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Diffusion Monte Carlo (DMC)
Consider imaginary time Schrodinger equation
OV (R, 1)
ot

(—%VQ + V) U(R,t) = —

Expand U(R,t) in eigenfunctions of H

o

VR, 1) =) cndn(R)e ot

n=0

Kinetic term: diffusion process Potential term: rate process
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Importance sampling in DMC

Problem 1: W is not a probability distribution — fermion sign problem
Problem 2: Rate process is poorly behaved

Solution: Work with distribution f(R,7) = (R, 7)®7(R) and deal with
sign problem via fixed-node approximation
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Hartree-Fock (black) and backflow ( ) nodes for 101 same-spin free
fermions in a square box at a density of r;, = 10
Pablo Lopez Rios et al., Phys Rev E 74, 066701 (2006)



The Slater-Jastrow wave function
O = det(¢;) exp [T (rij, rir, 7i1)]
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Equation of State of Diamond
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Equation of State of Diamond

e Understanding the physical properties of diamond at high pressures is
important for the design and operation of diamond anvil cells

e Equilibrium volume and bulk modulus of diamond are well established
from experiment

e Pressure derivative of the bulk modulus is not well established
Bl =4.0+0.5 McSkimin and Andreatch (1972)
B, =3.0£0.1 Occelli et al. (2003)

e B, =4.0+0.5 is preferred, but the error bar is very large

e Perform QMC calculations of energy as a function of volume

e Include zero-point energy and finite temperature effects at the DFT level



Equation of State of Diamond

Calculate energy over a large volume range to reduce the effect of
statistical errors = systematic error in the parameters
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Assume statistical noise of 0.0001 a.u. per atom



Equation of State of Diamond
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CASINO QMC code

Hartree-Fock pseudopotentials, 128 atom and 250 atom simulation cells
PBE-GGA orbitals, plane waves = “B-splines”



Equation of State of Diamond

P 600 ! I IExpt (I\/II cSki.miln et aI,I1972) i 500 i
E 500 — E)E)F: (Occelli et al, 2003) |

(D — — PBE | 450
= A00P\y |[— b .

L 300¢ =400
1350

— —=_130
25 30 35 40 23 24 25 26 27
Volume (a.u. per atom)

DA | PBE | VMC DMC | Expt. (300 K)
Vo (a.u) | 37.31 | 38.61 | 37.82(6) | 38.54(6) 38.284
By (GPa) | 454 422 | 472(4) | 437(3) 442(4)
B, 365 | 3.72 | 3.8(1) | 3.7(1) | 4.0(5), 3.0(1)




Pressure dependence of Raman frequency of diamond

e Can use volume dependence of the Raman frequency as a pressure gauge
in diamond anvil cell experiments

e DMC calculations with the frozen phonon method
e Use large displacements, 0.17-0.35 a.u., to reduce the effects of noise

e Must correct for anharmonicity = calculate third order anharmonicity in
QMC, use DFT for (small) fourth order term

e Remove anharmonic effects, then use perturbation theory to add back

realistic anharmonic renormalisation effect
Our theoretical values: —18.0 cm™! (LDA), —15.6 cm~! (PBE-GGA),
—16.8(3) cm~! (DMC + DFT fourth order)

e Anharmonic renormalisation from experiment at zero pressure:
~ —20 cm™!  Herchen and Capelli (1991)
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Pressure dependence of Raman frequency of diamond
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Summary

e Have calculated the equation of state of diamond up to high pressures.
DMC, VMC, GGA-DFT, and LDA-DFT consistent with B, a little below 4

e Have calculated the Raman frequency as a function of volume

e Incremental improvements in QMC methodology and increased
availability of parallel computers have led to much improved results

e These calculations were done with “last year's methodology”, which has
already been improved upon!
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Team Quantum Monte Carlo and Friends
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