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Terabits per second

This thin glass optical fiber can transmit 30,000 copies of a
20 volume Encyclopedia in 1 second !
This corresponds to a capacity of ~ 9 x 1012 bits/s
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Outline

» Optical fiber

» Concept of modes

* Modes in a simple optical waveguide

* Modes in step index optical fibers

» Multimode and single mode optical fibers
» Dispersion and dispersion compensation
* Modes and fiber components

e Summary
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Optical fiber

» Made of silica (SiO,)
* Light guidance through Total Internal Reflection
*n, ~ 1.47; n, ~1.46

K Thyagarajan 1ITD
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Fiber Types

Multimode: Support a number
of guided modes

Core dia.: 50um
Index difference ~ 0.015

Step Index

Graded Index

w(e

Singlemode: Support only

a single guided mode
Core dia.: 9um

Index difference ~ 0.003

K Thyagarajan 1ITD

Numerical aperture

/\/\
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\ \
Light lost

Light rays subtending an angle greater than critical angle will
get guided by the fiber

N.A = sindy 2= /riZn%

Typical values of NA: 0.2to0 0.6
Acceptance angles: 11.3to 37

Higher NA implies higher light gathering power
K Thyagarajan 1ITD
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Propagation through fibers

SET———

Step index fibers

POX XX XX OO ),

Graded index fibers

N
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Simplified picture

» Describing light propagation through
optical fibers in terms of rays is an
approximate picture

» An accurate description is in terms of
modes which are obtained as solutions
of the Maxwell's equations

K Thyagarajan 1ITD




& Modes of propagation

Mode:
« Certain electric field patterns that propagate unchanged
* Solution to Maxwell’'s equations satisfying appropriate
boundary conditions
* Characteristics:
« Definite transverse electric field pattern
« Definite phase and group velocity
* Discrete set of guided modes

Similar to
» Modes of oscillation of a string fixed at two ends
* Eigenstates of a potential well in quantum physics

K Thyagarajan 1ITD

| Modes of oscillation of a string

K Thyagarajan 1ITD
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\Q Modes of propagation
In a waveguide

K Thyagarajan 1ITD
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»
»

.7/ Modes of a simple optical waveguide

» Planar step index waveguide
» Refractive index depends only on x

X X

n,

n(x)
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What are modes?

* We look for solutions of the form
E(X, 2,t) =¢/(x)expli(at - 52)]

* Here wis the frequency and (3 is referred to as the
propagation constant

» The trial solution is such that as the field propagates
along the z-direction, the transverse field distribution
specified by ¢(x) remains same; only phase changes

* Modes are specific field patterns which remain
unchanged as they propagate through the waveguide

K Thyagarajan 1ITD
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Plane wave and mode
Plane wave Mode
Electric field: E = Egé (at-kz) £ E(x,y)€ (at-pz2)
Propagation constant:  k =Z‘n 4 :aneff
. o v =_C
. v.="C ==
Phase velocity: P, P neft
-1 -1
. dk dg
Group velocity: Vg =| —— V., =|
P Y g (dw) g (dwj

K Thyagarajan 1ITD




» If we assume the t- and z-dependence given earlier,
then these equations split into two independent sets:

— Set containing only E,, H, and H,: Transverse Electric
(TE) modes

— Set containing only H,, E, and E,: Transverse magnetic
(TM) modes

K Thyagarajan 1ITD

e TE modes
Wave equation satisfied by E,(x)
2
d°Ey
dx?

+ [kgnz(x) - ,BZ]Ey =0
Equations in core and cladding:

d°E
-l o eaz core

d%E _

q 2y +[kgn% ‘IBZ]Ey =0, [x>d/2 Cladding
X

Boundary conditions: E,(x) and dE,/dx must be continuous at

x==d/2
K Thyagarajan 1ITD




Solutions
> B>kt
No solutions are possible
- G > 5 o1

Solutions oscillatory in core and exponentially
decaying in cladding: GUIDED MODES

> k§ns > p?

Solutions oscillatory in core and in cladding
: RADIATION MODES

K Thyagarajan 1ITD
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Guided and radiation modes
n
n Discrete set of
EEET] Guided modes 2 eff <M
n,
Continuum of
Radiation modes Neff < N2
X

Nt =é Effective index of the mode

E(x,2,t) =g (x) expli(at - kgnefs 2)]

K Thyagarajan 1ITD




- Guided TE modes

« Since n(x) is symmetric, the modal fields are either
symmetric or antisymmetric in x

* For the symmetric mode, solutions of the wave equation
in core and cladding:

Ey(X)=Acoskx,  [X<d/2

=ce X, X>d/2
Here K2:k§n12—,82
v? = B2~ kgns

K Thyagarajan 1ITD

Eigen value equation

* Applying boundary conditions of continuity of
E,(x) and dE /dx at x = d/2, we get the following
eigenvalue equation:

2 K

» Eigenvalue equation has a discrete set of solutions
» Each solution corresponds to a guided mode

* Similar equation for antisymmetric modes

» Modes designated as TE,, TE,, TE, etc.

K Thyagarajan 1ITD
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Normalized
propagation
constant

o= B KGNS
k3 -n3 ) “y.)

V =k 03

K Thyagarajan 1ITD

Physical picture
* Field of a guided mode in the core:
E(x,zt) = Acosk x)ei(“t_ﬂz)
- pei () 1 i)

» Comparing with the expression for a plane wave

E(x,y.2.t) = Ad @Kr) 2 pgllet-hokyy—kz?)

* k;, k, and k, define the propagation direction of the wave
* Mode is composed of two plane waves with components
ky =%k, ky=0, k;=p
K Thyagarajan 1ITD
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* Modes are standing wave patterns in the transverse
direction formed by superposition of plane waves

* Discrete solutions means that only certain allowed
angles of propagation are allowed

K Thyagarajan 1ITD

PN,

W)} Interesting experiment
Discrete modes of an
optical waveguide

—
Optical waveguide

« Different discrete modes of the waveguide exit at
different angles from the prism

* By measuring the angles, it is possible to obtain the
propagation constants of the modes

* A planar waveguide can be easily fabricated by

diffusion of silver into glass K Thyagarajan 11T
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\:~/ Field patterns of some modes

A=632.8nm

Power Normalized Modal Field

s El 05 0 05 1 15
X (pm)

* Note that the field extends into the cladding region
» Higher order modes have greater penetration into the cladding
* Fundamental mode (TE, mode) has no zero crossings

K Thyagarajan 1ITD

TN
4 &
L=y

N4

prin,

e

Cut off of a mode

* As the wavelength increases, the propagation
constant (3 reduces

* When B = kjn,, then the mode is referred to have
reached cutoff

» Cut off is equivalent to loss of total internal reflection

n,
0 ]
At cutoff B =kgm sing =kgny
which is nothing but the condition for total internal reflection
K Thyagarajan 1ITD
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T\““‘?*"”;Weakly guiding waveguides

Similar eigen value equations can be
obtained for TM modes

For waveguides with a small value of (n,- n,)/
n,, TE and TM modes have almost same
characteristics

Such waveguides are called weakly guiding

In weakly guiding waveguides, polarization
does not play any role and all polarization
states have same propagation characteristics

K Thyagarajan 1ITD

Modes in optical fibers

* Optical fibers have a refractive index profile dependent
only on the radial cylindrical coordinate r

» Aximuthal dependence is of the form coslgand sinlg

* For fibers with small difference between core and
cladding indices, the modes can be assumed to be
linearly polarized (LP modes)

of— g
E(r.¢.24)=R(r)e @™
(.020)= RO |20
K Thyagarajan 1ITD
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(@) Guided mode fields
Step index fibers LP,,

sl

cod o r<a
E(r.pzt) = { o ﬂe'(“* #)
A K(er sinlg r>a
Kiw) '\ a
2
— 2.2 2
U= a(konl -8 )]/
2
W = a(ﬂz - kgn%)]/
vZ=Uu2+w?= (koa«/nlz —n%)z
LP: Linearly Polarized
Ref: A Ghatak and K Thyagarajan, Introduction to Fiber Optics,
Cambridge University Press, 1998
K Thyagarajan 1ITD

Eigenvalue equation

Applying continuity conditions at r = a, we obtain the
following eigenvalue equation for the guided modes:

L W), Kiw)
0T KW)

mt solution of the above equation is referred to as
the LP,,, mode

For every LP,,, mode there is a value of V for which (3
= kon, and this is referred to as cut off of the mode

The mode can exist for V values higher than the cut
off V value

K Thyagarajan 1ITD
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& Modal patterns

Transverse intensity patterns of different modes

LPy;

5 -
s = (1) 20
LP14. LP,, LPZ;-l
Multimode fiber: Supports many modes

Singlemode fiber: Supports a single guided mode

K Thyagarajan 1ITD

(@) Normalized plot
N

b vs. V for a fiber

1

Normalized %
effective %

index U

0.6

ngff - n% a 0.5

b= 2_ 2 a4
m —n

* bincreases as V increases
* Value of b depends only on V value
« Different fibers having same V will have same b value

but different n K Thyagarajan TITD
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= Optical guides in our eyes!
Rods and Cones

Eveball muscle —
Choroid coak—

Sclerotic coal —7/ r

/8 Bipolar cells

N
Cornea— /i A i
e fovon ) |

s i
Pupll———1 | Blind spot
Aduecus humor—"{\— Optlic nerve
Zonules
Ciliary muscle YiTreous body
: 2o

“Ganglion cells

K Thyagarajan 1ITD

“JJ Natural optical fibers

* Natural optical fiber: Sponge named venus flower basket
| Ref: Nature (2003)

—® | — e

- cladding ™

R R
-3 -2 -10 a 1o 2030
Radlial pasition fjum)

caddimg

* Nature’s ability to evolve highly effective & sophisticated
optical systems — even superior to man made analogs
* We can learn a lot from Nature

K Thyagarajan 1ITD
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| = 0 modes

Eigenvalue equation for modes with no @
dependence

JU) _ \y KiW)
Y 5,00 T W Row)

Solution with highest (3 value is LP,; mode
Referred to as the fundamental mode

Unlike other modes, the fundamental LP;
mode has no cutoff; it exists at all
wavelengths

K Thyagarajan 1ITD

Single mode fibers

For only the LP,,; mode to exist

n
ari -1 Lo

<038

0

Such fibers are referred to as single
mode fibers (SMF)

Typical parameters:
Core radius ~ 5 um

Index difference (n; — n,) ~ 0.004
K Thyagarajan 1ITD
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2 Important Parameters of a
single mode fiber

Attenuation coefficient ()

Cut-off wavelength A_:

Mode Field Diameter (MFD):

Dispersion and dispersion slope (D, S)
Polarization mode dispersion

Nonlinear coefficient (y)

K Thyagarajan 1ITD
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Losses in optical fibers

Rayleigh scattering
Absorption due to impurities

Losses due to bend and other fiber
imperfections

Loss measured in dB/km

K Thyagarajan 1ITD
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decibel scale

» Variation of power with distance along the
fiber ~
P(2) =P(0)e %%

a :units of m? or km1

* Whenever the range of variation of a quantity is very
large we use the units of decibel (dB)

» This ensures that with a manageable range of
numbers it is possible to describe the variation of the
quantity.

» Multiplication in normal scale becomes addition in
logarithmic scale; calculations get simplified

K Thyagarajan 1ITD

decibel scale
e Loss in decibels:

An
a(dB) =10log ——
Fout

* 3 dB loss implies

P
3= 1OIog('n]
Pout
-03_1
Pout = B %10 :Eﬂn

or

» 3 dB loss implies 50 % transmission
» 10 dB loss implies 10 % transmission
» 20 dB loss implies 1 % transmission

K Thyagarajan 1ITD
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Loss in dB/km

» Optical fiber loss in decibels per kilometer
(dB/km):

_ An©)
a(dB/km) =10log m
out

» Using the earlier equation

=1
a(dB/km) =10loge? k™M ) = 434xaF(km™)

* Ifloss through 1 kmis 3 dB, i.e. output after 1
km is half of input, then loss after 3 kmis 9
dB which corresponds to a transmission of
12.5 %

K Thyagarajan 1ITD

dBm scale

» Powers can be specified in a logarithmic scale with
reference to a given power

* If the reference power is 1 mW, then we define power
in dBm as

P(dBm) =1C0xlog(P(mW))

e 1 mwW=0dBm
e 1puw =-30dBm
e 1W=+30dBm

» Calculations using dBm

K Thyagarajan 1ITD
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e

{7
L))}
Calculating loss
Laser
e ([ (Q10)  eceies
= power ?

10 km Connector 10 km

Coupling & 0.2dB/km  1gBloss at0.2dB/km

Loss 0.5 dB

Pyut (dBm) =0-0.5-1C%x0.2-1-10%0.2 = -5.5dBm = 0.28 mW

K Thyagarajan 1ITD
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ZAttenuation of a silica optical fiber

Attenuation (dB/km)

L T T T T T
50 F E
10 I Infrared A
absorption J
™Y
1 7
E Rayleigh / 3
[ scattering 7
0.1} S ——
001 1 n i i 1 i
0.8 1.0 1.2 14 16

Wavelength (um)

e Two low loss windows: ~ 1310 nm and ~1550 nm
* Typical loss at 1550 nm ~ 0.25 dB/km

Ref: Miya et al, Electron. Letts. 1979

K Thyagarajan 1ITD
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ﬁz
~ Fiber attenuation spectrum

E
o
-
[ ]
=2
5 0.25 dB/km
g 0: 1260-1360
=
g E: 1360-1460
= ] o o o fa] o =] o S: 1460-1530
L= LA =2 Ly o L [ ] 5]
o o <F o L L o w C: 1530-1565
L: 1565-1625

Wavelength (nm)

* Low loss window spanning ~ 400 nm of bandwidth
» Wavelength division multiplexing (WDM)

Ref: Corning LEAF fiber K Thyagarajan IITD

ﬁz
Cutoff wavelength

Cut-off wavelength (A,)
The wavelength above which the fiber behaves
as a single mode fiber (e.g. ~ 1260 nm for Corning SMF-28e )

_ 2_2
Ao = 5908 &

* Cut off wavelength decided by
* core radius,
* NA and
» refractive index profile of the fiber core

K Thyagarajan 1ITD
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2 Modal intensity pattern

x10" Modal intensity in an EDF

18¢ a=1.64pm
| : NA =0.21
‘?_'-14-
£ 12 — 980 nm
E 10} — 1480 nm
S ef —— 1550 nm
o
= 5l
4,
2_
00 1 2 3 4 5 8
r(m) x10°
» Smaller core radius and higher NA leads to more confined modes
K Thyagarajan 1ITD
:"."/ AR\
=2
\-.«-“‘ -
Spot size
* Petermann-2 spot size
T2
2[E“(r)rdr
—|_0
R e —
(o)
dE
j( rdr
o\ dr

* Loss across joints is given in terms of wp

2
a(dB) = 434x (“]
Wp

e ( is the transverse offset
K Thyagarajan 1ITD
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o 20
A\
3)))
Y

“’Mode Field Diameter (MFD)

* MFD is defined as twice the spot size
*~9.2+0.4 ym at 1310 nm and 10.4 £0.8 pm at 1550 nm
» Determines splice & connector losses at joints

* Nonlinear characteristics of the fiber

cladding
' MFD
core

K Thyagarajan 1ITD

Gaussian approximation

* The mode field of the LP,; mode is very
similar to a Gaussian distribution

» Very useful for various calculations
» Gaussian approximation E:

E(r) = Ae_rz/ w?

W ( O.65+1'61159+2'8679j; 08<V <25
a A\ \%
Ref: Marcuse, Bell Syst. Tech. J. 56 (1977) 703
K Thyagarajan 1ITD
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./ Losses across joints of two fibers

Different spot sizes 5
| | | L(dB)= —20I09[MWZJ

2
w, W, W w3
Transverse misalignment, u 2
S L(dB) = 434{“)
w
w w
Angular misalignment, & 2
mwé
—_—————— L(dB) = 434><( j
—— —— A
w w

Note: Any attempt to increase tolerance towards transverse
misalignment by increasing w leads to reduced tolerance
towards angular misalignment

K Thyagarajan 1ITD
= Effective area
» Defines nonlinear interaction in fibers
o 2
{ | E2(r) r dr}
0
Peff = 2m=_
| E4(r) r dr
0
A4 at1550 nm
= 85 um? for G.652 (SMF)
= 46 um? for G.653 (DSF)
=60 pum? for G.655 (NZDSF)
=23 um? for DCF (D < 0)
Note: In the Gaussian approximation A = TTW?
K Thyagarajan 1ITD
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Pulse dispersion

K Thyagarajan 11TD

Dispersion

« Different wavelengths propagate with different velocities

Prism Rainbow

e

K Thyagarajan 11TD
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Evolution of a pulse of light

z=0 z=1L

2/.2 .
-t</1,
Inputpulse £ =)= Ae /Oe'aot Gaussian pulse

Fourier spectrum

E(t,z=0) = Té(w)ei‘“dw

E(w) = [E(t,z=0)e™ “dt

K Thyagarajan 1ITD
e “:‘ :
N Fourier spectrum _
E(a)
~ - Ar (w- ap)?18
E(Cl)) = 2\/]27'6)(':{_40 /
w
w,

* Fourier spectrum sharply peaked around w= w,
» Width of the spectrum ~ 1k,
* For typical pulse widths used in communication 1/t, << w,

K Thyagarajan 1ITD
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Q) Pulse evolution

Output pulse  E(t,7) = [ E(w)e (4 ~ A dw

Expanding3 aroundw = wy,

2
Blw) = Blap) + % (- )+ 9 (- ..

@y dcozwo

= Blap) + Byl ap) + 22 (@ ap) P ...

_d5 _d*s
B d“Ja{)' Bo d“’zao

K Thyagarajan 1ITD
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{ B

~~Solution approximating till B,

Et,2) = [E(w) & @ A2~ AW @)Dy,
Substituting for the Fourier spectrum and integrating we get

_ 2| .
Et,2) = Aexg - A2)" d(eut-od)
Io
* The pulse remains Gaussian

* The pulse width remains the same as it propagates
» The peak of the pulse propagates at a velocity given by

-1
1 d .
Vg = B = (d@ Group velocity

K Thyagarajan 1ITD
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e 2N
777 \*%
q ({ 2 y-l

{ B

~Solution approximating till B,

E(zt) = A ex{— (t _ 7\/9 )2] ex;{i (qb(z,t) = ﬁ(aJoz)]

@ro?2y¥4 r2(2
®(z,t) = ayt +&(t —i)2 —Etan_l(a)
vg 2
K= g_. Jzizz;
(1+02)r(2) r(z)
2
2 2 2 d g
I (9=1g@+07); Bo=—%
0 2 daz

K Thyagarajan 1ITD

Pulse broadening

* Pulse remains Gaussian

The temporal width 7(z) of the pulse increases
as it propagates

— Pulse broadening depends on (3,

Pulse broadens irrespective of the sign of f3,

The pulse also gets chirped

— Instantaneous frequency of the pulse changes with
time

K Thyagarajan 1ITD
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Pulse broadening

4,82222
T

4 )
0

r%(z)=1§ @+

2
Define pulse broadening At: A7 = (rz(z) - rg)‘/ = 2"872‘2
To

. . 2
Source spectral width for a pulse width t, AaA =
gives iCIg
. 2nc
Pulse broadening: Ar:)lz'gzzA)l
K Thyagarajan 1ITD

Temporal & Spectral evolution of an
optical pulse

Temporal evolution Spectral evolution

Qutput Pulse

nos B0 Distance (krn)

« Pulse gets broader in time domain
» Frequency spectrum of the pulse remains same

K Thyagarajan 1ITD
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Pulse chirping

* In general we can define an instantaneous frequency
« If time variation is €99, then we define the instantaneous
frequency as

 Time variation of phase of output pulse

1

®(z,t) = ot + Kt —vi)2 —%tan_ (0)

g
* Instantaneous frequency is given by

_ oz
0 =+ 26 )

K Thyagarajan 1ITD

Chirped pulse

» Pulse whose instantaneous frequency changes
with time is called a chirped pulse

 Dispersion is accompanied by chirping in the
pulse

 For positive K (positive 3, or normal dispersion)
instantaneous frequency increases with time
and conversely

K Thyagarajan 1ITD

32



Normal Aﬂﬂ[ M l (XXXX) U/\ ﬂlﬂ(n\/ﬂlﬂﬂUﬂvA t

dispersion VUU& ‘\UUV 5,50 U\M\u

Chirped pulse: w(t)

(| i

Anomalous Aﬂn‘\
\

dispersion VVU\JL HUV I } |
K Thyagarajan 1ITD
= Impact of dispersion
1 0 1 1 1 Oor 1 1

Optical fiber 1

| |
I o
Al VVWA(IHD l \ n

T 7 AT TV

v
I
Resolved
pulses

Unresolved
pulses

* Information lost due to overlap of pulses due to errors in
identifying 0 and 1
K Thyagarajan 1ITD
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Dispersion coefficient

_ d’p__ X
B = Nef —D
C P2 = da? o

Dispersion coefficient D (measured in ps/km-nm)

__d d Neff
D(1) = ¢ o
Material dispersion: n, and n, depend on A
Waveguide dispersion: explicit dependence of n on A

K Thyagarajan 1ITD
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4

“-.....“

'Approximate expression for
n(A) for silica

Empirical expression for 0.5 ym <A < 1.6 pm

12j A in micrometers

n(A) =1.451- o.oo:{A2 -

Less accurate but more convenient to use

K Thyagarajan 1ITD
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.,-".':;;:’f\.)\ Material dispersion of silica
S dn/ (um-)
1.448 -0.0106
1.447
1.446 -0.0108
1.445 oomt
1444 12 13 14 15 16 1.2 1.3 1.4 1.5 1.6

0.002 \
d?n/d\2 o
(um—Z) \
-0.002

-0.004

1.2 13 14 15 1.6
A (Um) K Thyagarajan 117D

PN,

(L)) Material dispersion of silica

. 40
g 20
E O T T i T i T [ 1 T
G 20 S \9@ F & &
e RPN X
c -40 /
o
‘n  -60
5 /
o '80 /
[72]
A -100 7
-120

Wavelength (nm)

* Note material dispersion passes through zero at ~ 1270 nm

» Zero material dispersion wavelength
K Thyagarajan 1ITD
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Waveguide dispersion
Neft — N2

Rl

,3=6g[n2+(r‘1—”2)b(\/)]

Assuming n; and n, to be independent of frequency
(no material dispersion), we obtain

ds _ny nl-nz[d(bv)}
dw c C dv

Since p=

and

K Thyagarajan 1ITD

Waveguide dispersion

_2md?B_ n-nyl|,,d?(bV)
Dw=="75 - v 2
A2 da? cA dv

Accurate empirical formula for a step index fiber:

d?(bv)
dv?

Vv = 0.080+0.5492.834-V )?

Ref: Marcuse, Applied Optics, 18 (1979) 2930
K Thyagarajan 1ITD

36



J
$:((

%‘%i;‘;;’iﬁ/laterial, waveguide and total dispersion
in SMF

40 |
30
20 |
10 |

Dispersion (ps/km.nm)

30 T, 14 16 1.8

Wavelength (um)

« Zero dispersion wavelength ~ 1310 nm

* A pulse at this wavelength will undergo very little dispersion
K Thyagarajan 11TD

pana
>

() 8hifting zero dispersion wavelength

40r Increased index
- b difference and
P smaller core radius
20}
) n(r)
10

0F

=10+

Dispersion (psfkm.nm)

20

11 1.2 1.7 1.8

1.3 1.4 1.5 1.6
Wavelength (Microns)

* Increase in waveguide dispersion by modifying refractive
index profile

» Zero dispersion wavelength ~ 1550 nm

K Thyagarajan 1ITD
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} Refractive index profile modification

E 05
% 0.4
e 03
g
§ 0.2
;E,’ 0.1
z o
o Wavelength
9 aveleng nm
0
-
()
o
N2}
o T
g 8 8
/0’) ITe)
— — — —

Wavelength (hnm)

Minimum loss and zero dispersion at same wavelength
K Thyagarajan 1ITD
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»’"-'n%
N\t

b 4

Standard fiber types

10

Dispersion [ps/nm.km]

1.40 1.50 1.60

Wavelength (um)

G.652 fiber: zero dispersion ~ 1310 nm
G.653 fiber: zero dispersion ~ 1550 nm
G.655 fiber: small non-zero dispersion around 155%%agmjan 11D

15 7 30

38



ey

o
(

S
{())
L\

““  Positive and negative D

%
)

Normal :  Anamolous
~ 201 GVD GVD
S
T
S
%} f \ i
k=t Wavelength (nm)
c o o o
Q o o o
(] < Ln (o]
B — — —
Q [
3 I
Il \H t
L
D>0

Pulse broadens forbothD>0and D <0

hirping is of ite sign
C ping 1S Of opposite sig K Thyagarajan I1TD

" Dispersion and dispersion slope

Dispersion coefficient at any A:

S 4
D()="0 A—jg

D(A): Dispersion coefficient (ps/km-nm)
A : Operating wavelength

A,: Zero dispersion wavelength

S,: Dispersion slope (ps/km-nm?)

Dispersion in ps:  7(A)=D(A) LAA

L: Fiber length; AX: spectral width of source

K Thyagarajan 1ITD
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~ Typical values at 1550 nm

1530 1540 1550 1560

Wavelength (nm)

Fiber type D (ps/km-nm) S (ps/km. nm?)
Standard SMF (G.652) 17 0.058
LEAF (Corning) 4.2 0.085
Truewave-Reduced slope (OFS) 4.5 0.045
TeraLight (Alcatel) 8.0 0.057
K Thyagarajan 1ITD
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Maximum allowable dispersion
Typical acceptable dispersion value for a bit rate of B (Gb/s)

B2DL < 104000GbZps/nm

1 dB power penalty
Chirp free narrow linewidth laser
(externally modulated DFB laser - EML)

At 2.5 Gbit/s D L), ~ 16000 ps/nm
At 10 Gbit/s D L)~ 1040 ps/nm
At 40 Gbhit/s D L), ~ 65 ps/nm

K Thyagarajan 1ITD
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" Dispersion compensation

* Need for dispersion compensation
— Many links using standard SMF have D ~ 17
ps/km-nm at 1550 nm
— To avoid nonlinear effects fibers have a finite
value of D (G.655 fibers)

— In a wavelength division multiplexed link, different
As have different dispersions
» Need to compensate for dispersion for different As
* Dispersion slope compensation

K Thyagarajan 1ITD
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\@; Dispersion & Chirping of the

pulse
| n
NPT |
dispersion Uw ‘UUV <o VU\JJWUV

Chirped pulse: w(t)

) il

Anomalous Aﬂn‘\
dispersion VVU\JL l

“Ju

K Thyagarajan 1ITD
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&) Dispersion Compensation
Optically compensate for accumulated dispersion

Fiber with Fiber with

shorter A travelling longer A travelling
faster faster

Resolved Broadened Resolved
pulses unresolved pulses
pUlSES K Thyagarajan 1ITD
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pronaa

N ' ' '
2} Dispersion compensation

Link fiber Dispersion compensating fiber
L, D(A) Lo, D(A)

For perfect compensation at a chosen wavelength A:

__Pilg)
" Dellg) f

K Thyagarajan 1ITD

(" Dispersion slope compensation
Residual dispersion at other wavelengths:
Dispersiol =Df ()I)Lf +De(A)L¢

For dispersion compensation of all channels in a
DWDM system we must have

D
k=_1 :& D: Dispersion
S S S Dispersion slope
f c

Without dispersion slope compensation:
Dispersion at extreme channels will grow and will limit
the link length

K Thyagarajan 1ITD
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,{f\"ﬂi})ispersion slope compensation (cont.)

Without dispersion slope compensation

)\1
Qc
= O
Lo A
E 2
33 L (km)
2 ©

As

With dispersion slope compensation

AAAANA

L (km)

Accumulated
dispersion

K Thyagarajan 1ITD

Dispersion map

DCF DCF DCF DCF | Extre
boosiar EDFA #1 EDFA #2 EDFA #3 L DCF

154000 ST ——
: ’ 153504 nm #1

LIk treres 1547 72 am #17
—— 155978 nm #32

atky
Y EE
i o R

S0

- HHH
1500

2000

Cumulated dispersion [ps/nm)

-2504)

| e Y - -
130 km 130 km 120 km 120 &m
SMF SMF SMF SMF

Ref: Bigo et al, IEEE Photonics Tech. Lett. 10 (1998) 1045
K Thyagarajan 1ITD
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DCF for G.652 fiber

n

For G.652 fiber D =250nm .

-

For DCF (Corning) 4%=275125nm
Insertion loss of DCF for 80 km of G.652 ~9dB
Polarization mode dispersion ~ 0.7 ps
Effective area ~ 20 pm?2
Nonlinear coefficient y ~5.7 W1kmt
K Thyagarajan 1ITD
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Novel DCF design

on
S
S

-1500
-2500

-3500

-4500[
& -5500

Dispersion (ps/km-nm)

1540 1550 1560
Wavelength (nm)

Very large negative dispersion at the phase matching A

Ref: Thyagarajan, Varshney, Palai, Ghatak & Goyal, Photonics Tech. Letts. (1996)
K Thyagarajan 1ITD
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./ Experimental realization

B |
£ 07 Simylate
£ Ay
~
g_ -500]
~ Measured
S -1000
B .
8 -1500 i
-‘Dﬁ -1800 ps/km-nm
-2000~ ‘ ‘ ‘ ; '
1520 1560 1600
Wavelength (nm)
Ref: Auguste et al. Electron. Lett., 2000.
K Thyagarajan 1ITD
\./ Dispersion compensating

module

« Should have
— Matched opposite dispersion to link fiber

— Matched dispersion slope for DWDM
applications

— Small loss
— Matching mode with single mode fiber

— Large effective area for reduced nonlinear
effects

K Thyagarajan 1ITD
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““Polarization maintaining fibers

Stress birefringent fibers

Bow-tie fibers Elliptic cladding Elliptic core

* Normal fibers do not maintain the polarization state
* PM fibers maintain the polarization state of the input light
* Applications in fiber optic sensors, integrated optics

K Thyagarajan 1ITD
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({0} Polarization mode dispersion
N

random stresses in the cable

« Different polarization states travel at different velocities
* Differential group delay

» Caused by slight fiber asymmetry and @

fast axis

> z

\
\
\
\
\
—_— —
\

slow axis CcAt
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PMD

» Critical limitation for high bit rate systems
* Fluctuates slowly with time due to
* Temperature variations, Vibrations

» Because of random coupling PMD increases
as Ll/2

e PMD in current fibers < 0.05 ps/km1/2
e PMD in many installed fibers ~ 10 ps/km1/2

* PMD requires adaptive compensation

K Thyagarajan 1ITD

IPMD (cont.)
M

10° \.
=N —S— | 25Gbls ——
400 b Y e
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N o ]
e S 10 Gbitis [

"'--..__-_.-

——
101 melp%\ \\ 20 Ghits
— e ——
0,1 05 08 1,3 1,7 21 25 28
A

Maximum transmission distance (km)

PMD delay coefficient (ps/km®5) -
Ref: PMD & Polarization, Profile K Thyagarajan 117D
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Modes and fiber components

K Thyagarajan 1ITD
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" Modes in fiber components

In a fiber having no variation along z, the light
coupled into one mode remains in the same
mode

Any perturbation along the length can be
used to couple light among different modes
leading to applications

Light can also be coupled from guided to
radiation modes

Placing two fiber cores close by leads to
interaction among the individual modes of the
fiber

K Thyagarajan 1ITD
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' n2t=rmr
If 10

or A=2a=A  BRAGG
2N Condition
All reflections add in phase =>

STRONG REFLECTION
K Thyagarajan 1ITD

(C)) Optical Fibre Gratings

N4

Periodic variation in refractive index of core used to couple
Light from one mode to another

| |

Short Period (FBG) Long Period (LPG)
» Period ~ 0.5 pm * Period > 100 pm
* Reflective e Transmissive

= I — —

K Thyagarajan 1ITD
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W)} Fiber Bragg gratings
« Periodic refractive index variation along fiber
* Wavelength A, is strongly reflected if A, = 2ngg A
» Forward propagating guided mode gets
coupled to backward propagating guided mode

[\,

A ~0.5um
Incident spectrum >

mlll >
:

|
[
[ (J///_le\\\
|
|

i et Reflected spectrum

D e e L T

Transmitted spectrum

P

.-'-[/7\" . .
. -“Fypical measured reflectivity spectrum

A L7 20:15
RL 313.8 gH KR #1 WUL 154551 nn

[

SENS] 9. % [pN 2.6 pll
LIHE fR N
REFERENCE |LEVEL| [
FIEN / \

Iy
STRRT  1545.B8 nm STOP 1555.8H nm
RE 8.2 nm UE 288 Hz ST B2 msec

Peak reflectivity and bandwidth determined by
grating length, grating strength and period of the grating

K Thyagarajan 1ITD
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@) Long Period Gratings (LPG)
*Coupling of power from core mode to another core
mode or a cladding mode (light guided by cladding)
* Period ~ 100 — 600 pm

A
P
Incident spectrum A Transmitted spectrum
K Thyagarajan 1ITD
N :
N\, Typical measured
transmission spectrum
[ t6:13:27 SEP B, 2BAD
0 MR #1 WL 15B2.6 nm
n () e I I N

NARKER / \

1562|6 nm

N. O core modes -75.¢9 dBn I \ /
|| ol coremodes 2R it

\
Ny cladding \ ,
modes l

l
/
l
J
"

r
START 135A.B nm STOF 1658.8 nm
*FB 2 nm VE 288 Hz ST 5.8 sac
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Applications

 Fiber gratings are important components in
WDM systems
* Many applications demonstrated
* Tunable dispersion compensation
» Add/drop multiplexers
» Wavelength lockers
» Applications in sensors
* Nonlinear switching possibilities

K Thyagarajan 1ITD
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..~/ Fiber directional coupler
Used to split or combine optical signals

Input P, Coupling region Output Py
[
> —
Input P, Output P,
K Thyagarajan 1ITD
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(" Modes of coupled waveguides

> Fiber # 1 > Modes have

different

: velocities
> Fiber # 2 <
4 N

Symmetric mode Anti-symmetric mode

Modes have
different
oscillation
frequencies
K Thyagarajan 1ITD
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./ Principle of directional coupler
L
>

x
>
C
Symmetric = _> (>
=
+

C
mode '>
+
Antisymmetric > <
mode Z AN
< —
K Thyagarajan 1ITD

54



@Qower coupling in a directional coupler

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Coupled power

0 2 4 6 8 10
—— Non-identical waveguides

3 dB coupler, tap coupler can be realized by appropriate

choice of length of interaction and the fibers
K Thyagarajan 1ITD
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WDM coupler

0.9 1550 nm
0.8
0.7
0.6
0.5 1310 nm
0.4
0.3
0.2
0.1

Power in input fiber

Ref: Introduction to fiber optics, A Ghatak and K Thyagarajan, Cambridge Univ Press, 1998
K Thyagarajan 1ITD
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Summary

Optical waveguides support guided and radiation
modes

Guided modes form a discrete spectrum and can
carry power over long distances
— form the basis of modern fiber optic communication systems

Single mode waveguides support only one guided
mode and find applications in communication,
sensing and signal processing

Understanding modal characteristics of optical
waveguides can help us optimize and design
waveguides and waveguide components with desired
characteristics

K Thyagarajan 1ITD

56



