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Brazilian

(Swedish)

Old: 30 years in lasers, 22 years in fibres

Main area: Active fibre components

Main interests: samba, football

Sports: jogging slowly, volleyball, skiing

Walter Margulis

CV
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Acreo

Bridge between University and Industry

Non-profit institute
Owned by government and pool of industries
150 researchers

Departments: Nanoelectronics (III-V, IR)
Electronics on Paper

Fiberlab
Components
Transmission
Network

BB testbed

Photonics
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Passive fiber components

Used where fibers are used

Telecom
Sensing

Fibre lasers
Medicine
Industry

“Passive” components

Some facts (informative)
Some principles (make you think)

Some research (fun)
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Examples discussed

Couplers/Splitters
Optical Taps
Multiplexers/Combiners
De-multiplexers/Splitters
Fixed Add/drop Multiplexers
Interleavers
Photonic Lightwave Circuits [AWG]
Twin Core Fibers 
Connectors

Isolators
Circulators
Optical Attenuators
Polarisation Related Components
Polarization related problems
Tunable Filters
Interferometers
Polarization control (active)
Polarization switch
Electrooptical fibers
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Component

P0 P1

P2

Insertion loss

Return loss

I [dB] = -10 log  (P1 / P0 )

R [dB] = -10 log  (P2 / P0 )

3 dB loss               50% loss

10 dB loss             90%  loss

30 dB loss            99.9 % loss

Loss and the dB scale
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Two components in series:
Just add the losses in dB to get the combined loss

Examples:

1) A fiber has a propagation loss 0.2 dB/km. What fraction of the optical power 
reaches the fiber end at 15 km (i.e., 15 pieces of 1 km in series)?

2) Two 50% (i.e., 3 dB) fiber couplers are connected in series as shown.
What is the power loss of the combination?

3 dB 3 dB

Pin Pout

Examples
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CR: coupling ratio (e.g., 70/30)

EL: excess loss (e.g., 0.2 dB)

IL2: insertion loss from port 1 to port 2

IL3: insertion loss from port 1 to port 3

Pn: optical power at nth port

Port 1 Port 2

Port 3Port 4

Fused region

Coupler package

x

)/log(-10)(

)/log(-10)(

)/)log((-10)(

)/(100)(

133

122

132

323

PPdBIL

PPdBIL

PPPdBEL

PPPpercentCR

input

Fiber couplers

Acknowledgement: David W. Stowe – Stowaway@attbi.com
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Technologies available

Fused: Fibres are fused along their length

Planar: Fibres are pigtailed to a silica-on-silica or silica-on-silicon structure.
Advantageous only for large number of channels (N>4)

Micro-optics: Fibres are pigtailed to components such as MEMS, 
micro-mirrors, beam-splitters, etc

Side-polished: Evanescent field couples from fibre to fibre. 
Usually expensive and adjustable.
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Fiber beam splitters

Fused couplers
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Coupler cross-section

Before fusion
125 µm + 125 µm

After fusion
~35 µm

Fiber Coupler: before and after fusion
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E. Pone et al, 12, 2909 (2004)

E. Pone et al, 12, 1036 (2004)

Fiber Coupler
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Fabrication of fused couplers

Mechanical stripping

200 oC H2SO4 stripping

Coating

Holder (vacuum)
Stripped region
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Fabrication of fused couplers

Stripped region

Twisted fibers

Fuse and draw
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Fiber Coupler Fabrication
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Fiber Coupler Fabrication
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Longitudinal Coupler Profile
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Cross-section after fabrication
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Fused devices:
• Low insertion loss
• Simple construction (light never leaves the fibre, no pigtailing)
• Lower cost than alternatives 

(e.g., 3 dB coupler from Asia costs ~ €10 and from Europe ~€70) 
• Environmental stable

Material issues:
• Additional processing of fibre
• Weakening due to coating removal and cleaning
• Weakening due to heating and material diffusion
• Hydrogen and moisture
• Fictive temperature changes in coupler region
• Coupler depends on outer regions of fibre (contamination, purity, rugosity)
• Moisture drift in time

Couplers: properties and issues
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Typical Splitter Cross-section

Fused 
region

Moisture-
ingress region

Core

Cladding

•Contaminants
•H2 diffusion

•Epoxy degradation
•Water diffusion

Loss and drift 
mechanisms
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Average Change in Insertion Loss 

29 1x2 Splitters in 85°C/16%RH
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Average Change in Insertion Loss 

34 1x2 Splitters in 85°C/85%RH
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More legs

1x3

1x4

3x3

3x33x3
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D Mortimore & J. Arkwright
"Monolithic wavelength-flattened fused fiber couplers: theory, fabrication and analysis", Appl. Opt 30, 650 (1991).

Theory and fabrication of wavelength-flattened 1XN single-mode couplers",  Appl. Opt. 29, 1814-1818 (1990).

Lightly fused Highly fused

Energy transfer: ~100% for N=6 outer fibers

Technique: low index capillary tube and distortion allows for 
phase matching between outer fibers and central fiber

Fabrication of 1xN
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Photonic Lightwave Circuits (PLC): 1xN couplers

When N is large 
Multimode Interference (MMI) 

couplers can be used 
(not fiber)

1x8 couplers
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Concatenated splitters

1x8 tree splitter fabricated by concatenating 1x2 splitters

Useful in passive optical networks
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Multimode couplers



14

12-23 Feb 2007 Passive fiber components     W. Margulis www.acreo.seICTP – Winter college on fibre optics, fibre lasers and sensors

Fibre Bundle

Tapered Bundle

Cladding

MM Core

e.g. Double Clad Fibre

Buffer

SPLICE

High-power: tapered fiber bundles
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7x1 MM combiner
MM: 94% transmission

Corning HI1060nm signal input
105/125um 0.22NA pump input

5/125um DCF (0.46 NA)
MM transmission: 93%

Signal transmission: 87%

High-power: multimode combiners
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Novel designs

10x1

PM Combiners

PM 6+1x1

Higher port count

19x1

Novel designs
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Twin-core fiber

Power coupling between two parallel WG
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16 um

Refractive index profile for simulation 1

Power coupling between two parallel WG
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The wavefront propagates slower in the region of higher average index. 
This changes the propagation direction. 
Energy is coupled into the second waveguide.

Qualitative - Do not quote me!
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Beam propagation simulation

Power transfer between cores along device
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Beam propagation simulation

Power transfer between cores along device
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Power at the end of the device

Number of beat lengths in 50 cm       1           2      3     4

Parameters:
Core distance: 21 µm
Fiber length: 50 cm   

Core 1: o
Core 2: o

3 dB coupling: 
=1.16 µm

1.3 µm
….

1.5 µm
Dual band (1.3-1.5)
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Number of beat lengths in 10 cm  1             2          3     4  

Parameters:
Core distance: 16 µm
Fiber length: 10 cm   

Core 1: o
Core 2: o

Computational domain:
30x30 µm

Step along z axis: 20 µm

Power at the end of the device

Smaller core distance, 
huge effect in coupling
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Power coupling between ports vs length
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When to stop coupler fabrication

WDM 1480-15503 dB
What is bad about these couplers?
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Effect of different n in cores

3 dB coupling

No coupling
Light stays in core 1

Full coupling

L = LB/2

n2 / n1

L = 28 cm

LB = 56 cm

=1.55 µm

d = 25 µm
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Fabrication of broadband couplers
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Fabrication of broadband couplers

Twisted fibers

Fuse and draw

Tapered region
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A twin-core fiber Variable Optical Attenuator

STF STFTCF

STF STF
TCF

Side-issue
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Side-issue

A twin-core fiber Variable Optical Attenuator

STF

STFtwin-core fiber

offset
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Acoustic wave

Piezoelectric element

High-speed (~10 µsec) VOA based on twin-core fiber

Side-issue
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Supermodes:

SymmetricalAnti-symmetrical

Simplified coupling theory

1

2

In Out 1

Out 2
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1

2

In Out 1

Out 2Input field: Ein(y) = E01 e(x-d)  / = E01 G1
2 2

Eigenmodes in a coupler

Eigenmodes:        symmetric   AS = G1 + G2

anti-symmetric   AA = G1 - G2

Propagation: phase difference between eigenmodes   e i L

G1 = 1/2 (AS + AA)

G2 = 1/2 (AS - AA)

Assume G1 and G2 normalized, i.e., |G1|= |G2| = 1

Input: Ein = E01 G1 = E01 1/2 (AS + AA)

Output:            Eout = E01 1/2 (AS + AA e i L )

Simplified coupling theory
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1

2

In Out 1

Out 2

Output:  Eout = E01 1/2 (AS + AA e i L )

Express output in terms of G1 and G2

Eout = E01/2 (G1 + G2 + G1e i L - G2e i L)

Eout = E01/2 (G1 + G1e i L) +  E01/2 (G2 - G2e i L)

Eout1 Eout2

More general case Input Ein = E0 (C1 AS + C2 AA)

Output: Eout = E0 (C1G1 + C1G2 + C2G1 e i L - C2G2 e i L)

Output: Eout = E0 [G1 (C1 + C2 e i L) +  G2 (C1 - C2e i L)]

Eout1
Eout2

Simplified coupling theory
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1

2

In Out 1

Out 2

Eout = E0 [G1 (C1 + C2 e i L) +  G2 (C1 - C2e i L)]

Power output

Pout1 = |E0|
2 |G1|2 (C12 + C22 + 2 C1 C2 cos L)

Pout2 = |E0|
2 |G2|2 (C12 + C22 - 2 C1 C2 cos L)

For C1 = C2 = 1/2

Pout1 = |E0|
2 (1/4 + 1/4 + 1/2 cos L)

Pout1 = 1/2 |E0|
2 (1 + cos L)

Pout2 = 1/2 |E0|
2 (1 - cos L)

Power oscillates 
between waveguides

Simplified coupling theory



25

12-23 Feb 2007 Passive fiber components     W. Margulis www.acreo.seICTP – Winter college on fibre optics, fibre lasers and sensors

Maxwell’s equations in a fibre coupler or TCF

xE =  - B / t,
xH =   D / t,

.D =  0         (no free charges or currents)
.B =  0

where

D = 0 E + P

B = µ0 H + M    (non-magnetic: M = 0)

x xE = - 1/c2 2E/ t2 - - µ0
2P/ t2

where P describes the material response to the E field.

No charges: .E =  0, and since x xE = ( .E) - 2 E

In the frequency domain ( ), assuming harmonic expansion of the fields:
2 + n2( ) k0

2 = 0

where k0 = /c = 2 / 0
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In cylindrical coordinates:
2 Ez/

2 + 1/ Ez/ + 1/ 2 2 Ez/
2 + 2 Ez/ z2 + n2k0

2 Ez = 0

and similar equations for E , E , Hz, H , H

Separation of variables: Ez( , , z) = F ( ) ( ) Z(z)

d2Z / dz2 + 2 Z = 0                                (1)

d2 / d 2 + m2 = 0                            (2)

d2F / d 2 + 1/ F/ + (n2k0
2 - 2 - m2/ 2) F = 0                 (3)

Solutions:

(1): Z = exp (i z), where is the propagation constant

(2): = exp (im ), where m is an integer so that repeats at every m = m-1 + 2

(3): F = combination of Bessel functions

Maxwell’s equations in a fibre coupler or TCF
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Implications:

• The product ( ).F( ) gives the transversal field distribution across the waveguide,

while Z = exp (i z) tells us that light propagates along the waveguide as a sine/cosine.

• The various Bessel function combinations of F( ) give rise to discrete solutions of the 

transverse field distribution. Like atomic levels in an atom or oscillating modes in a 

gitar string, these can be treated as eigenstates of the propagation equation. 

• The stable solutions of the transverse field distribution are the propagation modes.

• The propagation constant depends on the field distribution in the core - different   

modes have different . depends on the overlap of the mode with core and cladding.

Modes in a fibre coupler or TCF

12-23 Feb 2007 Passive fiber components     W. Margulis www.acreo.seICTP – Winter college on fibre optics, fibre lasers and sensors

For coupled waveguides:
2 + n2( ) k0

2 = 0
has approximate solution:

E(r, ) ~ ê {Ã1(z, ) F1(x,y) + Ã2 (z, ) F2(x,y)}ei z

The transversal part in (x,y) or in (r, ) is solved separately to give the 
individual waveguide propagation modes. 
Generally, each arm supports only the fundamental mode (nealy Gaussian)

Replacing in the wave equation and after a few hours work (slowly varying 
envelope approximation):

d Ã1/dz = i( 1 - ) Ã1 + i 12 Ã2

d Ã2/dz = i( 2 - ) Ã2 + i 21 Ã1

Modes in a fibre coupler or TCF
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In the time domain

A1/ z + (1/vg1) A1/ t + (i 21/2) A1
2/ t2 = i 12 A2 + i a A1

A2/ z + (1/vg2) A2/ t + (i 22/2) A2
2/ t2 = i 21 A1 - i a A2

where

vg1 = 1/ 11 is the group velocity in guide 1

21 is the group velocity dispersion parameter of waveguide 1

a = 1/2 ( 01 - 02)

= 1/2 ( 01 + 02)

Modes in a fibre coupler or TCF
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CW beams
A1/ z = i 12 A2 + i A1

A2/ z = i 21 A1 + i A2

2A1/ z2 + 2 A1 = 0 

where = [( 12 21)
1/2 + ]1/2

Solution: harmonic oscillator
Assume power coupled into one port:
A2 (z=0) = 0, A1 (z=0) = A0

A1(z) = A0 [cos ( z)+i ( / )sin( z)]

A2(z) = A0 [i ( 21 / )sin( z)]

Power couples from waveguide 1 
to waveguide 2

Time derivatives are zero

Coupling in a fibre coupler or TCF
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Standard Interferometers

3 dB
Michelson

3 dB
Sagnac

3 dB 3 dB

L1 or L2

L1

Mach-Zehnder
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Standard Mach-Zehnder Interferometer

Standard couplers

Insertion loss < 0.2 dB

PDL < 0.1 dB

Reflectivity < -50 dB

Interferometer balanced to 0.04 
wavelengths

Single sided devices available

Standard & custom fibers

Dimensions 125 mm x 5 mm

Applications: Add / Drop Multiplexers and Sensors
Features



29

12-23 Feb 2007 Passive fiber components     W. Margulis www.acreo.seICTP – Winter college on fibre optics, fibre lasers and sensors

Unbalanced Mach-Zehnder

• Narrow channel spacing             
3.2 - 240 nm

• Insertion loss < 0.2 dB

• PDL < 0.1 dB

• Reflectivity < -50 dB

• Interferometer balanced to 0.04 
wavelengths

• Dimensions 125 mm x 5 mm

Applications: Wavelength Division Multiplexers and Sensors 
Features

Thomas & Betts
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Fused couplers: most important passive component

Stable technology

2x2 common (Fabrication, reliability issues)

1xN expanding

MM devices useful for Fiber Lasers

Principles of coupling

Twin-core fiber

Simulations and simplified theory

MZI

Summary




