

310/1828

310/5

Workshop on Biomedical Applications of High Energy Ion Beams

Co-sponsored by: ICGEB and University of Surrey

12-16 February 2007

Venue: Adriatico Guest House Giambiagi Lecture Hall ICTP, Trieste, Italy

Cell And Tissue Imaging

Borivoj VOJNOVIC Gray Cancer Institute, U.K.

Workshop on Biomedical Applications of High Energy Ion Beams

Cell and Tissue Imaging

B. Vojnovic, University of Oxford, Gray Cancer Institute

vojnovic@gci.ac.uk

ICTP, Trieste 13th February 2007

Cell and Tissue Imaging

Presentation outline

- The microscope and microscopy imaging methods
- Fluorescence microscopy and 'deep' imaging methods
- Widefield and beam-scanning methods
- Time-resolved and non-linear excitation methods
- Molecular imaging / protein interactions
- Image processing and segmentation
- Imaging methods applied to micro-irradiation

Light Microscopy basics....

We've probably all learnt about what a microscope does, but there is no harm in being reminded...

It does *not* 'make small objects larger', it shows us how small objects *interact* with light... Light paths in Eye transmitted-light microscope using Eyepiece Intermediate Köhler illumination 22 222 $\overline{}$ $\overline{222}$ image plane Tube lens Objective back focal plane Objective **Object** Condenser (@@@) 200 MMM 200 710 Condenser diaphragm - determines condenser numerical aperture Field diaphragm - determines 7111 *2002* 2007 200illuminated sample area Collector Lens M Lamp **IMAGING LIGHT PATHS ILLUMINATION LIGHT PATHS**

Microscope resolution – Rayleigh criterion

Defined as distance between two adjacent points which are 'just resolved'

When the objective numerical aperture matches that of the condenser, R is determined from the equation:

R = 0.61 λ / NA(obj)

wavelength of light numerical aperture of objective

Numerical aperture is determined by:

λ:

NA(obj):

NA(obj) = $n(sin(\theta))$

n = refractive index of the medium between the objective and the specimen (air, water, oil)

 θ = the angle defining the half-cone of light captured

Microscope resolution

0.2 na

Imaging transparent objects

In **phase contrast microscopy**, a hollow cone of light emanating from the phase annulus (ring aperture) illuminates the specimen.

Small refractive index differences within cellular components generate image contrast.

Light is either *diffracted* by cellular components, extending over all of objective rear focal plane or passes through *undeviated* through neutral density phase ring objective.

In the image plane, an interference pattern results, which produces **intensities proportional to the phase shift** induced by the specimen.

Differential Interference Contrast (DIC)

Illumination through a **polarizer** and a **Wollaston** prism that splits polarized light into two beams vibrating **perpendicular** to each other, travelling in slightly different directions. These are recombined in a second prism.

Colour and/or light intensity effects are related to **rate of change in refractive index**, **thickness**.

Orientation of specimen has pronounced effect on the relief-like appearance e.g. 180 degrees changes a hill into a valley or *vice versa*.

3-D appearance is **not a representation of the true geometric nature** of the specimen, but is an exaggeration based on optical thickness.

Hoffman modulation contrast

Simpler than DIC, relies on different optical thicknesses causing deviations of linearly polarised light through modulators with neutral density patterns.

Contrast generated by phase gradients.

Polarised light sample epi-illumination

light is scattered in the sample and its plane of polarisation is altered ...so it effectively 'trans-illuminates'

the preparation

Fluorescence imaging basics....

We've probably all learnt it but how far can we take it?

Jablonski diagram of fluorescence processes

Photobleaching significantly reduces or stops fluorescence altogether.

Reduction of emission intensity is also called fading.

This is subdivided into **quenching** and **bleaching**.

Bleaching is the irreversible decomposition of the fluorescent molecules in the presence of molecular oxygen.

Quenching also results in reduced fluorescence intensity and frequently comes about as a result of the presence of oxidizing agents or of salts of heavy metals or halogen compounds.

Quenching can also result from the *transfer of energy* to other so-called acceptor molecules, physically close to the excited fluorophores:

Resonance Energy Transfer. This is the basis for a new techniques of measuring distances far below the lateral resolution of the light microscope.

Fluorescent probe molecule reports 'classified' information on behaviour of surrounding molecules

HeLa cells

Fluorescence Intercalating DNA stain

phase contrast

Poor quality background due to Mylar substrate

From G. Flaccavento

Fluorescence photon budgets

Fluorophore molecule can emit typ. 10³ - 10⁴ quanta

- Any of the three can be enhanced at the expense of the other two
- Available quanta can be resolved in time or in wavelength, but only up to max. available

Fluorescence photon budgets

- 10⁶ molecules @ 1 μ M cell ≈ 1 pl
- 10¹⁰ photons **per cell** maximum
- At max. excitation $\approx 10^{13}$ photons per sec
 - Fluorescence lifetimes ≈ 10⁻⁹ 10⁻⁸ sec typical
- Collection, QE limitations ≈ 1-10% photons 'used'
- 10⁸ 10⁹ detected quanta per cell practical
- At max. excitation $\approx 10^{11} 10^{12}$ photons per sec
 - s/n ratio $\approx 10^4 10^5$ for steady-state signal

Distributed over time, space

The 'ultimate' camera? EMCCD

Fast optical sectioning

Scanning and Confocal Microscopy

....able to provide optical sectioning

The laser-scanning confocal microscope

Maintaining optical scan registration

Scanning microscopy exploiting absorption of two or more photons

....a better way to provide optical sectioning

Multi-photon excitation – principle

An *ultrashort* laser pulse is used for excitation – very high peak power, very low average power, ...100 fs in 10 ns...

Only a single voxel is excited at any one time – photon density appropriate only at focus

This excitation point is scanned in x,y and z to build up 3-D image

Multi-photon excitation - principle

Two-photon fluorescence excitation

Number of photons n_a absorbed per laser pulse

through two-photon excitation

$$n_a \sim \frac{(p_0^2 \delta)}{(\tau_p f_p^2)} [A^2/2\hbar c\lambda]^2$$

- p₀ average laser power
- δ 2-photon absorption x-section
- τ_p laser pulse duration
- fp laser repetition rate
- A objective numerical aperture
- h Planck's constant
- λ wavelength

Typ. repetition rates 80 MHz Typ. pixel dwell time 10 μs

Only a few photons per **laser pulse** are generated

Peak 10 kW+ per pulse 10¹⁰ photons per 100 fs pulse mW average power

Ex vivo imaging - rat gut

Image sequence of successive optically-sectioned layers

With MP excitation, it is possible to image deeply into specimens, (>>100 microns)

Two-photon fluorescence imaging - in vivo

muscle vasculature CBA mouse P22 fibrosarcoma BD9 rat HT29 human colon carcinoma SCID mouse

With G. Tozer, V. Prise

High resolution, microvessel imaging

Liver metastasis formation

GFP tumour cells

Collaborations with Jaehong Im, Ruth Muschel, ROBU, Oxford

Second harmonic generation

Laser field induces a non-linear, second order, polarization in the assembly of chromophores, producing a coherent wave at exactly twice the incident frequency (or half the wavelength)

SHG can only be produced from regions lacking inversion symmetry, since in centro-symmetric environments the polarization sums to zero.

Two-photon excited fluorescence

EGFP in vivo; ex vivo imaging

With B. Pedley, J Dearling, UCL

STED – 4π microscopy

Image generation

.....can we improve on classical methods

Imaging challenges

• *Fast* methods of imaging/scanning *large* areas

- *Fast* target identification methods
- *Automated* imaging + irradiation methods
- Cell signaling visualisation methods
- Deep / 3D imaging methods

Imaging at depth

- Good image = good point spread function
- Good point spread function = control of optical wavefront
- 2P/MP methods → maintenance of excitation pulse width
- Samples always modify the wavefront
- Objectives are designed to 'work' at a given depth

Aberrations in multi-layer media

- Aberrations introduced when focussing through layers of different refractive indeces
- Aberration depends on focus depth
- Variable, automated correction required
- Use of adaptive optics

The perfect wavefront

Zernike modes

Zernike mode description is mathematically convenient, where the wavefront is described in terms of normalised polynomials of different order, frequency, harmonics

Example of polynomials describing two common aberrations

Correcting aberrations: Imaging Adaptive control

- What do we require from an Adaptive Optical system?
 - Ability to shape the wavefront of an incoming laser beam
 - Ability to control and optimise the wavefront
 - Ability to perform corrections dynamically

Adaptive optics system:wavefront sensoraberration correction elementfeedback loop

Scanning microscope AO

Configuration of 'adaptive confocal microscope'

Wavefront control

How?

Deformable mirror technologies in imaging paths

Exploiting non-linear effects in 2P and controlling the propagation of ultrafast excitation pulse

Understanding how the sample affects the propagation of the excitation (and emission) wavefronts – determination of phase delays

Example of measured wavefront data

Specimen: c. elegans Scanned region: 50 x 50 microns wavefronts measured on 16 x 16 grid of spots Objective NA = 1.2

Schwertner et al., OPTICS EXPRESS 6548 Vol. 12, No. 26, 27 December 2004

Simulation of Zernike-based modal correction

Top: original individual wavefront, bottom: correction up to Zernike mode 22

Specimen #	1	2	3	4	5	6
Description	Brain	Oocyte	Liver tiss.	Muscle (str.)	C. Elegans	VAS
Thickness (microns)	30	80	20	40	40	30
Initial mean Strehl	0.40	0.47	0.32	0.48	0.46	0.47
Corrected mean Strehl	0.65	0.62	0.65	0.81	0.71	0.72
Mean Signal improvement	757 %	627 %	784 %	335 %	965 %	280 %

Deformable membrane mirror

- Al or Au coated SiN membrane above electrode structure
- Applied voltages cause membrane to deform by electrostatic forces

- 37 control electrodes, 15 mm diameter, bound edge
- High reflectivity, continuous phase function, bandwidth ~1 kHz
- Correction range limited to a few wavelengths

Peak finding

- Several optimisation algorithms could be used
 - Modified Hill Climbing
 - Genetic Algorithm
 - Random Search
 - Adapted random search
 - Simulated annealing
 - Model-based searches

mirror

OKO membrane mirror, pupil plane interferograms and focal plane images

Booth *et al*., Wilson Group, Oxford

'High resolution' imaging at depth

Pulse broadening in lenses

Ultrashort pulse measurement

Pulse front determination

Determination of *amplitude* and *phase* of electric field of the pulse at a large number of spatial locations

Characterisation of ICC

Effect of inserting dislocation

'Continuum' generation

Excitation wavelength selection through continuum generation

Use of photonic fibres

NIR pulse in.....'white light' pulse out (>>mW average, ps pulses)

Spectroscopy Wavelength agility Single-photon time-resolved

collaborative studies with J. Girkin, G. McConnell

Fluorescence lifetime imaging

.....able to image molecular interactions – and applied to far-field methods with near-field performance

Fluorescence lifetime imaging - FLIM

Kinetic trace at every pixel acquired (time resolution 130 ps) Kinetics analysed at every pixel to derive lifetime (τ) Lifetime mapped in (false colour) x (intensity)

Analysis of the excited state lifetime of a population of fluorescent probe molecules

Informs on molecular environment

Spatially resolved

acquisition of data

Intensity image

Lifetime image

Főrster Resonance Energy Transfer (FRET)

When donor emission spectrum overlaps with acceptor absorption spectrum
When dipole donor and acceptor moments are aligned
Probability of FRET∞ [separation]⁻⁶ (0.1-10 nm range)

Főrster Resonance Energy Transfer (FRET)

FRET vs. Co-localisation

Pixel-by-pixel analysis

Global analysis

- Sum transients over all pixels and determine component lifetimes
- Make relative amplitudes free parameters for each pixel
- Fit across all pixels with same τ_1 and τ_2
- Determine overall χ^2 (error map)
- Vary τ_1 and τ_2 (same at all pixels) and relative amplitudes until the overall χ^2 is minimised
- Faster computation (fewer free parameters) than free pixel fitting
- More accurate fits with poor signal-to-noise ratios
- Reduced loss of spatial resolution

Analysis of simulated image – pixel and global

Marquardt individual pixel fitting

Global analysis

Lifetime analysis toolbox

FLIM/FRET example: GFP donor, Cy3 acceptor

The next generation of instruments....

- Disparate but complementary technologies required
- 'Individual' techniques e.g. micro-irradiation or FLIM/FRET proven and available
- Convergence of high throughput, high content imaging and high resolution targeting methods
- High degree of automation and control
- High speed FLIM will be essential + TCSPC 'gold standard'
- Data processing, analysis and appropriate biology experiment design likely to be challenges

Image processing

.....a subject in its own right and with numerous applications in microscopy

Finding cell nuclei

Image processing –finding cell nuclei

Compact Hough Transform

Search outwards Local area mapping

- Independent of intensity
- Not too sensitive to shape
- Overlapping targets identified

Compact Hough transform And Radial Mapping
Target identification – CHARM algorithm

high-contrast - HeLa nuclei

poor-contrast, noisy - T98G nuclei

Hoechst 33342 intercalating DNA stain

Barber, P.R., Vojnovic, B., Kelly, J., Mayes, C.R., Boulton, P., Woodcock, M. and Joiner, M.C. (2001) Automated Counting of Mammalian Cell Colonies. *Physics in Medicine and Biology* 46, 63-76.

Measurement of yH2AX foci

- H2AX represents 2 10% of the H2A subfamily of histone proteins in chromatin
- Phosphorylated rapidly in response to DSB at serine 139
- ~1% of the H2AX phosphorylated per Gy and number of γH2AX foci ≈ number of DSB
- Acts as major **recruiter** of repair enzymes
- Kinases involved in the phosphorylation step are ATM/ATR
- Cellular response to dsb intermediates in V(D)J recombination, meiotic recombination

yH2AX foci – CHARM algorithm

Apply same algorithm in two-step process: find nuclei, find foci within nuclei – different size criteria

With Kai Rothkamm, GCI

Image processing large areas

GRAY CANCER INSTITUTE

a) Unprocessed composite image, images in 'correct' sequence but image overlaps are incorrect

b) Image overlaps determined using cross-correlation; morphology 'almost correct' and intensity variations due to tissue scatter very obvious

c) Resulting image after cross-correlation and blending

Before and after blending process

"Rubbish in – rubbish out" applied to computers not always true!...

Large area example - fluorescence

Widefield fluorescence excitation

Large area example - fluorescence

A 'false colour' image can then be composed from mosaics, individually acquired at different excitation and emission wavelengths

Thanks to B. Pedley (Royal Free Hospital, London) for samples

Image processinghas a long way to go

I conuolt blueiee taht I cluod aulacity uesdnatnid waht I was rdenieg. The phaonemneal pweor of the hmuan mnid Addcernig to a rscheearch at Cmabrigde Vinervtisy, it dosoe't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoatnt tihng is taht the frist and lsat ltteer be in the rghit pclae. The rset can be a taotl mses and you can sitll raed it wouthit a porbelm. Tihs is beuseae the hmuan mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe. Azmanig huh? yaeh and I awlyas tohuoht slpeling was ipmorantt!

Applications to micro-irradiation

....what do we need to have in an ideal system?

Imaging – irradiation workstation

Scanning focussed vertical ion nanobeam **UK facility for cell irradiation and analysis**

Multipurpose imaging system

- Widefield transillumination modes
- Widefield fluorescence imaging down to 'single' photons
- Scanned beam fluorescence imaging, 1PE and 2PE
- Scanned beam time-resolved fluorescence imaging, 1PE and 2PE
- Ion beam particle counting
- Imaging of samples in vacuo and samples held on substrates
- Deep tissue imaging modes
- Long-term / time lapse imaging modes

Scanning focussed vertical ion nanobeam UK facility for cell irradiation and analysis

Why imaging flexibility....complexity?

- Some experiments require irradiation of large numbers of targets
- 10⁵ targets per hour aimed for: competing requirements in apportioning time between imaging/finding and irradiation...and sample movement (5-10 cm²)....≈ 35 ms
- Some experiments require irradiation of few targets (1?) and following of effects on neighbouring biology
- Some experiments require irradiation of few (10's-100's) targets and following of signalling processes within target and/or neighbours

Scanning focussed vertical ion nanobeam **UK facility for cell irradiation and analysis**

- Based on horizontal 2 MV tandetron beam line(s)
- Vertical beam line extension in new building
- Biological sample nano- and micro-irradiation, elemental analysis, focussed ion beams, wide range of ions

Optical detection end-station

Cell imaging / cell finding

Summary

- Numerous cell and tissue imaging methods are available and new ones are evolving
- To understand biological processes associated with low dose exposures microbeam approaches can be combined with imaging methods
- Imaging techniques based on 2PE, 1PE FLIM can be used to obtain 3-D, 2-D information on molecular/protein interactions and signalling events, will be key future technologies
- Imaging without integrated image processing and image analysis is not an option!
- Automation and high throughputs are essential for future developments
- High cost and development cost of customised solutions dictates flexibility of new designs, combining several imaging modalities

Acknowledgements

Imaging

S Ameer Beg **PR** Barber R Edens J Gilbey J Girkin **RJ Hodgkiss** R Juškaitis **RJ** Locke G McConnell **RG** Newman V Prise **S** Roberts G Tozer T Wilson

Microbeams

- PR Barber M Folkard **G** Flaccavento S Gilchrist G Grime K Kirkby **RJ** Locke **RG** Newman **BD** Michael **KM** Prise
- P Schettino
- **R** Sunderland
- L Tartier

FLIM/FRET

S Ameer Beg **PR** Barber F Festy **RJ** Locke **RG** Newman T Ng **M** Parsons N Edme **M** Keppler **M** Peter

RESEARCH COUNCILS UK

JniS

Collaborators.....

M Booth, University of Oxford R Juškaitis, University of Oxford J Girkin, Strathclyde University G Grime, University of Surrey K Kirkby, University of Surrey B Larijani, LRI, London T Ng, King's College, London P Parker, King's College, London M Parsons, King's College, London K. Rothkamm, University of Oxford M Keppler, King's College, London T Wilson, University of Oxford