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Atlantic Ocean Heat Transport

(Brycien:amnd lmawaid,i200:1; The Atlantic Meridional
Overturning Circulation (MOC) In
which warm upper waters flow
northward and cold deep waters
flow southward transports heat
northward throughout the Atlantic
Ocean. This heat is given up to
the atmosphere north of 26°N.

The ocean heat transport across
26°N In the Atlantic accounts for
25% of the maximum poleward
heat transport required of the
combined ocean and atmosphere
to balance the global radiation
budget of the earth




Change in Atlantic THC [1 0° m3/s]




Temperature Change after the Atlantic MOC has been shut down
for 100 Years according to coupled climate models
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Stouffer et al., 2005
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Northward Flow across 26°N occurs in surface Ekman layer and
In Florida Straits

Recirculation




Florida Straits Transport

Gulf Stream transport time series from electromagnetic cable.

Continuous record between 1982 and present except
between October 1998 and and March 2000.

Baringer and Larsen, 2001




We can easily monitor the northward flows across 26°N

25 Years of Ekman Transport and Florida Straits Transport
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Ekman

Il h L B bt el l‘ m.nj.u. mnr TR
V”H!WV \V '"ru'l'! YT ”1' I Ny - :

SOC Ekman transport (Sv)

! L ! ! L I | ! L l
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04

Time in years (tickmark located on month of June)

Florida Straits

T

VVV\/ 'W'V

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04
Time in years (tickmark located on month of June)

=
22
=
S
a
w
ju
®
5
2]
=
©
5
)
®
R
ie,
i

I|Ekrﬁanl+ Fioriclja Sltrailts

FS + Ek (Sv)

| | | | | | | | | | |
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04
Time in years (tickmark located on month of June)




The southward transport is more difficult to monitor
and requires measurements across the basin

SouthwardFlow
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Traditional Monitoring of Mid-Ocean Circulation

Hydrographic Sections at 25°N

28°N |
24°N

200N | | |
85°W  75°W 60°W 45°W 30°W 15°W  5°W

Hydrographic station locations of the 1957 (0 ), 1981 (x ), 1992 ( + ), 1998
(+)and 2004 ( o) transatlantic cruises. Shaded regions are above sea level.
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Structure of Deep Western boundary Current at 26.5°N
from Abaco arrays (1987-1998)

Deep Western Boundary Current east of Abaco
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Mid Ocean Geostrophic Transport Profiles from 25°N Sections

Transport per unit depth (x104 m2 s-1)



Stronger, deeper southward thermocline flow in 2004
than in 1957, 1981, 1992 (Bryden, Longworth and Cunningham 2005)

Transport per unit depth (x10*m?s™)




Thermocline Recirculation Stronger in 2004

Transport (Sv) Shallower than 1000m




Weaker Southward transport of Lower North Atlantic
Deep Water (3000-5000m) in 1998 and 2004
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Reduction in southward transport of LNADW
In 1998 and 2004

UNADW LNADW

Transport (Sv) 1000-3000m 3000-5000m




1957 1981 1992 1998 2004

Shallower than 1000 m
depth

Gulf Stream + Ekman

Mid-Ocean Geostrophic

Net

1000-3000 m
3000-5000 m

Deeper than 5000 m




Based on Bryden et al., Nature, 2005

Trends In
Transports
Across 25°N

Above 1000 m

MNorthward
Transport Below 5000 m

Southward
Transport

1000-3000 m
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North Atlantic: More Circulating, Less Overturning in 2004
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Is this a real slowdown In the Atlantic Meridional
Overturning Circulation?

Or is it due to typical subannual or interannual
variability?

To find out it Is essential to measure the
subannual to interannual variability. We must
continuously monitor the meridional overturning




Monitoring System at 26°N where
Ocean Heat Transport is a Maximum




We designed an array of moored instruments on the eastern
and western edges of the 26°N section and over the flanks of
the Mid Atlantic Ridge to monitor the MOC
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Array to monitor interior geostrophic flow
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Figure 1. Mooring array for monitaring the Atlantic meridional overturning circulation at
26.5"N. a) Western boundary; b) Mid-Atlantic Ridge; ¢) Eastern boundary
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Hirschi, Baehr, Marotzke, Stark, Cunningham and Beismann (2003)
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The Mid-Ocean Array
Deployed February-March 2004

Recovered and Redeployed April-May 2005
Recovered and Redeployed April-May 2006 rayner and

Cunningham
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Buoyancy with beacon

Profiling CTD with
acoustic current meter

Acoustic release

Deadweight anchor

Courtesy S. Cunningham
|. Waddington

The array relies on top-to-
bottom profiles of temperature
and salinity, continuous
hydrographic stations from
which geostrophic velocity
can be estimated

Key instrument is the profiling
CTD
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Rapid MOC Monitoring

Cooperation between UK and US: NERC and NSF and
NOAA joint proposals and funding

AOML - Miami responsible for Florida Straits monitoring
with support from NOAA

University of Miami monitoring deep western boundary
current with support from NSF

National Oceanography Centre - Southampton
monitoring the mid-ocean circulation and overall
overturning with support from NERC




Working Together-SOC and University of Miami mooring teams
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Vertical Profile of Mid-Ocean Northward Transport per unit depth

Transport per unit depth (104 m2 3'1)

Each day’s
Profile Is
adjusted to give
a southward
geostrophic
transport equal
to the Ekman
plus Florida
Straits
transport for
that day

Grant and Bryden (2006)
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Transport Variability in Layers Compensated for
Florida Straits and Ekman Transport Fluctuations
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East - West Dynamic Height Difference ( Mean Blue; 2 Nov 2004 Red )

0 I ! | I

g
®©
0
=
)
]
=5
7]
%]
©
e
o

4 -3 -2 1
Dynamic Height Difference East - West (m2s2)




Atlantic Overturning at 25°N

Florida Straits Transport

Overturning
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Mean Standard
Deviation

Florida Straits Transport : 3.3
Ekman Transport : 3.8

Upper Mid-Ocean
Geostrophic Transport -16.5 3.2

Overturning Transport 18.1 5.1

Each component (Florida Straits, Ekman, Mid-Ocean Geostrophic)
has a standard deviation in its temporal variability of about 3.5 Sv

The components do not appear to be correlated, so the
standard deviation in Overturning Is about 5 Sv




Summary

With the Rapid array we can monitor the size and vertical

structure of the mid-ocean geostrophic transport and its
temporal variability.

Upper layer mid-ocean geostrophic transport exhibits temporal
variability with a standard deviation of about 3.2 Sv, similar
to the variability in Florida Straits or Ekman transports.

The temporal variability in the Atlantic overturning has a standard
deviation of about 5 Sv.

Based on the 2004-05 Rapid measurements, we estimate that the
year-long average overturning can be defined with a
standard error of about 1.5 Sv.




Summary

Warm upper waters flow northward and cold deep waters flow
southward in what is called the Atlantic Meridional
Overturning Circulation (MOC). This circulation transports
1.3 PW of heat across 26°N

Climate Models suggest anthropogenic CO2 increases may lead
to a slowdown in the MOC with consequences for
European climate

We have developed a monitoring array at 26°N to provide an
early warning system for changes in the Atlantic
Overturning

Present Rapid Monitoring is presently planned for 4 years
2004-2008 but we hope to continue for at least a decade.




