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14:00 – 15:30 Cell Cycle Models And Modelling 
Cellular Response To Radiation

Dr. Norman Kirkby, University of Surrey, U.K.
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SE England
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Views of Guildford and Campus
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Talk Outline
• Ground Rules
• Introduction
• Cell Cycle Modelling:  CelCyMUS
• Modelling Cell Survival
• Example Application
• Questions
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Plato’s Academy

“Let no one ignorant of 
geometry enter here”

The inscription above the 
door read:
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The Bioprocess Engineering Group

Modelling
&

Experiments
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Introduction to Mathematical 
Modelling

• Encode knowledge
• Design and operation of processes such 

as radiotherapy
• Fundamental to scientific method
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Introduction to Mathematical 
Modelling

Observe

PostulateExperiment

Predict
Model
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Mathematical 
Models
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Mathematical Models of Cells
• Cell Cycle Model University of Surrey 

CelCyMUS
• A model that treats cells as individuals!
• Cells are born, grow, divide, die etc
• A cyclic sequence of growth phases
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The Cell 
Cycle

x2

First Gap = G1

DNA
Synthesis = S

Second Gap = G2

Mitosis = M
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CelCyMUS

• A generic model
• PYO phases etc
• To build specific models of specific 

organisms
• Cells get older
• Cells move on to other phases
• Cells wash out of the reactor...
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CelCyMUS Notation / Equations

• nx is population density in phase x, per 
unit volume of space = Cells/m3/hr

• Time, t, & age within phase x is τx

• nxdτx is the number of cells per unit 
volume with ages between τx and τx+dτx

( )
xG

xi x jx
x x x x

x x
j 1 x

F(t) n (n ( t, ) r
t V
t, ) n (t, )n (t, )

=

∂ ∂
= − τ − −

∂
τ τ

τ
∂τ∑



Tuesday 13th Feb 2007 14

About Population Balances

• A number balance on a control volume, V.
• This volume is assumed to be well mixed
• Flow rate F(t) through the system –

solvent/serum
• Nxi is the population age distribution being 

convected into the control volume
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About Population Balances

• Accumulation with respect to time
• Population dynamics
• E.g. how the number of teenagers is varying 

with time
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About Population Balances

• The difference between inlet and outlet
• Transition to other phases, e.g. the operation

of checkpoints
• Rate of change of population with respect to 

age
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About Population Balances

• Variations of population density with age
– Previous changes in birth rate
– Age-related transitions
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About Population Balances
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About Population Balances

• Variations of population density with age
– When population density decreases with age 

accumulation wrt time will be positive if all else 
is frozen

– When population density increases with age 
accumulation wrt time will be negative if all else 
is frozen
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Transition Rules
( )
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Transition Rules
• Operation of checkpoints
• Cell death

– Starvation
– Mechanical damage
– Apoptosis

• Changes of cell state
– Damage by radiation
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What have we forgotten?
• Position

– We assume the population is 
homogeneous in the control volume

• Cell diffusion
– Fickian
– Motility, e.g. chemotaxis
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Method of Solution
• nx(t,τx) is a function of time and age
• Apply the chain rule:

x x
x

n ndn dt d
t

∂ ∂⎛ ⎞ ⎛ ⎞= + τ⎜ ⎟ ⎜ ⎟∂ ∂τ⎝ ⎠ ⎝ ⎠
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Method of Solution
• Rearrange for the ‘total derivative’

x x xDn n n d
Dt t dt

∂ ∂ τ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂τ⎝ ⎠ ⎝ ⎠
• And compare to our population balance
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Method of Solution
• Rearrange for the ‘total derivative’

x x xDn n n d
Dt t dt

∂ ∂ τ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂τ⎝ ⎠ ⎝ ⎠
• And compare to our population balance
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Method of Characteristics
• Firstly we note, (with relief…)

xd 1
dt
τ

=

• We have reduced one PDE to two ODEs
• The total derivative applies along these 

trajectories
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Method of Characteristics
• Along the 

characteristic 
ground curves
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Numerical Solution
• Integrate the total derivative numerically
• Intermediate function evaluations are 

expensive
• Currently use Euler
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Cytological State Vector, Cc

• We require rate expressions for input & 
output.

• We use either simple mass transfer for 
nutrients, or enzyme kinetics

• Each cell is a batch reactor
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Medium State Vector, Cs
• We write dynamic material balances for each 

component in the medium
• We calculate uptake (or production) by 

summation of the rates for every cell
In   =   Out   +   Acc wrt time   +   Destroyed by cells   +   Destroyed by reaction

{ }
Xi N

's
sF s si i i s

i 1

dCFC FC V V r n d Vr
dt

=

=

= + + τ +∑ ∫
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Simulations
• Computer program input

– Initial age distribution
– Parameters of each transition rule, for 

every cell cycle phase
– Cell destination from each transition rule
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Simulations

Each bucket contains 
cells of a different age

At each time step cell 
move from one bucket to 
the next

Unless they are removed 
or destroyed

G1

S

G2

M
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Modelling the Effect of Radiation
• Cell survival depends on cell line
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Modelling the Effect of Radiation
• Cell survival depends on location in cell cycle

– Sinclair and Morton 1965
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Radiation Models
• Linear quadratic

2
fS exp( D D )= −α −β

• Low dose hypersensitivity

2R
f R

S c

DS exp( 1 exp D D )
D

⎧ ⎫⎛ ⎞ ⎛ ⎞α −⎪ ⎪= −α + −β⎨ ⎬⎜ ⎟ ⎜ ⎟α⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
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Morgiane’s Model
• Below some critical dose, Dc, any given 

cell follows a ‘sensitive’ LQ
• Above the critical dose, the same cell 

would follow a ‘resistant’ LQ
• The critical dose is normally distributed 

in a population of cells
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Model of cell survival to radiation
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Worked Example
• Cell cycle model for ‘normal’ and 

‘irreparably-damaged’ cells
• Cell cycle data for distribution of SF vs

dose around the cell cycle
• Real and proposed radiation 

fractionation schedules
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Controlling Growth Rate

• No diffusion or nutritional limitations
• Phase durations could be extended
• Use proliferation factor

– not all daughters are viable
– some detach from the tumour
– some attacked by immune system ...
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Controlling Growth Rate
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Experimental Data for T98G
• Whole population

– Expt data from Short, Mitchell, Boulton, Woodcock & Joiner, Int J Rad Biol,1999, 
75(11),pp1341 - 1348.  IRR fitted to whole population
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Data for Phases of T98G
• experimental and fitted curves for G1 phase
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Data for Phases of T98G
• experimental and fitted curves for S phase
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Data for Phases of T98G
• experimental and fitted curves for G2 & M
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Clinical Treatment 
Strategies

• Conventional
– 2 Gy/day in one fraction
– Monday - Friday
– 6 weeks = 60 Gy total

• CHART - Continuous Hyperfractionated
Accelerated Radio Therapy
– 3 fractions/day of 1.5 Gy each (08.00, 14.00, 20.00)

– Every day (incl Saturday and Sunday) 
– for 12 days = 54 Gy total
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Slow Growing T98g Response To Radiotherapy

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

0 200 400 600 800 1000 1200 1400 1600

Time (hr)

C
el

l N
um

be
r

Conventional CHART

Start of Radiotherapy



Tuesday 13th Feb 2007 49

Fast Growing T98g Response To Radiotherapy
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Discussion

• Slow T98G tumour has higher chance of 
complete cure with conventional strategy

• Fast T98G tumour has a better chance of 
complete cure with CHART

• If cure not achieved CHART leaves the 
larger T98G tumour in the long run.
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Slow Growing U373 Response To Radiotherapy
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Fast Growing U373 Response To Radiotherapy
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Discussion

• Slow  and fast U373 tumour has higher 
chance of complete cure with 
conventional strategy

• If cure not achieved CHART leaves the 
larger U373 tumour in the long run.
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Effect of CHART intervals
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Conclusions

• We have assembled a flexible and 
general model for simulation of radio-
therapy

• We can already simulate known, existing 
clinical features of conventional radio 
therapy and CHART
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Future Work

• Add structure in space & diffusion of oxygen, 
nutrients and cells

• Add hypoxic and necrotic phases
• Refine survival models incorporating dose rate
• Refine survival models for HRS
• Add survival models for ion beam therapy
• Stem cell populations
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Summary
• Cell populations can be modelled to 

include cell cycle effects
• Simulation is a powerful tool to check 

understanding, completeness and 
consistency of data
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Deficiencies and Disadvantages
• There is no simple way to allow the 

development or destruction of spatially 
organised tissue
– Cellular automata are the future…
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Cellular Automata 
Models

Growth of glioma cells 
at 72 days

660µm

Necrotic 
core

Quiescent 
cells

Proliferative 
rim
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Deficiencies and Disadvantages
• There is no direct ‘patient outcome’ that 

can be related to clinical trials
– But this I will cover tomorrow!
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Thank you for listening

Questions
“All models are wrong but some are useful”

G. E. P. Box


