

310/1828

310/6

Workshop on Biomedical Applications of High Energy Ion Beams

Co-sponsored by: ICGEB and University of Surrey

12-16 February 2007

Venue: Adriatico Guest House Giambiagi Lecture Hall ICTP, Trieste, Italy

Cell Cycle Models and Modelling Cellular Response to Radiation

> Norman KIRKBY University of Surrey, U.K.

14:00 – 15:30 Cell Cycle Models And Modelling Cellular Response To Radiation

Dr. Norman Kirkby, University of Surrey, U.K.

The Abdus Salam International Centre for Theoretical Physics

Tuesday 13th Feb 2007

Talk Outline

- Ground Rules
- Introduction
- Cell Cycle Modelling: CelCyMUS
- Modelling Cell Survival
- Example Application
- Questions

Plato's Academy

The inscription above the door read:

"Let no one ignorant of geometry enter here"

Tuesday 13th Feb 2007

Introduction to Mathematical Modelling

- Encode knowledge
- Design and operation of processes such as radiotherapy
- Fundamental to scientific method

University of Surrey Introduction to Mathematical Modelling

Mathematical Models of Cells

- Cell Cycle Model University of Surrey CelCyMUS
- A model that treats cells as individuals!
- Cells are born, grow, divide, die etc
- A cyclic sequence of growth phases

CelCyMUS

- A generic model
- PYO phases etc
- To build specific models of specific organisms
- Cells get older
- Cells move on to other phases
- Cells wash out of the reactor...

CelCyMUS Notation / Equations

$$\frac{\partial \mathbf{n}_{x}(t,\tau_{x})}{\partial t} = \frac{F(t)}{V} \left(\mathbf{n}_{x}(t,\tau_{x}) - \mathbf{n}_{xi}(t,\tau_{x}) \right) - \sum_{j=1}^{G_{x}} r_{jx} - \frac{\partial \mathbf{n}_{x}(t,\tau_{x})}{\partial \tau_{x}}$$

- n_x is population density in phase x, per unit volume of space = Cells/m³/hr
- Time, t, & age within phase x is τ_x
- $n_x d\tau_x$ is the number of cells per unit volume with ages between τ_x and $\tau_x+d\tau_x$

About Population Balances

$$\frac{\partial \mathbf{n}_{x}(t,\tau_{x})}{\partial t} = \frac{\mathbf{F}(t)}{\mathbf{V}} \left(\mathbf{n}_{x}(t,\tau_{x}) - \mathbf{n}_{xi}(t,\tau_{x}) \right) - \sum_{j=1}^{G_{x}} \mathbf{r}_{jx} - \frac{\partial \mathbf{n}_{x}(t,\tau_{x})}{\partial \tau_{x}}$$

- A number balance on a control volume, V.
- This volume is assumed to be well mixed
- Flow rate F(t) through the system solvent/serum

N_{xi} is the population age distribution being
 Convected into the control volume

About Population Balances

$$\frac{\partial \mathbf{n}_{x}(t,\tau_{x})}{\partial t} = \frac{F(t)}{V} \left(n_{x}(t,\tau_{x}) - n_{xi}(t,\tau_{x}) \right) - \sum_{j=1}^{G_{x}} r_{jx} - \frac{\partial n_{x}(t,\tau_{x})}{\partial \tau_{x}} \right)$$

- Accumulation with respect to time
- Population dynamics
- E.g. how the number of teenagers is varying with time

$\frac{\partial n_x(t,\tau_x)}{\partial t} = \frac{F(t)}{V} \left(n_x(t,\tau_x) - n_{xi}(t,\tau_x) \right) - \sum_{j=1}^{G_x} r_{jx} - \frac{\partial n_x(t,\tau_x)}{\partial \tau_x} \right)$

- The difference between inlet and outlet
- Transition to other phases, e.g. the operation of checkpoints
- Rate of change of population with respect to age

$\frac{\partial n_{x}(t,\tau_{x})}{\partial t} = \frac{F(t)}{V} \left(n_{x}(t,\tau_{x}) - n_{xi}(t,\tau_{x}) \right) - \sum_{j=1}^{G_{x}} r_{jx} - \frac{\partial n_{x}(t,\tau_{x})}{\partial \tau_{x}} \right)$

- Variations of population density with age
 - Previous changes in birth rate
 - Age-related transitions

Tuesday 13th Feb 2007

$\frac{\partial \mathbf{n}_{x}(t,\tau_{x})}{\partial t} = \frac{F(t)}{V} \left(n_{x}(t,\tau_{x}) - n_{xi}(t,\tau_{x}) \right) - \sum_{j=1}^{G_{x}} r_{jx} - \frac{\partial n_{x}(t,\tau_{x})}{\partial \tau_{x}} \right)$

- Variations of population density with age
 - When population density decreases with age accumulation wrt time will be positive if all else is frozen
 - When population density increases with age accumulation wrt time will be negative if all else is frozen

Tuesday 13th Feb 2007

Transition Rules

- Operation of checkpoints
- Cell death
 - Starvation
 - Mechanical damage
 - Apoptosis
- Changes of cell state
 - Damage by radiation

What have we forgotten?

- Position
 - We assume the population is homogeneous in the control volume
- Cell diffusion
 - Fickian
 - Motility, e.g. chemotaxis

Method of Solution

- $n_x(t,\tau_x)$ is a function of time and age
- Apply the chain rule:

$$dn_{x} = \left(\frac{\partial n_{x}}{\partial t}\right) dt + \left(\frac{\partial n_{x}}{\partial \tau}\right) d\tau$$

Method of Solution

• Rearrange for the 'total derivative'

$$\frac{\mathrm{Dn}_{\mathrm{x}}}{\mathrm{Dt}} = \left(\frac{\partial \mathrm{n}_{\mathrm{x}}}{\partial \mathrm{t}}\right) + \left(\frac{\partial \mathrm{n}_{\mathrm{x}}}{\partial \tau}\right) \frac{\mathrm{d}\tau}{\mathrm{dt}}$$

• And compare to our population balance

$$\frac{\partial n_x}{\partial t} = \frac{F(t)}{V} \left(n_x - n_{xi} \right) - \sum_{j=1}^{G_x} r_{jx} - \frac{\partial n_x}{\partial \tau_x}$$

Tuesday 13th Feb 2007

Method of Solution

• Rearrange for the 'total derivative'

Method of Characteristics

• Firstly we note, (with relief...)

- We have reduced one PDE to two ODEs
- The total derivative applies along these trajectories

Method of Characteristics

Tuesday 13th Feb 2007

Numerical Solution

- Integrate the total derivative numerically
- Intermediate function evaluations are expensive
- Currently use Euler

Cytological State Vector, C_c

- We require rate expressions for input & output.
- We use either simple mass transfer for nutrients, or enzyme kinetics
- Each cell is a batch reactor

Medium State Vector, C_s

- We write dynamic material balances for each component in the medium
- We calculate uptake (or production) by summation of the rates for every cell

In = Out + Acc wrt time + Destroyed by cells + Destroyed by reaction

$$FC_{sF} = FC_{s} + V\frac{dC_{s}}{dt} + V\sum_{i=1}^{i=N_{x}} \left\{ \int r_{si}n_{i}d\tau_{i} \right\} + Vr_{s}'$$

Tuesday 13th Feb 2007

Simulations

- Computer program input
 - Initial age distribution
 - Parameters of each transition rule, for every cell cycle phase
 - Cell destination from each transition rule

Simulations

Each bucket contains cells of a different age

At each time step cell move from one bucket to the next

Unless they are removed or destroyed

Modelling the Effect of Radiation

• Cell survival depends on cell line

Modelling the Effect of Radiation

- Cell survival depends on location in cell cycle
 - Sinclair and Morton 1965

Radiation Models

• Linear quadratic

$$S_{f} = \exp(-\alpha D - \beta D^{2})$$

• Low dose hypersensitivity

$$S_{f} = \exp(-\alpha_{R} \left\{ 1 + \left(\frac{\alpha_{R}}{\alpha_{S}}\right) \exp\left(\frac{-D}{D_{c}}\right) \right\} D - \beta D^{2})$$

Tuesday 13th Feb 2007

Morgiane's Model

- Below some critical dose, Dc, any given cell follows a 'sensitive' LQ
- Above the critical dose, the same cell would follow a 'resistant' LQ
- The critical dose is normally distributed in a population of cells

Low-Dose Hypersensitivity

Model of cell survival to radiation

Worked Example

- Cell cycle model for 'normal' and 'irreparably-damaged' cells
- Cell cycle data for distribution of SF vs dose around the cell cycle
- Real and proposed radiation fractionation schedules

Tuesday 13th Feb 2007

Controlling Growth Rate

- No diffusion or nutritional limitations
- Phase durations could be extended
- Use proliferation factor
 - not all daughters are viable
 - some detach from the tumour
 - some attacked by immune system ...

University of Surrey Experimental Data for T98G

• Whole population

 Expt data from Short, Mitchell, Boulton, Woodcock & Joiner, Int J Rad Biol, 1999, 75(11), pp1341 - 1348. IRR fitted to whole population

University of Surrey Data for Phases of T98G

experimental and fitted curves for G1 phase

University of Surrey Data for Phases of T98G

experimental and fitted curves for S phase

University of Surrey Data for Phases of T98G

experimental and fitted curves for G2 & M

- Conventional
 - -2 Gy/day in one fraction
 - Monday Friday
 - -6 weeks = 60 Gy total
- CHART Continuous Hyperfractionated Accelerated Radio Therapy
 - 3 fractions/day of 1.5 Gy each (08.00, 14.00, 20.00)
 - Every day (incl Saturday and Sunday)
 - for 12 days = 54 Gy total

Clinical Treatment Strategies

Slow Growing T98g Response To Radiotherapy

Fast Growing T98g Response To Radiotherapy

Discussion

- Slow T98G tumour has higher chance of complete cure with conventional strategy
- Fast T98G tumour has a better chance of complete cure with CHART
- If cure not achieved CHART leaves the larger T98G tumour in the long run.

Slow Growing U373 Response To Radiotherapy

Fast Growing U373 Response To Radiotherapy

Discussion

- Slow and fast U373 tumour has higher chance of complete cure with conventional strategy
- If cure not achieved CHART leaves the larger U373 tumour in the long run.

Effect of CHART intervals

- We have assembled a flexible and general model for simulation of radiotherapy
- We can already simulate known, existing clinical features of conventional radio therapy and CHART

Future Work

University of Surrey

- Add structure in space & diffusion of oxygen, nutrients and cells
- Add hypoxic and necrotic phases
- Refine survival models incorporating dose rate
- Refine survival models for HRS
- Add survival models for ion beam therapy
- Stem cell populations

Summary

- Cell populations can be modelled to include cell cycle effects
- Simulation is a powerful tool to check understanding, completeness and consistency of data

Deficiencies and Disadvantages

 There is no simple way to allow the development or destruction of spatially organised tissue

- Cellular automata are the future...

Cellular Automata Models

Deficiencies and Disadvantages

- There is no direct 'patient outcome' that can be related to clinical trials
 - But this I will cover tomorrow!

- Paul Hayter
- Ray Spier
- David Faraday
- Sónia Araújo
- Hamid Fotuhi
- Tigran Arzumanov
- Ruben Rodriguez
- Gemma Slater
- Liliana Cuenca
- Morgiane Richard

- Neil Burnet
- Raj Jena
- Sarah Jefferies
- Susan Short
- Peter Johnston
- Kevin Prise
- Melvyn Folkard
- Roger Webb
- Karen Kirkby

Collaborators

- M Eng Projects
 - Roos Wulan
 - Graham Moffat
 - Anthony
 Skadorwa
 - Femi Oluboyede
 - Malak Hamden
 - Asli Tamer
 - Ollie Jones

University of Surrey Acknowledgements

- Life Sciences Interface of the EPSRC,
- The Master and Fellows of Fitzwilliam College
- The Addenbrooke's Hospital,
- The Department of Oncology, University of Cambridge,
- Marie Curie Research Training Network "Cellion"
- The Gray Cancer Institute
- Surrey Ion Beam Centre
- School of Engineering, Surrey

Tuesday 13th Feb 2007

Thank you for listening

Questions

"All models are wrong but some are useful" G. E. P. Box

Tuesday 13th Feb 2007