

International Atomic Energy Agency

SMR 1829 - 8

Winter College on Fibre Optics, Fibre Lasers and Sensors

12 - 23 February 2007

Photonic crystal fibres

Jonathan Knight

University of Bath United Kingdom

Group velocity dispersion

Another important parameter is the groupvelocity dispersion (GVD, D - variation of v_g with frequency) which determines how pulses spread out (disperse) as they propagate.

Units of D = ps/(nm.km)

- Material dispersion
- Waveguide dispersion
- "structural" dispersion (in photonic crystals)

- Introductions
- Reminder about Fourier transforms
- Brief review of fibre optics
- Introduction to photonic crystal fibres
- Fabrication
 - Dispersion and number of guided modes in solid-core fibres
 - Supercontinuum and soliton optics
 - Frequency metrology, Optical coherence tomography

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

- Introductions
- Reminder about Fourier transforms
- Brief review of fibre optics
- Introduction to photonic crystal fibres
- Fabrication
- Dispersion and number of guided modes in solid-core fibres
- Supercontinuum and soliton optics
- Frequency metrology, Optical coherence tomography

- Introductions
- Reminder about Fourier transforms
- Brief review of fibre optics
- Introduction to photonic crystal fibres
- Fabrication
- Dispersion and number of guided modes in solid-core fibres
- Supercontinuum and soliton optics
- Frequency metrology, Optical coherence tomography

The importance of dispersion...

Dispersing a white-light spectrum

Generating white light from a laser source in a photonic crystal fibre

- Introductions
- Reminder about Fourier transforms
- Brief review of fibre optics
- Introduction to photonic crystal fibres
- Fabrication
- Dispersion and number of guided modes in solid-core fibres
- Supercontinuum and soliton optics

Frequency metrology, Optical coherence tomography

Selected reading	
Reviews:	J. C. Knight, Nature, 424 , 847 (2003) P. St. J. Russell, Science 299 , 358 (2003)
Classic papers:	 Kaiser, P. & Astle, H. W., Low loss single material fibers made from pure fused silica. Bel Syst. Tech. Journ. 53 1021-1039 (1974) Knight, J. C., Birks, T. A., Russell, P. St.J. and Atkin, D. M., All-silica single-mode optical fiber with photonic crystal cladding Opt. Lett. 21 1547-1549 (1996), errata 22 484 (1997) Birks, T. A., Knight, J. C. and Russell, P. St.J., Endlessly single-mode photonic crystal fibe Opt. Lett. 22 961-963 (1997) Kumar, V. V. R. K. et al. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Opt. Express 10 1520-1525 http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-25-1520 (2002) Ranka, J. K., Windeler, R. S. and Stentz, A. J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm. Opt. Lett. 25 25-27 (2000) Udem, T., Holzwarth, R. and Hänsch, T. W. Optical frequency metrology. Nature 416 233-237 (2002) Povazay, B. et al. Submicrometer axial resolution optical coherence tomography. Opt. Lett 7 1800-1802 (2002)
Topical work:	 B. Zsigri et al., Demonstration of broadcast, transmission and wavelength conversion functionalities using photonic crystal fibers. IEEE Photon. Technol. Lett. 18 2290 (2006) J. H. Rothwell et al. Photonic sensing based on variation of propagation properties of photonic crystal fibers. Optics Express 14 12445 (2006) H. Hasegawa et al. 10Cb/s transmission over 5km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL and Si-APD. IEICE Electronics Express E. F. Chilcce et al., Tellurite photonic crystal fiber made by a stack-and-draw technique. Journ. Non-Crystalline Solids 352 3423 (2006)

Overview of this section

- Multi-core fibres and photonic bandgaps
- Simple bandgap fibres
- Bend loss and simple bandgap fibre designs
- Hollow core photonic bandgap fibres
- Scattering and loss in HC PBGF's
- 7-cell and 19-cell designs
- HC-PBGF's for the mid-infrared

Working hollow-core fiber...

Hollow-core fiber

What determines minimum attenuation?

• Light is scattered out of fundamental mode, into (core-) guided or (cladding-) propagating modes

• Scattering is due to smallscale irregularities/roughness on glass surface

Hollow-core fiber guiding green light

Attenuation is due to scattering from glass
Larger cores reduce overlap of mode with glass
Overlap remains sensitive to core surroundings
In particular, core wall

• In particular, core wall thickness must be carefully chosen

<section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text>

Mode-locked fibre lasers

- For mode-locked operation, want total round-trip dispersion to be close to zero. This is usually achieved by having opposite signs of dispersion in different parts of the cavity loop
- Mode-locking mechanisms are many, but some of the most popular are nonlinear polarisation evolution, SESAM

Reminder about GVD

In plain silica: GVD is anomalous at wavelengths longer than 1300nm, and normal at shorter wavelengths

In conventional fibres: GVD is <u>always normal</u> at wavelengths shorter than 1300nm. It can be normal at longer wavelengths too through fibre design. However, it is usually anomalous at wavelengths around 1550nm

In solid-core PCF: GVD can be anomalous at any wavelength longer than about 500nm, through fibre design.

In photonic bandgap fibres: GVD is normal on the short-wavelength side of each transmission window, and anomalous on the long-wavelength side

Example: modelocked fibre lasers

#1 – solid core fibre

- Yb-based soliton fiber laser
- \bullet Uses PCF for anomalous dispersion around $1\mu m$ wavelength

• Yb-doped fibre allows nonlinear polarisation evolution, PCF in principle maintains polarisation

- Mode-locking initiated by AOM, but runs stably thereafter
- Still some excitation of perpendicular fibre mode, limits performance

Example: modelocked fibre lasers
 #2 – hollow core fibre
 Sigma-type cavity
 Consists of a PM loop and a linear part for NPE

Spectral compression

M. Rusu et al., Appl. Phys. Lett. 89, 091118 (2006)

 Nonlinear spectral compression uses self phase modulation to compress pulses

• Remember, in a Kerr medium with positive n_{2^n} the leading edge of the pulse is red-shifted. So a chirped pulse with blue components at the front and red components at the back will be spectrally compressed

 This can lead to transform-limited longer pulses

Tapered fibre supercontinuum generation

"Conventional" PCF-based supercontinuum generation...

 Pump at or close to the zero-GVD wavelength (in this example, 1.06μm)

• Supercontinuum spreads through sequential processes to longer and shorter wavelengths

• Blue/uv extent is limited by phase matching, group index matching etc.

