

SMR/1837-4

2007 ICTP Oceanography Advanced School

30 April - 11 May, 2007

Sill Overflows: Single Layer

H. Bryden
National Oceanography Centre
Southampton, UK

Sill Overflows: Single Layer

Lecture for ICTP Advanced School on Oceanography International Centre for Theoretical Physics Trieste, Italy April-May 2007

Prof. Harry L. Bryden

Table 1 The Atlantic

Name	Depth	Width	Lat	Long	Reference
1 South Sandwich Trench	4600	70	61 15 5	023 45 W	Locarnini 1993
2 Orkney Passage	3200		60 40 S	040 45 W	Locarnini 1993 /DBDB5
3 Powell Basin	2000		60 32 5	048 15 W	Nowlin and Zenk 1988
4 Shackleton F.Z.	3500		60 45 5	056 45 W	Nowlin and Zenk 1988
5 Drake Passage	3500		57 30 S	065 00 W	Reid 1986/Gebco
6 Georgia Passage	3200		56 00 S	031 00 W	Locarnini 1993
7 Shag Rocks Passage	3200		53 00 S	049 00 W	Locarnini 1993
8 Falkland Ridge Gap	5100		49 00 5	035 30 W	DBDB5/Gebco
9 Vema Sill	4200		28 40 5	038 00 W	Cherkis et al 1989/DBDB5
10 Hunter Channel	4300	50	35 00 S	027 00 W	Speer 1992
11 Meteor F.Z	3500		35 30 S	018 00 W	Cherkis et al 1989
12 Walvis Ridge Walvis Passage No name No name Namib Col	4200 4000 3600 3000	50 12 50	32 40 5 30 00 5	007 00 W 002 20 W 001 45 E 007 15 E	Warren and Speer 1991 Needham et al/Warren 1991 DBDB5/Warren and Speer 1991 DBDB5/Warren and Speer 1991
13 Cox F.Z	3600		32 00 S	012 15 W	Cherkis et al 1989
14 Rio Grande F.Z	3900	13	26 00 S	014 45 W	Cherkis et al 1989
15 Rio de Janeiro F.Z.	3900	35	22 30 5	013 15 W	Cherkis et al 1989
16 Bagration F.Z.	3800		16 30 S	013 30 W	Cherkis et al 1989/DBDB5
17 Cardno F.Z.	3500		14 00 S	013 30 W	Cherkis et al 1989/Gebco
18 Ascension F.Z	3800	24	08 00 S	014 00 W	Cherkis et al 1989/Gebco
19 Guinea Rise	4300		2-7 5	3W - 1 E	Warren and Speer 1991
20 Chain F.Z	4050	10	01 00 5	014 11 W	Mercier et al 1994
21 Romanche F.Z	4350	10	00 50 S	013 45 W	Speer et al 1994

www.soc.soton.ac.uk/JRD/OCCAM/sills.html

$$Q = u_d * h_d = \sqrt{\frac{2}{3}gH_R} * \frac{2}{3}H_R$$

FIG. 11. Potential temperature distributions from zonal sections made from the R/V Crawford in March-April 1957 (Fuglister 1960). Station positions are shown on Fig. 1. (a) 16°S; (b) 8°S.

Strait Mixing versus Interior Mixing in the Abyssal Atlantic Ocean

Strait Mixing
$$Q\Delta\rho \qquad \qquad \mathcal{K}\frac{\partial\rho}{\partial z}$$
Brazil Basin
$$Area = 3 \times 10^6 \text{ km}^2$$

$$Romanche Fracture Zone$$

$$Q = 1.2 \text{ Sv}$$
Eastern North Atlantic
$$Area = 8 \times 10^6 \text{ km}^2$$

For interior mixing the vertical diffusivity, K, is taken to be $1 \times 10^{-4} \,\mathrm{m}^2 \,\mathrm{s}^{-1}$. $\Delta \rho$ is estimated from the difference in bottom water densities across each sill.