

SMR.1824 - 20

13th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods

11 - 13 January 2007

Studies of Hydrogenated Amorphous Silicon

David A. DRABOLD Ohio University Clippinger Research Laboratories Department of Physics & Astronomy Athens, OH 45701-2979 U.S.A.

These are preliminary lecture notes, intended only for distribution to participants

Studies of Hydrogenated Amorphous Silicon

D. A. Drabold, T. Abtew, F. Inam Ohio University

ICTP January, 2007

Acknowledgements

- N. Mousseau, P. A. Fedders (structural models)
- P. C. Taylor, collaboration on interpreting proton NMR measurements

Funding: ARO/MURI and NSF

- Motivation
- Preliminaries: methods and material
- Dynamics of H in a-Si:H
- Light-induced effects (Staebler-Wronski effect)

Technological interest of a-Si:H

TFTs for displays

IR microbolometer "night vision"

PV applications Uni-solar

Preliminary: SIESTA

- All these calculations use DFT code SIESTA. Invented by several people here! *Powerful and flexible.*
- Computational approach:

 standard SC Kohn-Sham (LDA or GGA)
 norm-conserving pseudpotentials
 atomic orbitals as basis, arbitrary multiple zeta, polarization orbitals etc.

Preliminaries: a-Si

WWW model: continuous random network. Mousseau/Barkema

R. Vink, *Thesis* (U. Utrecht) 2000

 $N_5(t)$: 5-fold atoms in 216 WWW cell, 300K. Coordination Fluctuation: Similar for $N_3(t)$ PRL 67 2179 (1991)

"Coordination fluctuation"

- Involves the entire network.
- Conceptually reminiscent of Phillips/Thorpe floppy modes (though a-Si is certainly *overconstrained* in this language).
- The topology of amorphous network enables structural fluctuations not seen in comparable crystals.

Electronic consequence of thermal disorder

- At 300K as many as 10% of atoms have instantaneous coordination not 4! (PRL '91, unpub. 06)
- Vibrations strongly modulate eigenvalues near E_f:

Structure of a-Si:H

- What about the H?
 - -It exists in both isolated and clustered states (NMR).
 - -Its existence is critical to device grade material.
 - It has a Jekyll-Hyde character: fixes dangling bonds, but player in lightinduced degradation.

Models

- We use 138 atom cell with (12% H), reasonable proton NMR second moment (information about H-H distance). (P. A. Fedders, unpub.)
- Also use 64-atom defect free a-Si plus H or H₂ (N. Mousseau ART or WWW).

Elementary electronic structure

Disordered systems have extended states and localized states (both "band tail" and midgap).

R. Zallen, 1981

Thermal Simulations: H dynamics

- Two 5 ps runs with T=1000K MD, 138 atom cell, no electronic defects at t=0.
 - 1. Fully dynamic lattice
 - 2. Si lattice frozen
- Results in a nutshell:
 - Static Si sublattice: No H diffusion
 - Full simulation: significant H motion, short-time sampling of diffusion mechanism, one dominant.
 - Hints that H_2 plays a serious role on long time scales.

Some details

- Interesting features of a-Si:H involve electronic structure, transport, delicate energetics and H motion: *ab initio* method required.
- Accurate approximations required (polarization orbitals, GGA [PBE 96]). No surprise from work of van de Walle and Fedders.
- In our work we employ SIESTA, 5 ps runs, Δt =0.25 fs.

H motion depends upon local temperature

 $\rho(r) \propto \langle \sum \delta(r - r_{ij}(t)) \rangle$ <>: thermal average i≠ i

300K: little change in pair distances, 700C much more. Hardly a surprise -- high T, more mobile H!

Diffusion

First glance: appears to be "Scher-Lax" hopping, trapping.

Motion of two H atoms (10ps, 300K)

H dynamics: Fluctuating Bond Center Detachment "FBCD"

Converting bonded H to diffusing H

Explicit example. Yellow: path of H₁₂₇ **1. H passivates DB on Si**₄₄

2. H becomes BC when Si₄₇ "transits"

3. BC H hops, bonds to Si₉₆

Time (ps)

Interesting and rare: H₂ formation

Worms: Hydrogen Yellow: H₁₂₂, Orange:H₂ (molecule)

- H Hops from BC(Si₇₀-Si₉₆); forms H₂
- H₂ hops to pentagonal center, diffuses.

Comment: rare, obviously. Yet a strong hint that H_2 may be key player for longer times (P. A. Fedders, 2000).

Statistics ?

- In 25 bond breaking events, 22 are FBCD.
- 3 are *Floating Bond Assisted* Diffusion.
- FBCD is more common and more general.

Y. Su et al, PRL 88 165503 (2002).

Picture of H diffusion

- The FBCD mechanism generates free atomic H.
- Such H is quickly trapped by Si-Si bond center sites or other reactive sites such as dangling bonds.
- H in BC sites is driven to hop from motion of silicon network. Toy model shows that thermal fluctuations "squeeze" the BC H out.

H dynamics: conclusions

- "Coordination fluctuation", a characteristic of "amorphous topology" at T>0 enhances FBCD diffusion mechanism, which dominates for short (several ps) times.
- Preliminary work suggests importance of H₂ (under study).
- FBCD provides free H (and dangling bonds!); hard to understand the energetics of breaking passivating H in other ways.

Light-induced effects

- A limiting factor in utilizing a-Si:H photovoltaics is light-induced device degradation. *Staebler-Wronski Effect -- ca. 20% reduction in PV efficiency due to light-induced trap formation.*
- The electron-lattice coupling plays a key role.
- A few key experiments:
 - NMR suggests that H-H distance of d=2.3±0.2Å created by light soaking (Su *et al*)
 - H motion is stimulated by light soaking (Isoya et al)
 - Defects (dangling bonds) are created by light soaking (Staebler-Wronski).
 - Its very nonlocal: "Up to 1000 H atoms are significantly displaced for each new light-induced defect" (Norberg '91)

Preliminary/Aside: Electron-lattice coupling is large for localized states

 Hellmann-Feynman theorem and harmonic approximation lead easily to expression for fluctuations in electronic eigenvalues:

$$\langle \delta \lambda_n^2 \rangle = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau dt \, \delta \lambda_n^2(t) \approx \left(\frac{3k_B T}{2M}\right) \sum_{\omega=1}^{3N} \frac{\Xi_n^2(\omega)}{\omega^2},$$

$$\Xi_n(\omega) = \sum_{\alpha=1}^{3N} \langle \psi_n | \frac{\partial \mathbf{H}}{\partial \mathbf{R}_\alpha} | \psi_n \rangle \, \chi_\alpha(\omega).$$

How sensitive is electron (energy *E*) to phonon (frequency ω)?____E-Fermi

216 atom WWW Model, SIESTA DZP

Electrons

Atta-Fynn et al, PRB 69 254204 (2004)

 $\Xi_{n}(\omega) = \sum_{\alpha} \langle \psi_{n} | \partial H / \partial R_{\alpha} | \psi_{n} \rangle \chi_{\alpha}(\omega)$ *The coupling between electron n and phonon* ω

Comments

1. Large e-p coupling for localized states near the gap.

2. For *localized* states, simple algebra leads to the conclusion that:

- a) Ξ^2 [for eigenvalue n] ~ *IPR* [n] b) $<\delta\lambda^2 > \sim IPR$
- 3. Expect significant effects on conductivity.
- *IPR* = inverse participation ration; simplest measure of localization

Thermal MD supports simple calculation

 $<\delta\lambda^2>$ — (T>0 property)

Fits analytic result for low T Localization (T=0 property)

Thermal motion modulates the eigenstates (charge density) too!

(a) A snaphot of the LUMO state: time=1147.5 fs

(b) A snaphot of the LUMO state: time= 1032.5 fs

The same eigenstate at two different instants of time (separated by ~100 fs!)

DAD and P. A. Fedders PRB 60 R721 (1999)

Why the big charge fluctuations?

Resonant cluster¹ argument:

- 1. Eigenvalues in gap are sensitive to thermal disorder.
- 2. Thermal disorder can tune cluster energies into resonance; then there is strong mixing between clusters; eigenstates change dramatically.

¹J. Dong and DAD, PRL **80** 1928 (1998); J. Ludlam *et al*, JPCM **17** L321 (2005).

Light: Discussion

- There is little certain about the theory of light-induced effects. Many models.
- Light-induced structural changes are mediated by the electrons (e-p coupling).
- Approach in two steps:
- 1. The sharply defined nature of the 2.3Å feature suggests the existence of a particular conformation. *Try to determine it.*
- 2. Consider local rearrangements due to changes in occupation of well-localized states.

2.3Å separation: SiH₂ is a plausible answer

- We tried various possibilities. In the solid state, the simplest (SiH₂) produces a mean proton-proton separation of 2.39Å. DZP basis and PBE were required.
- SiH₂ was made surgically: H added at four different sites, dangling bonds passivated and the system annealed and relaxed. Starting point was Mousseau 64-atom defect-free cell.

Model aSiH-72				
		H-H distance after relaxation		
Configurations	H–H distance before relaxation (Å)	LDA (SZ) (Å)	LDA (DZP) (Å)	GGA (DZP) (Å)
1	1.61	2.39	2.35	2.34
2	2.20	2.59	2.51	2.46
3	2.35	2.34	2.33	2.32
4	3.29	2.56	2.47	2.44
Average		2.47	2.42	2.39

APL 86 241916 (2005)

A direct approach?

- Since the electron-lattice coupling is large for localized states, occupation changes involving these states causes *local heating* near sites upon which the state is localized.
- Such heating is concentrated in defective part of system.

 The plea: reasonable excited states, picosecond simulations on >100 atoms!

Change charge states

- In small cell with simple Harris functional code, changed defect (DB) charge states and saw non-local changes in cell. Fedders, Fu, DAD PRL 68 1888 (1992)
- Have repeated this in a-Si:H with modern Hamiltonian and models, find enhanced H motion, defect creation and even SiH₂ formation.

Light-induced vs Thermal

does light just make heat?!

Light

- Creates protons separated by ~2.3Å (E)
- Creates new defects, on average well separated from pre-existing dangling bonds (E)
- SiH₂ in solid state seems to match NMR. (T/E)
- Enhances H motion. (E)

Heat

Thermal motion "frees" some H from bond-saturation role. (T)
There is substantial H diffusion in the network for 1000K. (T)
SiH₂ is observed at high T, starting from system with only defect-passivating H (T).

Discussion

- It is tempting to suppose that lightinduced occupation change induces local heating and thus enhanced H diffusion, defect formation and SiH₂.
- More work is needed on the pathway to form SiH₂, associated energetics, also more accurate methods.

Conclusions

- H motion is an interesting story in a-Si:H -- driven by some unexpected mechanisms.
- It appears that SiH₂ may be a product of light exposure, further accurate and direct simulations are needed.

Toy model

Lets work out the energetics of BC H in the simplest model imaginable. Compute total energies as function of R and \cup . Si lattice motion modulates the energetics. Use SIESTA.

Toy model: results

R

Total energy of toy model. Green: most attractive. If Si-Si bonds become too short or long, H binding weakens. Network dynamics affects this!

R

U

Temporal distribution for real MD run with 138-atom model. Note that the "real" system prefers configurations favorable to toy model.

Simulations in the lightexcited state: an example

H on the move

a.Original network b.H dissociates, makes DB c.Mobile H attaches to a DB d.Other (red) H shifts e.Rearrangements near defects f.SiH₂ formed

SiH₂ -- final state

TA, DAD JPCM '06

∖ H rearranges

rearrangements