r_s = 10$ Pablo Lopez Rios *et al.*, Phys Rev E 74, 066701 (2006)

The Slater-Jastrow wave function

 $\Phi_T = \det(\phi_i) \exp \left[\mathcal{J}(r_{ij}, r_{iI}, r_{jI})\right]$

Local energy $\Phi_T^{-1}\hat{H}\Phi_T$ of a silane molecule (a) without Jastrow factor (b) with Jastrow factor

Vinet equation of state:

$$E(V) = -\frac{4B_0V_0}{(B'_0 - 1)^2} \left(1 - \frac{3}{2}(B'_0 - 1)\left(1 - (V/V_0)^{1/3}\right)\right) e^{\left(\frac{3}{2}(B'_0 - 1)\left(1 - \left(\frac{V}{V_0}\right)^{1/3}\right)\right)} + C$$

• Understanding the physical properties of diamond at high pressures is important for the design and operation of diamond anvil cells

• Equilibrium volume and bulk modulus of diamond are well established from experiment

Pressure derivative of the bulk modulus is not well established

 $B'_0 = 4.0 \pm 0.5$ McSkimin and Andreatch (1972) $B'_0 = 3.0 \pm 0.1$ Occelli *et al.* (2003)

- $B'_0 = 4.0 \pm 0.5$ is preferred, but the error bar is very large
- Perform QMC calculations of energy as a function of volume
- Include zero-point energy and finite temperature effects at the DFT level

Calculate energy over a large volume range to reduce the effect of statistical errors \Rightarrow systematic error in the parameters

Assume statistical noise of 0.0001 a.u. per atom

CASINO QMC code

Hartree-Fock pseudopotentials, 128 atom and 250 atom simulation cells PBE-GGA orbitals, plane waves \Rightarrow "B-splines"

Volume (a.u. per atom)

	LDA	PBE	VMC	DMC	Expt. (300 K)
V_0 (a.u.)	37.31	38.61	37.82(6)	38.54(6)	38.284
B_0 (GPa)	454	422	472(4)	437(3)	442(4)
B'_0	3.65	3.72	3.8(1)	3.7(1)	4.0(5), 3.0(1)

Pressure dependence of Raman frequency of diamond

• Can use volume dependence of the Raman frequency as a pressure gauge in diamond anvil cell experiments

- DMC calculations with the frozen phonon method
- Use large displacements, 0.17-0.35 a.u., to reduce the effects of noise

• Must correct for anharmonicity \Rightarrow calculate third order anharmonicity in QMC, use DFT for (small) fourth order term

• Remove anharmonic effects, then use perturbation theory to add back realistic anharmonic renormalisation effect Our theoretical values: -18.0 cm^{-1} (LDA), -15.6 cm^{-1} (PBE-GGA), $-16.8(3) \text{ cm}^{-1}$ (DMC + DFT fourth order)

• Anharmonic renormalisation from experiment at zero pressure: $\simeq -20 \text{ cm}^{-1}$ Herchen and Capelli (1991)

Pressure dependence of Raman frequency of diamond

Shaded yellow region from Gruneisen parameters in range γ =0.9-1.06

Summary

• Have calculated the equation of state of diamond up to high pressures. DMC, VMC, GGA-DFT, and LDA-DFT consistent with B'_0 a little below 4

• Have calculated the Raman frequency as a function of volume

• Incremental improvements in QMC methodology and increased availability of parallel computers have led to much improved results

• These calculations were done with "last year's methodology", which has already been improved upon!

Team Quantum Monte Carlo and Friends

