

TIESCO

International Atomic Energy Agency

SMR 1829 - 7

Winter College on Fibre Optics, Fibre Lasers and Sensors

12 - 23 February 2007

Nonlinear Effects in Optical

Fibers and Applications

Hugo L. Fragnito

Optics and Photonics Research Center UNICAMP-IFGW Brazil

Phy	Physical origin of n_2		
Physical mechanism	$n_2 ({\rm cm^2/W})$	response time	
Electronic (non-resonant)	10-16	fs	
Molecular orientation	10-14	ps	
Electrostriction	10-14	ns	
Thermal	10-6	ms	
Population (resonant)	10-10	ns	
Examples			
Medium	n_{2} (cm ² /W)	response time	
Air	10-19	fs	
SiO ₂ glass	3x10 ⁻¹⁶	< 1 fs	
CS_2	10-14	2 ps	
GaĀs	10-6	20 ns	
CdSe doped glasses	10-13	30 ps	
Polydiacetylene (resonant)	10-8	2 ps	
Polydiacetylene (non-resonan	t) 10 ⁻¹²	fs 3	

Мс	onochromatic fields	
Laser fields are ~ monochro	omatic	
$\vec{E}(t) = \frac{1}{2}\vec{E}_0e^{i\omega_0 t} + c.c.$	$\vec{E}(\omega) = \pi \vec{E}_0 \delta(\omega - \omega_0) + \pi \vec{E}_0^* \delta(\omega + \omega_0)$	
Mixing of monochromatic w	aves	
$P_{\omega_{\star}}^{(3)}(t) = \frac{1}{2} \varepsilon_0 \chi$	${}^{(3)}_{eff}E^{(\omega_1)}E^{(\omega_2)}E^{(\omega_3)}e^{i\omega_0 t} + c.c.$	
Examples:	$(\omega_4 = \omega_1 + \omega_2 + \omega_3)$	
. generation of wave at $ω_4 = 2c$	$\mathbf{w}_{2} - \mathbf{\omega}_{1} \qquad \qquad \chi^{(3)}_{eff}(\boldsymbol{\omega}_{4}) = \frac{3}{4}\chi^{(3)}(\boldsymbol{\omega}_{4}; -\boldsymbol{\omega}_{1}, \boldsymbol{\omega}_{2}, \boldsymbol{\omega}_{2})$	
THG: 3ω = ω +	$\boldsymbol{\chi}_{eff}^{(3)}(3\omega) = \frac{1}{4}\chi^{(3)}(3\omega;\omega,\omega,\omega)$	
generation of wave at ω_4 = 2 α	ρ₁ + ω₂ $\chi^{(3)}_{eff}(\omega_3) = \frac{3}{4}\chi^{(3)}(\omega_3; \omega_1, \omega_1, \omega_2)$	
Self phase modulation $\omega_1 = \omega_1 + \omega_2$	$\mathbf{\omega}_{\mathbf{l}} - \mathbf{\omega}_{\mathbf{l}} \qquad \qquad \chi_{eff}^{(3)}(\omega_1) = \frac{3}{4}\chi^{(3)}(\omega_1;\omega_1,\omega_1,-\omega_1)$	
Cross phase modulation $\omega_1 = \omega_1 + \omega_2$	$\mathbf{w}_{2} - \mathbf{w}_{2} \qquad \qquad \chi_{eff}^{(3)}(\boldsymbol{\omega}_{1}) = \frac{3}{2}\chi^{(3)}(\boldsymbol{\omega}_{1};\boldsymbol{\omega}_{1},\boldsymbol{\omega}_{2},-\boldsymbol{\omega}_{2})$	
DC Kerr effect $\omega_1 = \omega_1$	+ 0 - 0 $\chi_{eff}^{(3)}(\omega_1) = 3\chi^{(3)}(\omega_1;\omega_1,0,0)$	
7 Н.	L. Fragnito 39	

	Summary
Susceptibility is	frequency domain concept
Symmetries great	y simplify the form of tensors
Be aware of the consulted reference	efinitions, conventions and unit system used in s
Quantum mecha optics	ics gives a microscopic description of nonlinear
■ Use local fiel hyperpolariz	corrections to calculate susceptibilities from ilities
Resonance enha Single photo	cement of nonlinearities resonance: Optical Stark Shift

	SVEA		
$E(z,t) = \frac{1}{2}\widetilde{E}(z,t)e^{i(\omega_0 t - \beta_0 z)} + c.c.$			
Slowly Varying Envelope Approximation			
$\frac{\left \frac{\partial \widetilde{E}}{\partial t}\right << \left \omega_0 \widetilde{E}\right \text{ and } \left \frac{\partial \widetilde{E}}{\partial z}\right << \left \beta_0 \widetilde{E}\right $			
Envelope varies very little in time over one optical period or in space over one wavelength			
13/2/2007 H.L. Fragnito	63		

