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Terabits per second

This thin glass optical fiber can transmit 30,000 copies of a 
20 volume Encyclopedia in 1 second !

This corresponds to a capacity of ~ 9 x 1012 bits/s
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Outline
• Optical fiber
• Concept of modes
• Modes in a simple optical waveguide
• Modes in step index optical fibers
• Multimode and single mode optical fibers
• Dispersion and dispersion compensation
• Modes and fiber components
• Summary
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Optical fiber

• n1 ~ 1.47;       n2 ~ 1.46

core

cladding

n2

n1

125 µm
10 –

50 µm

• Made of silica (SiO2)
• Light guidance through Total Internal Reflection
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Fiber Types

Step Index

Graded Index

Singlemode: Support only
a  single guided mode 

Core dia.:         9 µm

Index difference ~ 0.003

Multimode: Support a number 
of guided modes

Core dia.:        50 µm

Index difference ~ 0.015
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Numerical aperture

Light rays subtending an angle greater than critical angle will
get guided by the fiber

2
2

-2
1

=maxsin=.. nnAN θ

Light lost

θ n1

n2

Typical values of NA: 0.2 to 0.6
Acceptance angles: 11.5o to 37o

Higher NA implies higher light gathering power
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Propagation through fibers

Step index fibers

Graded index fibers

n

n
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Simplified picture

• Describing light propagation through 
optical fibers in terms of rays is an 
approximate picture

• An accurate description is in terms of 
modes which are obtained as solutions 
of the Maxwell’s equations
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Modes of propagation
Mode: 
• Certain electric field patterns that propagate unchanged
• Solution to Maxwell’s equations satisfying appropriate

boundary conditions
• Characteristics:

• Definite transverse electric field pattern
• Definite phase and group velocity
• Discrete set of guided modes

Similar to 
• Modes of oscillation of a string fixed at two ends
• Eigenstates of a potential well in quantum physics

K Thyagarajan IITD

Modes of oscillation of a string 
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Modes of propagation 
in a waveguide

K Thyagarajan IITD

Modes of a simple optical waveguide

• Planar step index waveguide
• Refractive index depends only on x
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What are modes?
• We look for solutions of the form 

)](exp[)(),,( ztixtzxE βωψ −=

• Here ω is the frequency and β is referred to as the 
propagation constant 

• The trial solution is such that as the field propagates 
along the z-direction, the transverse field distribution 
specified by ψ(x) remains same; only phase changes

• Modes are specific field patterns which remain 
unchanged as they propagate through the waveguide
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Plane wave and mode

Plane wave Mode

( )kztieEE −= ω
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( )ztieyxEE βω −= ),(
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Electric field:

Propagation constant:

Phase velocity:
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Maxwell’s equations

t
H

t
BE ∂

∂−=∂
∂−=∇×

rrr
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xn

t

D
H

∂
∂=

∂
∂=×∇

rr
r

)(2
0ε

• If we assume the t- and z-dependence given earlier, 
then these equations split into two independent sets:
– Set containing only Ey, Hx and Hz: Transverse Electric 

(TE) modes
– Set containing only Hy, Ex and Ez: Transverse magnetic 

(TM) modes
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TE modes

[ ] 0)( 222
02

2

=−+ y
y Exnk

dx

Ed
β

Wave equation satisfied by Ey(x)

Equations in core and cladding:

[ ] 2;022
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dxEnk
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[ ] 2;022
2

2
02

2

dxEnk
dx

Ed
y

y >=−+ β

Boundary conditions: Ey(x) and dEy/dx must be continuous at 
x = ± d/2

Core

Cladding
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Solutions

No solutions are possible

:2
1

2
0

2 nk>β�

� :2
2

2
0

22
1

2
0 nknk >> β

Solutions oscillatory in core and exponentially 
decaying in cladding: GUIDED MODES

�
22

2
2
0 β>nk

Solutions oscillatory in core and in cladding
: RADIATION MODES
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Guided and radiation modes
n

x

Discrete set of
Guided modes

n2

n1

Continuum of
Radiation modes

0
=

keffn β

12 nnn eff <<

2nneff <

Effective index of the mode

)]0(exp[)(),,( zeffnktixtzxE −= ωψ
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Guided TE modes
• Since n(x) is symmetric, the modal fields are either 

symmetric or antisymmetric in x
• For the symmetric mode, solutions of the wave equation 

in core and cladding:

2;

2;cos)(

dxCe

dxxAxE

x

y

>=
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βγ
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Eigen value equation

• Applying boundary conditions of continuity of 
Ey(x) and dEy/dx at x = d/2, we get the following
eigenvalue equation:

κ
γκ =








2

tan
d

• Eigenvalue equation has a discrete set of solutions
• Each solution corresponds to a guided mode
• Similar equation for antisymmetric modes
• Modes designated as TE0, TE1, TE2 etc.
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Normalized plot
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Physical picture
• Field of a guided mode in the core:

( )

( ) ( )[ ]zxtizxti

zti

eeA

exAtzxE

βκωβκω

βωκ
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• Comparing with the expression for a plane wave

( ) ( )zzkyykxxktirkti AeAetzyxE
−−−− == ωω rr

.),,,(

• Mode is composed of two plane waves with components

βκ ==±= zyx kkk ,0,

• kx, ky and kz define the propagation direction of the wave
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Physical picture

z

x

( )zxtie βκω −− ( )zxtie βκω −+

• Modes are standing wave patterns in the transverse
direction formed by superposition of plane waves

• Discrete solutions means that only certain allowed
angles of propagation are allowed
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Interesting experiment

• Different discrete modes of the waveguide exit at 
different angles from the prism
• By measuring the angles, it is possible to obtain the 
propagation constants of the modes
• A planar waveguide can be easily fabricated by 
diffusion of silver into glass

Discrete modes of an
optical waveguide

Optical waveguide



13

K Thyagarajan IITD

Field patterns of some modes

• Note that the field extends into the cladding region
• Higher order modes have greater penetration into the cladding
• Fundamental mode (TE0 mode) has no zero crossings

TE0

TE1

TE2
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Cut off of a mode
• As the wavelength increases, the propagation 

constant β reduces
• When β = k0n2, then the mode is referred to have 

reached cutoff
• Cut off is equivalent to loss of total internal reflection

2010 sin nknk == φβ

φ z
n1

n2

At cutoff

which is nothing but the condition for total internal reflection
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Weakly guiding waveguides

• Similar eigen value equations can be 
obtained for TM modes

• For waveguides with a small value of (n1- n2)/ 
n1, TE and TM modes have almost same 
characteristics

• Such waveguides are called weakly guiding
• In weakly guiding waveguides, polarization 

does not play any role and all polarization 
states have same propagation characteristics

K Thyagarajan IITD

Modes in optical fibers

( ) ( )






= −

φ
φ

φ βω
l

l
erRtzrE zti

sin

cos
,,, )(

• Optical fibers have a refractive index profile dependent
only on the radial cylindrical coordinate r

• Aximuthal dependence is of the form coslφ and sinlφ
• For fibers with small difference between core and 

cladding indices, the modes can be assumed to be
linearly polarized (LP modes)

z

r
φ
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Guided mode fields
Step index fibers LPlm
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LP: Linearly Polarized

Ref: A Ghatak and K Thyagarajan, Introduction to Fiber Optics, 
Cambridge University Press, 1998
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Eigenvalue equation
• Applying continuity conditions at r = a, we obtain the 

following eigenvalue equation for the guided modes:

)(
)(

)(
)(

WK

WK
W

UJ

UJ
U

l

l

l

l ′
=

′

• mth solution of the above equation is referred to as 
the LPlm mode

• For every LPlm mode there is a value of V for which β
= k0n2 and this is referred to as cut off of the mode

• The mode can exist for V values higher than the cut 
off V value
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Modal patterns
Transverse intensity patterns of different modes 

Multimode fiber: Supports many modes

Singlemode fiber: Supports a single guided mode 

LP01

LP11 LP12 LP21 LP22
LP14
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Normalized plot

2
2

2
1

2
2

2

nn

nn
b eff

−

−
=

• b increases as V increases
• Value of b depends only on V value
• Different fibers having same V will have same b value

but different neff

2
2

2
10 nnakV −=

Normalized 
effective 

index
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Optical guides in our eyes!
Rods and Cones

K Thyagarajan IITD

Natural optical fibers
• Natural optical fiber: Sponge named venus flower basket

• Nature’s ability to evolve highly effective & sophisticated
optical systems – even superior to man made analogs

• We can learn a lot from Nature

Ref: Nature (2003)
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l = 0 modes

• Eigenvalue equation for modes with no φ
dependence

)(0

)(1
)(0

)(1
WK
WK

W
UJ
UJ

U =

• Solution with highest β value is LP01 mode
• Referred to as the fundamental mode
• Unlike other modes, the fundamental LP01

mode has no cutoff; it exists at all 
wavelengths
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Single mode fibers

• For only the LP01 mode to exist

38.0
0

2
2

2
1 <

−
λ

nna

n (r)

ra

n1
n2

• Such fibers are referred to as single 
mode fibers (SMF)

• Typical parameters:
• Core radius ~ 5 µm
• Index difference (n1 – n2) ~ 0.004
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Important Parameters of a 
single mode fiber

Attenuation coefficient (α) 

Cut-off wavelength λc: 

Mode Field Diameter (MFD):

Dispersion and dispersion slope (D, S)
Polarization mode dispersion

Nonlinear coefficient (γ)

K Thyagarajan IITD

Losses in optical fibers

• Rayleigh scattering
• Absorption due to impurities
• Losses due to bend and other fiber 

imperfections
• Loss measured in dB/km
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decibel scale
• Variation of power with distance along the 

fiber
zePzP α~)0()( −=

α~ : units of m-1 or km-1

• Whenever the range of variation of a quantity is very 
large we use the units of decibel (dB)

• This ensures that with a manageable range of 
numbers it is possible to describe the variation of the 
quantity. 

• Multiplication in normal scale becomes addition in 
logarithmic scale; calculations get simplified
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decibel scale
• Loss in decibels:











=

outP
inP

log10)(dBα

• 3 dB loss implies 

ininout PPP
2
1

10 3.0 ≈×= −

• 3 dB loss implies 50 % transmission
• 10 dB loss implies 10 % transmission
• 20 dB loss implies 1 % transmission











=

outP
inP

log103

or 
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Loss in dB/km

)(~34.4)log(10)( )(~ 11km kmdB/km −−
×== αα αe

• Using the earlier equation

• If loss through 1 km is 3 dB, i.e. output after 1 
km is half of input, then loss after 3 km is 9 
dB which corresponds to a transmission of 
12.5 %

• Optical fiber loss in decibels per kilometer 
(dB/km):











=

)1(

)0(
log10)(

km
dB/km

outP
inP

α
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dBm scale
• Powers can be specified in a logarithmic scale with 

reference to a given power
• If the reference power is 1 mW, then we define power 

in dBm as

))(log(10)( mWdBm PP ×=

• 1 mW = 0 dBm
• 1 µW = -30 dBm
• 1 W = +30 dBm

)()()( dBdBmdBm LossPP inout −=

• Calculations using dBm
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Calculating loss

Laser
0 dBm

10 km
at 0.2 dB/km 

Connector
1 dB loss Coupling

Loss 0.5 dB 

10 km
at 0.2 dB/km 

Received 
power ? 

mWdBmdBm  .Pout 2805.52.01012.0105.00)( ≈−=×−−×−−=
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Attenuation of a silica optical fiber

• Two low loss windows: ~ 1310 nm and ~1550 nm
• Typical loss at 1550 nm ~ 0.25 dB/km

Ref: Miya et al, Electron. Letts. 1979

Experimental
Infrared
absorption

Rayleigh
scattering

A
tte

nu
at

io
n 

(d
B

/k
m

)

Wavelength (µm)
0.8       1.0       1.2       1.4 1.6       1.8

50

10

1

0.1

0.01
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Fiber attenuation spectrum

Ref: Corning LEAF fiber

0.25 dB/km

S L+O E C L

• Low loss window spanning ~ 400 nm of bandwidth
• Wavelength division multiplexing (WDM)

O: 1260-1360

E: 1360-1460

S: 1460-1530

C: 1530-1565

L: 1565-1625

K Thyagarajan IITD

Cutoff wavelength

Cut-off wavelength (λc)
The wavelength above which the fiber behaves
as a single mode fiber (e.g. ~ 1260 nm for Corning SMF-28e )

2
2

2
1405.2

2 nnac −= πλ

• Cut off wavelength decided by 
• core radius, 
• NA and 
• refractive index profile of the fiber core
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Modal intensity pattern

a = 1.64 µm
NA = 0.21

• Smaller core radius and higher NA leads to more confined modes

K Thyagarajan IITD

Spot size
• Petermann-2 spot size











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




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







∫

= ∞

∞

0

0

2 )(2

drr
dr
dE

drrrE

wP

• Loss across joints is given in terms of wP

2

34.4)( 






×=
Pw

u
dBα

• α is the transverse offset
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Mode Field Diameter (MFD)

±
• MFD is defined as twice the spot size

• ~ 9.2    0.4 µm at 1310 nm and 10.4    0.8 µm at 1550 nm

• Determines splice & connector losses at joints

• Nonlinear characteristics of the fiber

±

MFD

cladding

core
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Gaussian approximation
• The mode field of the LP01 mode is very 

similar to a Gaussian distribution
• Very useful for various calculations
• Gaussian approximation E

x

22
)( wrAerE −=

5.28.0;
879.2619.1

65.0
65.1

<<






 ++≈ V
VVa

w

Ref: Marcuse, Bell Syst. Tech. J. 56 (1977) 703
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Losses across joints of two fibers

w1 w2















+
−=

2
2

2
1

212
log20)(

ww

ww
dBL

Different spot sizes

w w

Transverse misalignment, u 2
34.4)( 







×=
w

u
dBL

Angular misalignment, θ 2
34.4)( 







×=
λ

θπ w
dBL

w w

Note: Any attempt to increase tolerance towards transverse
misalignment by increasing w leads to reduced tolerance

towards angular misalignment
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Effective area

∫
∞

∫
∞

=









0
)(4

2

0
)(2

2

drrrE

drrrE

A πeff

Aeff at1550 nm 
≈ 85 µm2 for G.652 (SMF)

≈ 46 µm2 for G.653 (DSF)

≈ 60 µm2 for G.655 (NZDSF)

≈ 23 µm2 for DCF (D < 0)

• Defines nonlinear interaction in fibers

Note: In the Gaussian approximation Aeff = π w2
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Pulse dispersion

K Thyagarajan IITD

Dispersion

• Different wavelengths propagate with different velocities

Prism Rainbow
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Evolution of a pulse of light

z = 0 z = L

Input pulse tie
t

AeztE 0
2
0

2
)0,( ωτ−

==

t

E(t)

Fourier spectrum

∫==
∞

∞−
ωω ω deEztE ti)(~)0,(

∫=
∞

∞−

− dt)eE(t,z=E tiω
π

ω 0
2
1

)(~

Gaussian pulse
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Fourier spectrum

( )











−=

4
exp

2
)(~ 2

0
2

00 τωω
π

τω -A
E

• Fourier spectrum sharply peaked around ω = ω0

• Width of the spectrum ~ 1/τ0

• For typical pulse widths used in communication 1/τ0 << ω0

)(E~ ω

ω0
ω
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Output pulse ∫
−= ωβωω dztieEztE )()(~),(

Expanding β around ω = ω0
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0
2
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2
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1 ;
ωω ω

ββ
ω
ββ

d
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d

d ==

Pulse evolution
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Solution approximating till β1

∫
−−−= ωωωββωω d

zzti
eEztE

))0(10(
)(~),(

Substituting for the Fourier spectrum and integrating we get

( ) )00(
2
0

2
1exp),( ztie
zt

AztE βω
τ
β −











 −−=

• The pulse remains Gaussian
• The pulse width remains the same as it propagates
• The peak of the pulse propagates at a velocity given by

1

1

1
−

== 







ω
β

β d

d
gv Group velocity
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Solution approximating till β2
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Pulse broadening

• Pulse remains Gaussian

• The temporal width τ(z) of the pulse increases 
as it propagates
– Pulse broadening depends on β2

• Pulse broadens irrespective of the sign of β2

• The pulse also gets chirped
– Instantaneous frequency of the pulse changes with 

time
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Pulse broadening

)
4

+1(= 4
0

22
22

0
2

τ
β

ττ
z

)z(

Define pulse broadening ∆τ: ( )
0

2212
0

2 2
)(

τ
βτττ z

z =−=∆

Source spectral width for a pulse width t0
gives 0

2
= τπ

λ
λ∆

c

Pulse broadening: λ
λ

βπτ ∆=∆ z
c
2

22
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Temporal & Spectral evolution of an 
optical pulse

• Pulse gets broader in time domain
• Frequency spectrum of the pulse remains same

Temporal evolution Spectral evolution
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Pulse chirping

)(1tan
2

12)(0),( σκω −−−+=Φ
gv

z
tttz

• Instantaneous frequency is given by

• In general we can define an instantaneous frequency
• If time variation is eiφ(t), then we define the instantaneous
frequency as

dt

d
t

φω =)(

• Time variation of phase of output pulse

)(20)(
gv

z
tt −+= κωω
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Chirped pulse

• Pulse whose instantaneous frequency changes 
with time is called a chirped pulse

• Dispersion is accompanied by chirping in the 
pulse

• For positive κ (positive β2 or normal dispersion) 
instantaneous frequency increases with time 
and conversely
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Dispersion & Chirping of the pulse

β2 > 0

β2 < 0

Normal
dispersion

Anomalous
dispersion

Chirped pulse: ω(t)

t

t

K Thyagarajan IITD

Impact of dispersion

Resolved
pulses

Unresolved
pulses

• Information lost due to overlap of pulses due to errors in
identifying 0 and 1

Optical fiber
1 1 10 1 0 or 

1
1 1
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Dispersion coefficient

effn
c

ω
β = D

cd

d

π
λ

ω
ββ

2

2

2

2

2 −==

Dispersion coefficient D (measured in ps/km-nm)

2

2

)(
λ

λλ
d

nd

c
D

eff−=

Material dispersion: n1 and n2 depend on λ

Waveguide dispersion: explicit dependence of neff on λ
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Approximate expression for 
n(λ) for silica








 −−=
2

2 1
003.0451.1)(

λ
λλn λ in micrometers

Empirical expression for 0.5 µm < λ < 1.6 µm

Less accurate but more convenient to use
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Material dispersion of silica
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Material dispersion of silica

• Note material dispersion passes through zero at ~ 1270 nm
• Zero material dispersion wavelength



36

K Thyagarajan IITD

Waveguide dispersion

21

2

nn

nn
b

eff

−
−

=Since

( )[ ])(212 Vbnnn
c

−+= ωβ

Assuming n1 and n2 to be independent of frequency
(no material dispersion), we obtain

( )





−+=
dV
bVd

c
nn

c
n

d
d 212
ω
β

and

( )










−=
2

2
21

2

2

dV

bVVd

c

nn

d

d

ωω
β

K Thyagarajan IITD

Waveguide dispersion
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Ref: Marcuse, Applied Optics, 18 (1979) 2930
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Material, waveguide and total dispersion 
in SMF
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• Zero dispersion wavelength ~ 1310 nm
• A pulse at this wavelength will undergo very little dispersion

r

n(r)
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Shifting zero dispersion wavelength

• Increase in waveguide dispersion by modifying refractive 
index profile

• Zero dispersion wavelength ~ 1550 nm

n(r)

r

Increased index
difference and 

smaller core radius
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Refractive index profile modification
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Standard fiber types

G.652

G.653

G.655

1.30 1.40 1.50 1.60
-15

-10

-5

0

5

10

15

D
is

pe
rs

io
n 

[p
s/

nm
.k

m
]

Wavelength (µm)

G.652 fiber: zero dispersion ~ 1310 nm
G.653 fiber: zero dispersion ~ 1550 nm
G.655 fiber: small non-zero dispersion around 1550 nm
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Positive and negative D

Pulse broadens for both D > 0 and D < 0
Chirping is of opposite sign
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Dispersion and dispersion slope

Dispersion coefficient at any λ:



















−=
3

4

4
0)(

λ
λλλ z

S
D

D(λ): Dispersion coefficient (ps/km-nm)
λ : Operating wavelength
λz: Zero dispersion wavelength
S0: Dispersion slope (ps/km-nm2)

Dispersion in ps: λλλτ ∆= LD )()(

L: Fiber length; ∆λ: spectral width of source
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Typical values at 1550 nm

Fiber type D (ps/km-nm) S (ps/km. nm2)

Standard SMF (G.652) 17 0.058
LEAF (Corning) 4.2 0.085
Truewave-Reduced slope (OFS) 4.5 0.045
TeraLight (Alcatel) 8.0 0.057
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High fiber diet
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Maximum allowable dispersion

Typical acceptable dispersion value for a bit rate of B (Gb/s)

ps/nm2Gb000,1042 ≤LDB

1 dB power penalty
Chirp free narrow linewidth laser 
(externally modulated DFB laser - EML)

At 2.5 Gbit/s (D L)max ~ 16000 ps/nm
At 10 Gbit/s (D L)max ~ 1040 ps/nm
At 40 Gbit/s (D L)max ~ 65 ps/nm

K Thyagarajan IITD

Dispersion compensation

• Need for dispersion compensation
– Many links using standard SMF have D ~ 17 

ps/km-nm at 1550 nm
– To avoid nonlinear effects fibers have a finite 

value of D (G.655 fibers)
– In a wavelength division multiplexed link, different 

λs have different dispersions
• Need to compensate for dispersion for different λs
• Dispersion slope compensation
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Dispersion & Chirping of the 
pulse

D < 0

D > 0

Normal
dispersion

Anomalous
dispersion

Chirped pulse: ω(t)

t

t
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Dispersion Compensation

D < 0D > 0

Resolved
pulses

Resolved
pulses

Broadened
unresolved

pulses

Optically compensate for accumulated dispersion

Fiber with
shorter λ travelling

faster

Fiber with
longer λ travelling

faster
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Dispersion compensation

Lf, Df(λ) Lc, Dc(λ)

fL
cD
fD

cL

cLcDfLfD

)0(

)0(

0)0()0(

λ
λ

λλ

−=

=+

For perfect compensation at a chosen wavelength λ0:

Link fiber Dispersion compensating fiber
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For dispersion compensation of all channels in a 
DWDM system we must have

c

c

f

f
S

D

S

D
==κ

Dispersion slope compensation

Without dispersion slope compensation:
Dispersion at extreme channels will grow and will limit

the link length

D: Dispersion
S: Dispersion slope

Residual dispersion at other wavelengths:

cLcD
f

L
f

D )()( Dispersion λλ +=
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Dispersion slope compensation (cont.)
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Dispersion map

Ref: Bigo et al, IEEE Photonics Tech. Lett. 10 (1998) 1045
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DCF for G.652 fiber

For G.652 fiber nm250=
S
D

For DCF (Corning) nm25275±=
S
D

Insertion loss of DCF for 80 km of G.652 ~ 9 dB
Polarization mode dispersion ~ 0.7 ps
Effective area ~ 20 µm2

Nonlinear coefficient γ ~ 5.7 W-1 km-1

K Thyagarajan IITD

Novel DCF design
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Ref: Thyagarajan, Varshney, Palai, Ghatak & Goyal, Photonics Tech. Letts. (1996)

n

Very large negative dispersion at the phase matching λ
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Experimental realization

Wavelength (nm)
1520 1560 1600

D
is

pe
rs

io
n 

(p
s/

km
-n

m
)

-2000

-1500

-1000

-500

0

Measured

Simulated

-1800 ps/km-nm

Ref: Auguste et al. Electron. Lett., 2000.
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Dispersion compensating 
module

• Should have
– Matched opposite dispersion to link fiber
– Matched dispersion slope for DWDM 

applications
– Small loss
– Matching mode with single mode fiber
– Large effective area for reduced nonlinear 

effects
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Polarization maintaining fibers

Bow-tie fibers

Stress birefringent fibers

Elliptic cladding Elliptic core

• Normal fibers do not maintain the polarization state
• PM fibers maintain the polarization state of the input light
• Applications in fiber optic sensors, integrated optics

K Thyagarajan IITD

Polarization mode dispersion

• Caused by slight fiber asymmetry and 
random stresses  in the cable

• Different polarization states travel at different velocities
• Differential group delay

fast axis

z

slow axis c ∆τ



48

K Thyagarajan IITD

PMD
• Critical limitation for high bit rate systems

• Fluctuates slowly with time due to

• Temperature variations, Vibrations

• Because of random coupling PMD increases  
as L1/2

• PMD in current fibers < 0.05 ps/km1/2

• PMD in many installed fibers ~ 10 ps/km1/2

• PMD requires adaptive compensation

K Thyagarajan IITD

25 

400

6400

M
ax

im
um

 tr
an

sm
is

si
on

 d
is

ta
nc

e 
(k

m
)

PMD delay coefficient (ps/km0.5)

PMD (cont.)

Ref: PMD & Polarization, Profile
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Modes and fiber components

K Thyagarajan IITD

Modes in fiber components
• In a fiber having no variation along z, the light 

coupled into one mode remains in the same 
mode

• Any perturbation along the length can be 
used to couple light among different modes 
leading to applications

• Light can also be coupled from guided to 
radiation modes

• Placing two fiber cores close by leads to 
interaction among the individual modes of the 
fiber
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Periodic stack of films

n0 + ∆n

n0 - ∆n

t

If π
λ
π =tn 22

0

or
0

2
2

n
t λ==Λ

All reflections add in phase =>

STRONG REFLECTION

BRAGG
Condition
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Optical Fibre Gratings

Short Period (FBG)

• Period ~ 0.5 µm
• Reflective

Long Period (LPG)

• Period > 100 µm
• Transmissive

Periodic variation in refractive index of core used to couple
Light from one mode to another
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Fiber Bragg gratings
• Periodic refractive index variation along fiber
• Wavelength λc is strongly reflected if
• Forward propagating guided mode gets 
coupled to backward propagating guided mode 

Λ= effnc 2λ

Reflected spectrum

Λ ~ 0.5 µm
Incident spectrum

λ

Transmitted spectrum

K Thyagarajan IITD

Typical measured reflectivity spectrum

Peak reflectivity and bandwidth determined by 
grating length, grating strength and period of the grating
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Long Period Gratings (LPG)

Incident spectrum Transmitted spectrum

λ

Λ

•Coupling of power from core mode to another core
mode or a cladding mode (light guided by cladding)

• Period ~ 100 – 600 µm

K Thyagarajan IITD

Typical measured 
transmission spectrum

r

n (r)

neff of core modes

neff cladding 
modes
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Applications
• Fiber gratings are important components in 

WDM systems
• Many applications demonstrated

• Tunable dispersion compensation
• Add/drop multiplexers
• Wavelength lockers

• Applications in sensors
• Nonlinear switching possibilities

K Thyagarajan IITD

Fiber directional coupler

Input P1
Output P3

Output P4Input P2

Coupling region

Used to split or combine optical signals
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Modes of coupled waveguides

Fiber # 1

Fiber # 2

Symmetric mode Anti-symmetric mode

Modes have
different 
velocities

Modes have
different
oscillation
frequencies
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Principle of directional coupler
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Symmetric
mode

Antisymmetric
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Identical waveguides

Non-identical waveguides

• 3 dB coupler, tap coupler can be realized by appropriate
choice of length of interaction and the fibers
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WDM coupler

Ref: Introduction to fiber optics, A Ghatak and K Thyagarajan, Cambridge Univ Press, 1998
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Summary
• Optical waveguides support guided and radiation 

modes
• Guided modes form a discrete spectrum and can 

carry power over long distances 
– form the basis of modern fiber optic communication systems

• Single mode waveguides support only one guided 
mode and find applications in communication, 
sensing and signal processing

• Understanding modal characteristics of optical 
waveguides can help us optimize and design 
waveguides and waveguide components with desired 
characteristics


