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Part one

Ocean semplified model :

1. Box model
2. 2D model



The world oceans are an essential component of the
physical climate system

The ocean is responsible for about half of the total heat
flux from low to high latitudes, that is necessary to
compensate for the radiation imbalance between the
equator and the poles

The oceans act as formidable buffers that can store
large amounts of heat and elements like a carbon

To represent the ocean from a climate point of view we
use ocean models



10° |

107 ./T | = %

ool L il L il L
107 108 102 10* 10° 1g* 10’ 10°
Wavenumber (m™)

Fig.7.2.1 Space—time scales covered by ocean models. Rectangles indicate the temporal and spatial (horizontal)
scale range explicitly resolved by current ocean models:T, ocean climate models; E, global eddy-resolving models;

C, ocean convection models; L, large eddy simulation of ocean mixed layer. The dashed lines indicate the expected gain
in resolution within 6 years, based on an assumed doubling of CPU speed every 18 months.The thin lines are
dispersion curves for linear gravity waves (upper set) and planetary waves (lower set). Each set displays the barotropic
and the first four baroclinic modes, for typical mid-latitude conditions.The shaded circles give an indication of some
relevant processes that are not resolved in most ocean models: |, eddies/fronts/western boundary currents;

2, organized deep-ocean convection; 3, three-dimensional turbulence.



Our approach




On the global scale the ocean circulation is
driven by

« \Wind forcing

* Fluxes of heat and fresh-water through the
ocean surface (thermohaline circulation)
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Wind driven circulation

 the frictionally induced wind driven
circulation that tend to create upper level
oceanic horizontal flows in the direction of
the mean surface winds
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Thermohaline circulation

he component of the flow driven by
horizontal pressure forces resulting from
hydrostatically balanced horizontal density
differences



Salinity and temperature
distribution
(at Intermediate level)



WHP/SAC Temperaiure (p=1000)

latitude

temperature and salinity at a
pressure of 1000 dbar.

Note the large salinities in the
North Atlantic and NW Indian
Oceans: these are due to
outflows from the
Mediterranean and Red Seas,
respectively.

latitude

150
longitude



WOCE hydrographic Atlas

It is often common to
plot properties on density
surfaces, in order to see
water mass structure. We
have used neutral density
surfaces for this exercise.
Neutral surfaces will vary
for a fixed pressure
because of geostrophic
flow in the ocean. At the
right are plotted neutral
density at the surface and
at 1000 dbar.

latitude

latitude

WHP/SAC Gamma-N (p=0)
s . g -

WHP/SAC Gamma-N (p=1000)
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WHP/SAC Pressure (Tn=27.3, AAIW/MW)

pressure (top) and salinity
(bottom) on the neutral density
of 27.3.

latitude

This density is one which rises
to the surface (outcrops) in the
Southern Ocean and is a good
level for tracing properties of
Antarctic Intermediate
Water (AAIW).

We can also see effects of the
Red Sea and Med Outflows.

Note how this display shows a
much broader salty Med
‘tongue’ than on the 1000 dbar
pressure level.

latitude

1‘cl'>0
longitude

From WOCE hydrographic Atlas
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The fundamental processes
for the TH variabllity



Deep water formation

In addition to the large-scale hydrostatic TH circulation,
relatively intense localized buoyancy-driven (i.e.
nonhydrostatic) convective circulation cells induced by
unstable vertical gradients of density, particularly in high
latitude where strong surface cooling and avaporation
can occur

These area are located at high latitudes in particular in
Greenland sea, Labrador sea and Weddel sea

Mediterranean sea (Gulf of Lions)

Red sea



 Change in the deep water prodution have
a large scale response In the thermohaline
circulation

 The physics of the deep-water formation Is
poorly understood: for example the
sensitivity of the amount of deep and
Intermediate water to changes in the
ocean-atmosphere heat flux



 Deep water is formed by cooling of the
upper layer followed by an overturning of
the water column

e Adjusts on a larger scale to its neutrally
level

» Transported by advection
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Fig. 8.8 Double diffusion: (a) Salt fingering interface (cold, fresh water warms and rises; warm, salty
water cools and sinks). (b) Diffusive interface. (¢) North Atlantic Mediterranean eddy salinity profile

with steps due to salt fingering (25° 23'N, 26°W). (d) Arctic temperature profile with diffusive
layering (Kelley et al. 2001).
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Different phase of the deep water
simulation
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FiG. 20. The weakly stratified chimney simulation at day 3 with a format a< in Fig. 14,

By
Themal boundary /? ?\
layer

layer

FiG. 1. A schematic representation of the “violent mizing™ phase. A homogeneous ocean of depth | exposed
to surface negative b forcing By, responds through the develop of a thermal boundary layer of
depth #. From this layer intrusions of dense fluid—pl P into th i walers beneath having
a characteristic length scale | and velocity scale u. These convective circulations sweep fluid out of the boundary
layer to depth (and draw fluid up to the surface to be cooled ) driving the convection layer below, 1f the ocean
is sufﬁci,cn}l;' rldger' {as drawn here) then the convection layer will come under rotational control on the scale
T = (Bof )5,

!

FIG. 2. A schematic representation of the earliest stages of the “sinking and spreading® phase. If [, < H,
convectively modified waters, strongly under the influence of the earth’s rotation, extend Lo the ocean bottom
and “fill out™” te the deformation radius /. “Cones™ of spinning fluid are formed that trap the convected
water and have a scale close to [,.



e “deep mixing Is not occuring by simple
overturning of surface mixing layer, but
rather through a complex hierarchy of
mixing scales and dynamical processes”
(Gascard, 1983)






Atlantic Water Nasses




THE OCEAN CONVEYOR

carries warm surface waters from the tropics northward. At high latitudes, the
waters cool, releasing heat to the atmosphere and moderating wintertime
climate in the North Atlantic region. The colder (and denser) waters sink and
flow southward in the deep ocean to keep the conveyor moving.

current )

Warm surface §
current {4

(Hlustration by Jack Cook, WHOI)
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Fig. 20.13. Sketch of the circulation in the north Atlantic Ocean.




The stabllity of the ocean
circulation

Changes in ocean circulation can have an
enormous effect on climate due to a strong
modification of the pole ward heat transport

There are evidences that rapid transition
between warm and cold periods have occured

Importance to understand the processes by
which the global ocean circulation pattern can
be changed

Sensitivity study of the present ocean circulation
under disturbances

Keys area (Achille’s heel) that can respond
rapidally to this external pertubation




A Thresholds

e Strongly discontinuous responses to
projected climate change Change in related

response rate
Climate change %‘
/ Step change in

/ sponse variable
_//

—* Time Ecosystems: species
extinctions
Health: arrival of malaria




 The present atlantic circulation has 1-cell
strutture with a northward surface flow and
a conpensating southward deep sea
circulation

e All the above considerations motivate
studies of the thermohaline ocean
circulation



o Stommel (1961) showed that the presence
of heat and salt, with their different
Influence on the density field, may lead to
steady stable regime (multiple steady state
of ocean circulation)

 Bryan (1986) showed that perturbing the
symmetric 2-cell state also 1-cell pole-to-
pole asymmetric stable steady state may
exist



he transition Is due to feedback
processes induced by salinity anomaly at
high latitude on the 2-cell state with
equatorial upflow: an advective feedback
processes between the strength of the
circulation and the associated salt
transport




 Box model may serve as a “toy” models to
Investigate one particular problem (like the
Influnze of the internal anomaly)

* Although these models are highly
iIdealized as ocean model, the results
obtained have shown many similarities
with those of complex 3-D ocean models



circolazione termoalina

temperature change + temperature advection =
heating/cooling term + diffusion

salinity change + salinity advection =
evaporation/precipitation/brine
rejection + diffusion (8.42b)

For the mathematically-oriented reader, these
equations are:

dT/ot+u d'T/ax +v aT/oy +w dT/dz =
Qu/pep + 0/0x(kudT/9x) +
0/0y(kpd'T/0y) +0/0z(ky0T/0z) (8.43a)

d9S/0t +u 0S/9x + v 9S/dy + w 9S/9z =
Qs + 0/9x(kdS/9x) +
3/dy(kpdS/dy) +3/dz(xydS/dz) (8.43b)
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MULTIPLE EQUILIBRIA OF THC

Atmospheric
Heat Flux

Atmospheric
Freshwater Flux

a)

s Y

Atmospheric
Heat Flux

Atmospheric
Freshwater Flux
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>y vy ¥ oy >
5km
EQ 70N EQ 70N
z T AZ S

b)

Fig. 3. Schematic representation of the basic mechanisms responsible for multiple equilibria of the THC in a simple hemispheric configuration (top

row) and typical vertical profiles of temperature and salinity in the high latitudes (bottom row) for the corresponding circulation types. (a) Direct
circulation. (b) Indirect circulation.



Table 1
Summary of the two principle feedback mechanisms that cause changes of the thermohaline circulation. The table is an extended version of Rahmstorf

(1998); further feedback mechanisms are discussed in Marotzke (1996).

ADVECTIVE FEEDBACK CONVECTIVE FEEDBACK

Process Advection of high salinity waters from the evapor-  Localized, upward mixing of warmer and more saline
ative regions of the low latitudes to the deep water  water into the surface layers of the high latitudes where
formation regions cooling and excess precipitation prevails

Time scale 10-100 yr [-10yr

Trigger Large-scale perturbation of atmosphere-ocean Localized input of freshwater, changes of sea ice cover,
heat and freshwater fluxes, reduction of deep local changes in atmosphere-ocean heat and [resh-

water formation at high latitudes water fluxes

Representation in models Large-scale, robust process, fairly well represent-  Poorly parameterized in all coarse-resolution models.
ed in box models to coupled atmosphere-ocean Only non-hydrostatic, high-resolution models simu-
general circulation models late this process




6.1 LOCAL (OR INTERNAL) STABILITY

For generality, let us consider the stability properties of any equilibrium (steady state)
of a system of equations of the form

dx

i f(xi) (6.1)

where x; denotes a set of variables. Small departures, x{ , from a steady-state x;()
satisfying f (xijo) = O are governed by the linearized form of Eq. (6.1),

dxi :
—+ = Jox; (6.2)

where Jp is the Jacobian matrix, (39f/dxj)o, evaluated at xi(o). Then assuming depar-
tures of the form x” ~ exp(wt), where w are the eigenvalues, the local behavior near
xj(0) 1s determined by the roots of the equation

Determinant{wé;; — Jo} = 0 (6.3)

where §;j is the Kronecker delta. If all the eigenvalues have negative real parts the
steady state is stable, and if one or more eigenvalues has a positive real part then the
steady state is unstable.



6.3 STRUCTURAL (OR EXTERNAL) STABILITY: ELEMENTS OF
BIFURCATION THEORY

In Section 6.1 we discussed the stability of a particular equilibrium point in a system
when an internal state variable is perturbed from this point, holding all external factors
fixed. We now consider the changes in the number, values, and internal stability of all
the equilibria of a system when an external factor (i.e., a control variable) is changed.
The stability of the equilibrium structure in the face of changes in a control variable
has variously been called global (as opposed to local), external, or structural stability.
The critical values of the control parameters at which discontinuous changes in the
equilibrium structure occur are called bifurcation points.

To illustrate we first consider the properties of the single-variable equation,
Eq. (6.11), reduced to its symmetric cubic form (k; = 0),

dZ 3
— =cz— 6.12
= cz — k32 (6.12)

; o . 12, .
which can be rewritten in a normal form by scaling z = k; / Zie,

dzZ
— =cz-27° 6.13
e (6.13)
This equation has three equilibria Zy (fixed points) for ¢ > O0: Z((]o) =: 0,
Zy" = ¢'2, and Z{P’ = —c!/2. These equilibria are graphed as a function of c in

Fig. 6-1, which is the bifurcation diagram for Eq. (6.13), revealing its structural sta-
bility properties, including the “pitchfork™ bifurcation at ¢ = 0. At this bifurcation
point the equilibrium Z = 0 which is stable for all ¢ < 0, becomes unstable for all
¢ > 0, a symmetric pair of stable equilibria emerging parabolically with increasing c.
As is conventional, solid curves denote locally stable equilibria and dashed curves
denote locally unstable equilibria.

In Fig. 6-2 we plot (a) Z as a function of Z and (b) the Lyapunov potential implied
by Eq. (6.13), defined by Vz = — [[cZ + Z*]dZ, showing the generic property of
the cubic form in confining an unstable equilibrium (Zé,o)) between two stable equilib-
ria Z{()” and Z{()z]. This common physical situation will appear in relation to the EBM
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Figure 6-1 Bifurcation diagram for
Eq. (6.13). Stable and unstable equilibrium
S branches denoted by S and U (dashed),
respectively.

to be discussed in Chapter 7 and the simple two-box ocean model to be discussed in
Chapter 11.

Although the pitchfork bifurcation just described provides the most elemental,
physically significant representation of an unstable system, for completeness we men-
tion two other basic “normal forms” and their bifurcation diagrams.



Figure 6-6 Bifurcation diagram for
Eq. (6.18) (a) as a function of F with ¢ taken
as a constant and (b) as a function of ¢ with F
taken as a nonzero constant.

Figure

6-5 Bifurcation

diagram for

Egq. (6.16) illustrating a saddle node (or limit
point) bifurcation (a), and for Eq. (6.17),
illustrating a transcritical bifurcation (b),

Other possibilities are represented by normal forms for a single variable in which
damping occurs at the quadratic rather than cubic level. These include the form

— =c-2?

o (6.16)

which gives rise to the saddle node (or limit point) bifurcation shown in Fig. 6-5a, and
the form

dZ 5

E =cZ—-Z
which gives rise to the transcritical bifurcation diagram pictured in Fig. 6-5b. Note that
in both cases transient departures from the equilibria will run away catastrophically
from the lower unstable equilibrium, underlining the reasons why a cubic of the form

given by Eq. (6.13) or (6.15) is the natural representation of the damping rate when a

(6.17)

¢= const

lestabilizing first-order process is operative (i.e., ¢ > 0).

To conclude our brief review of bifurcation properties for single-variable systems
ve consider what is called an “imperfect” form of Eq. (6.13) in which an external
orcing function F is added, i.e.,

dZ
= -Z24+F )
= =¢ + (6.18)

In Fig. 6-6 we show the dependence of the equilibria on each of the two control
ariables F and c. The dependence on F takes the form of an S-shaped curve with two

F = const
c»0

stable branches and one unstable branch. A periodic variation of F near the unstable
branch can lead to a hysteresis loop, as shown by the arrows in Fig. 6-6a. This generic
S-shaped equilibrium pattern is of the same form as the equilibrium patterns to be
shown in Fig. 7-3 for the EBM and Fig. 11-5 for the Stommel two-box ocean model.
In Fig. 6-6b we show the same equilibria as a function of ¢, holding F constant, in
which case the equilibria no longer take the pure pitchfork form shown by the dotted
curve; instead they are broken into two curves, one of which has an unstable branch,
giving the appearance of an imperfect pitchfork.




THE A-O SYSTEM CAN EXHIBIT HYSTERESIS BEHAVIOUR
(FROM STOKER, QSR, 2000)

climate variable

e ; - E -
Co control variable Co control variable Co control variable



LA RISPOSTA DEL SISTEMA CLIMATICO Al FORZANTI ESTERNI (E.G.
SCIOGLIMENTO DEI GHIACCIAI) HA UN COMPORTAMENTO NON-
LINEARE TIPO ISTERESI (ovvero un giro sulle montagne russe) OSSIA
PER VALORI CRITICI DEI FORZANTI IL SISTEMA CROLLA PER POI
RECUPERARE PER UN PERCORSO DIVERSO DA QUELLO PRECEDENTE
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11.4.1 The Two-Box System

In a significant paper Stommel (1961) showed how the difference in the contributions
of temperature and salinity to this pole to equator density difference can give rise to an
instability in the ocean that can result in multiple equilibrium states. Stommel’s result
was based on a two-box simplification of the four-box model described in Section 11.2
in which boxes 1 and 4, and boxes 2 and 3, are each combined to form single low- and
high-latitude boxes extending from the top to the bottom of the ocean, separated from
each other at a distance y = L from the equator y = 0.
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-~
S~
~_ H ~ L
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P
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D

Figure 11-3 Schematic cross-section
of the thermohaline circulation driven by
pressure differences engendered hydro-
statically by equator-to-pole density vari-
ations.



Here we shall start by considering a more detailed three-box version of Fig. 11-1
in which we retain a representation of the relatively faster response upper layer
(AZ = d), wherein the gradients of T and § forced by surface fluxes of heat and
freshwater are a maximum; these fluxes can be approximated by distinct well-mixed
values in each of boxes 1 and 2. The region below this upper level (AZ = D —d)
is represented by a single well-mixed deep ocean layer formed by combining boxes 3
and 4 of Fig. 11-1 (cf. Birchfield et al., 1990). The properties of this large volume of
deep ocean vary on a longer time scale in response to small net fluxes of heat and salt
across Z = d. We designate the value of temperature and salinity in this deep ocean
by 6 and Sp, respectively. To reduce this three-box ocean to a Stommel-like two-box
ocean we can define a high-latitude (polar) state

11.
Vs (11.18)

(Tp, Sp) =

and a low-latitude (equatorward) state

(T2, SE)VI + (9‘ SD)V:i

(Te, Se) = Ve

where V, = (V1 + Vy) and Ve = (V2 + V3). Because heat and freshwater fluxes occur
at the ocean surface it is reasonable to assume that most of the poleward change in T
and S occurs mainly between the upper boxes (1 and 2), with relatively uniform values
in the combined deep water box (3 and 4).

Averaging Egs. (11.4) and (11.5) over the climatic-average period 8. = 100y
(thereby excluding explicit consideration of all subcentennial scale variability, includ-
ing interdecadal variability), averaging spatially over each of the two volumes Vj
and V., and applying the boundary conditions w = 0 at the surface (Z = 0) and
bottom (Z = D) and v = 0 at the equator (y = 0) pole (y = L), we obtain the
following set of equations governing the mean values of T and § in each volume (see
Fig. 11-4).

dT,

kg or+M) +6G} (11.19a)
dr,

Vo—=F = —Qr—-H{ +6G! (11.19b)
ds

pd—f = 0s—FS5, (11.20a)

Ve % = "Qs"‘}-rse (lLZUb)

where the well-mixed climatic-mean values of T and § in each box, n, are

(Tmsn)=‘1—[ff(T, S)dxdydz. (11.21)
Va n



Recalling our definitions [Eqs. (7.2) and (7.3)] of the zonal average (x} =
w-! [ xdx (where in this case W is the width of an ocean basin) and of the de-
parture representing mean gyres is x, = x — (x), the net thermal and salinity fluxes
across a latitude wall at y = L* are

D W
Or,s) = fn _’; (v-(T.5)).dxdz
= Q.5 + Q.56 + Qlr s) (11.22)

where Qr.syy = [[ (v)((T, §)) dx dz, Q1,5 = [[ (v+(T, $)s) dx dz, and Qf; ¢ =
_,Gr {v* - (T, 8)*)dx dz are the respective contributions due to the mean thermoha-
line circulation (v), mean gyre flow v, = (d¢/dx), and subclimatic-mean circula-
tions v*, including phenomena such as baroclinic eddies and interdecadal fluctuations
[see Eq. (5.3)].

The upward fluxes of sensible heat at the ocean surface H,, the geothermal flux
at the bottom G' (both in units of m® Ks~!) and the freshwater flux 7, (in units of
m? s~1), across the horizontal area A,, of each region, are

(.6l FH) = fL [(H{s/pc), (H/pc). (F'/p)]dx dy (11.23)

Note that Eqs. (11.20a) and (11.20b) imply conservation of salt for the whole ocean
(the validity of which over geologic time can only be assumed), but not of global mean
salinity,

VeSe + VpSp
Vv
which can be expected to vary as a consequence of changing storage in the cryosphere

(ie., Fo # Fy). Thatis,

§= (11.24)

dt
where [ga = p*(VpSp + VeSe) and p* is the standard seawater density. To demon-
strate consistency with Egs. (11.20a) and (11.20b), note that J—"g = —dV./dt and
Fi = dVy/dt.
If one assumed no net mean temperature change of the whole ocean, then 'Hg =

=0 (11.25)

HZ. As in the case of the freshwater balance on paleoclimatic time scales, however,
we can expect small imbalances in the net surface heat flux that ultimately lead to slow
variations in the mean temperature of the deep ocean (see Section 8.3). In general, H'
is a fast-response surficial variable, calculable from a GCM as a function of prescribed
slow-response variables, i.e., HY = H (U, i, ).

In many studies ' has been represented by a Newtonian approximation, the so-
called “restoring condition” (Haney, 1971), i.e.,

H! =T(T, - T)) (11.26)



where the vorticity is

dv  aw 2y 8ty
Ve =i e et e 8
¥ (az Ely) (Byz ® Bzz)

The Coriolis term (— f du/dz) is probably small compared to the density gradi-
ent and viscous terms, and is generally neglected (e.g., Cessi and Young, 1992) or is
considered to be absorbed into the viscous terms (Sakai and Peltier, 1995); we shall
neglect it here.

A solution satisfying the condition that the normal velocity on the boundaries van-
ishes (i.e., = 0 on the boundaries) is of the form

T T
¢=¢musinzyvsin D2 (11.33)

where max is the maximum value of v at (L/2, D/2), measuring the strength of the
TH circulation. This form represents a more symmetric overturning than pictured in
Figs. 11-1 and 11-4, being similar to the idealized picture shown in Fig. 11-3. The
governing equation for the variations of 1,y is obtained by substituting Eq. (11.33)
in Eq. (11.32), and integrating over the spatial domain y = Oto L and z = 0 to D,
yielding

d¥max
dt

a
= E (Pp — Pe) — K ¥rmax (11.34)

where p, = p(L), pe = p(0),anda = [gLD?/4(L% + D?)], a constant.

Thus, the variations of {/max are driven by the density difference between the two
volumes, under the retarding influence of linear dissipation. It is typically assumed that
the viscous resistance represented by « is large enough that a quasi-static equilibrium
prevails [d (Yrmax)/dt = 0] of the form

k
(Ymax)o ~ —p—‘f 8p (11.35)

where 8p = (pe — pp), ky = a/k, and p = p(T, S) in accordance with Eq. (11.6).
Note that this assumption tends to place the circulation v in the category of a relatively
“fast-response” variable (in comparison, e.g., with the deep ocean temperature 6; see
Section 8.3), adjusting on a short time scale to an imposed density difference. On
the other hand, because salinity has no intrinsic self-regulating dissipative property, it
can fall in the category of a slow-response variable, especially if positive feedbacks
occur, as will be discussed in more detail in Section 11.4.4. The other slower response
variables that ultimately control the variations of the density difference include the
deep ocean state represented by #, as well as ice sheet coverage, the greenhouse gas
level, and slow external radiative forcing (see Chapter 8).



11.4.3 Meridional Fluxes

Concerning the horizontal fluxes O and Qs represented by (11.22), Stommel (1961)
makes the approximation

Ot =~ Qyt = lgyléT (11.36a)
Os = Qys = lqyldS (11.36b)

where 8T = (T. — Tp), 88 = (Se — Sp)s and gy is the “volume exchange flux”
at y = L/2 due to the TH circulation [i.e., the rate of water volume exchange, in
Sverdrups (10° m*s™1), across the latitude wall at y = L/2]. With the boundary
conditions ¥ (D) = 0, ¥(D/2) = Ymax, the poleward part of the volume exchange
(assumed to be positive in the upper branch of the circulation, as pictured in Fig. 10-3)

is given by
WD
q,;,:ff vdzdx
0 JDj2

WD
d

=f Y dxia
o Jpp 02

= Wmax

where ¥max [= (Ymax)o] is given by Eq. (11.35) and W is the width of the ocean basin.
The absolute sign |¢| in Eq. (11.36) indicates that the flux of heat or salt is independent
of the direction of the circulation between the boxes. Stommel (1961) identifies gy as
a pipelike loop connecting Ve and Vj, (see Fig. 11-4).

More generally, however, in accordance with Eq. (10.22) the gyre flux contribution,
Q4. and to a lesser extent the horizontal eddy flux, Q*, are also of importance, the

D
0 (EQ) Lz (POLE) L

Figure 11-4 The two-box ocean system comprising a low-latitude box (¢) and a polar box (p) connected
by a volume exchange Q.



where, using Eqs. (11.30), (11.38), and (1 1.39),

qy = ky(ur 8T* — 15 8S) (11.41a)
g} = keur 8T* (11.41b)

Thus, introducing Eq. (11.41) into Eq. (11.40) we obtain

Vv d@S) _

SF — . 11.
5 i SF' — Ks(85) - 8S (11.42a)

where the damping coefficient Ks(85) is given by,

Il

Ks(S) = (kppr|8T*| + ky | 8T* — s 88|)

pr|8T*|[kg + ky (1 — ps 88/ur 8T*)]

Note that for fixed values of 7' and §T* a range of these values may exist wherein
an increase of 8 will weaken K to a point that allows a further increase of 45, i.e.,
a positive feedback that may give rise to an instability. As noted in Section 11.4.2
this would imply that §S would have to be considered a slow-response variable (see
Section 6.1).

More formally, if we define the following nondimensional variables

s = (—‘“5—)53
pr 8T*
1
Vo) = | —— .q5
(W, @) (wrar*)(q"” 43)
i [_gs_s_] Ft
k\{rﬂ'r(aT*)z

_ 2kypur 8T* r
— v

the governing equations [Eqs. (11.40) and (11.41)] become

ds

o =T—|¥ls—[2ls (11.42b)
W= (-5 (11.43a)
® = (ko/ky) = Ko (11.43b)

The quantity IT is here considered to be an external parameter representing the
ratio of the freshwater fluxes to the temperature gradient, which is a function of y =
(I, u,6; R, h, V,W) determined by the atmospheric general circulation via a GCM
(see Chapter 7), but is not directly determined by the salinity gradient as measured
by the free variable s. For any value of IT the steady-state (equilibria) of the system,



combination of which, denoted by Q7 we can also approximate in the form

Qpr.s) = [Qor.5) + Qlr.5)] = |ap18(T, S) (11.37)

where g} is the combined gyre/eddy volume exchange between Ve and Vp, which
we shall assume is mainly due to the gyres with a smaller contribution due to the
baroclinic eddies and smaller scale horizontal eddy mixing.

This volume exchange g} is not forced by the salinity differences that contribute
strongly to dp, but is forced in an indirect way by surface temperature differences and
vertical heat fluxes that drive the atmospheric general circulation, including the surface
wind systems. Thus, it is plausible to express g as a function only of the temperature
difference, 8T = (T, — Tp), i.e.,

sk
;= p—‘i ursT (11.38)
where ky is a constant having the same units as ky,.

11.4.4 Dynamical Analysis of the Two-Box Model

The basic result concerning the potential instability and bimodality of the ocean can
be demonstrated with the application of the following further simplifying approxima-
tions:

1. The geothermal flux G is neglected relative to the other terms in Egs. (11.19a)
and (11.19b).

2. The thermal restoring time scale (V,I"~!) is assumed to be relatively short
(~10 y) so that the temperatures T and 7}, are maintained at very nearly the fixed
values Te p(I, 1, 6); from Egs. (11.18a) and (11.18b) this implies that

8T = (T, — Tp) ~ 8T* (a constant) (11.39)

Thus the thermal state of the ocean is fixed if the slow-response variables 7, ., and
are held constant, and there is no need to consider the thermal equations Eqs. (11.19a)
and (11.19b); i.e., all of the dynamics of the ocean is now embodied in the way salinity
varies relative to the fixed §T* as governed by Egs. (11.20a) and (11.20b).

3. The freshwater flux terms in Egs. (11.20a) and (11.20b) are linearized by setting
Fipe) - Sppey = Fipe) - S, where § is the global mean value of salinity [Eq. (11.24)].

4. As a final simplification, if we assume equal low- and high-latitude volumes,
Ve = V,, = V, the equation governing the salinity difference 6§ = (Se — Sp) ~ (—Sy)
can be written in the form Eq. (11.20b) — Eq. (11.20a):

V d(8S)
2 dt

= SF' - |qy|8S — |q3| 8S (11.40)



Eqgs. (11.42) and (11.43), governing s and hence the TH circulation W via Eq. (11.43)
are as follows:

1. Whens < 1 (i.e., a “direct” thermally dominated TH circulation, ¥ > 0, with
sinking cold dense water in high latitudes), two equilibria can exist if I1 <
(14 Kg)?/4,

sO = (1-w®) = %[(1 + Kg) — /(1 + Kp)? — 411]
s = (1= ) = 201+ Kp) +/(1 + K2 —an]

2. When s > 1 (i.e., a reverse, salinity-dominated, TH circulation, ¥ < 0, with
sinking salty water in low latitudes), an additional equilibrium exists for all

> Kéu
5.{3] — 1_1;{3] e 1 | 1 K } 1 K )2 41 |

The dependence of the equilibrium values of the TH circulation, W, on the forc-
ing IT is shown in Fig. 11-5, which is the bifurcation diagram for this ocean system
(cf. Fig. 7-3 for the atmospheric EBM). By an eigenvalue analysis it is readily shown
that ¥ and ¥ are stable (solid curves), separated by an unstable ¥‘? (dashed
line), with W™ and W@ merging at a “saddle node” when T = (1 + Ky)?/4 [see
Section 6.3, Eq. (6.16), and Fig. 6-5a)]. The possibility for an instability and multiple

A
1 m
(1-Ky) s
(1-Ky)
2
7
I]J':-J’t
I’
0 -
K
0 KQ fI+K¢)2f4 n U.- u, e}

Figure 11-5 Bifurcation diagram showing the equilibrium values of the nondimensionalized volume
flux by the TH circulation ¥ for the two-box ocean system, as a function of the “external” forcing function
11, i, 6).



equilibria of the ocean due to salinity, as illustrated by this simple model, is the central
result of this analysis.

Thus, for the same value of forcing within the limits Ky < I < (1 + Kg)/4
the system can admit stable equilibria either with a strong thermally direct circula-
tion ¥ > 0 corresponding to a small salinity difference between equator and pole
s = (1 — W), or another stable equilibrium with a weak direct circulation, ¥ < 0,
associated with a large salinity difference. This latter salinity-dominated mode v,
which can be realized only if the salinity forcing can overcome the steady gyre flux,
ie., 1 > Ky, might be identified with warm climatic periods of the past, e.g., the
Cretaceous and Early Cenozoic when the Tethys Sea provided a large area of excess
evaporation in low latitudes (see Figs. 3-1 and 3-3). This will be discussed further in
Chapter 13 (Section 13.5).

The possible existence of multiple equilibria raises the question of possible rapid
transitions between these modes as a factor in paleoclimatic change. Such transitions
can arise as part of the more complete multivariable system involving ice and carbon
dioxide, in the form of sustained oscillations, or can arise by slow forcing of IT to the
bifurcation points IT = K¢, (1+ K4)*/4, or by random forcing that causes a tunneling
between W) and W®) . This latter possibility can be augmented by the “stochastic
resonance” mechanism described in Chapter 7.

We note also that many two-dimensional zonal mean models and three-dimensional
ocean models (OGCMs) have now been studied that can be tuned to replicate in greater
detail these potential bimodal properties and reveal their sensitivity to atmospheric
parameters. The first was made by Bryan (1986) and was followed, as examples, by
Manabe and Stouffer (1988), Marotzke ef al. (1988), Wright and Stocker (1991), and
Fichefet and Hovine (1993). An example of a specific paleoceanographic application
to glacial-maximum states was provided by Bigg et al. (1998). In Chapters 12 and 13
we discuss this possible role of ocean instability in a more time-dependent context as
part of the fuller theory of paleoclimatic change.

At this point, it is worth emphasizing again that it is the ultimate role of the full-
fledged OGCMs to include properly all of the coupled interactive circulation compo-
nents that we have artificially separated for illustrative purposes. Such OGCMs form
an essential component of a full time-dependent climate system model (CSM) as out-
lined at the beginning of Chapter 5 (see Fig. 5-1). However, we have also noted in
that chapter that these more detailed models are still not capable of calculating the
nonequilibrium net flux of heat across the ocean surface on the order of 10~ Wm™2,
as required by paleoclimatic observations of the variations of 8. Nor are these mod-
els able to account definitively for what is presently known about the grand circula-
tion, and the subgrid-scale variability of the ocean, without the assignment of several
free parameters. Thus, as we have said, it is not unreasonable to begin to approach
the problem of paleoclimatic variations with the simplest models, which may require
fewer free parameters than the more complex models. Moreover, these simpler mod-
els can at the least serve to illustrate the possibilities for long-term behavior, including
possible instabilities that may ultimately be captured more rigorously by the full three-
dimensional models.



Intermediate depth
anomalies and the
thermohaline circulation:
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Pathways of MOW (I)
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Pathways of MOW (II)

A pathway schematic of A pathway schematic of
(c) the circulation north of 35°N (d) the circulation north of 35°N
for the 0-800 m layer for the 800-1600 m layer
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Pathways of MOW (IIT)
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Stommel-type box-model to study
the impact of MOW in the THC
variability

We study three different scenario:
1) Standard (MO)

2) Outflow mixes with newly formed deep
waters at high latitude (M6)

3) Outflow Is carried to the surface layers by
the large-scale circulation before entering
the regions of deep-water formation (M5)
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A box-model of the THC

| +
1 —> 2 oL
1L | |
5 " s 6I . oL
3 4
L el

U2 = —%[—(Px; = p3) = (p6 = p3)(2 + 01)dr = (p2 = p1)(1 + 01)d5s],
Us_y = —p%[(m — p3) (61 + 65) + (ps — ps) (61 + 265)31 + (p2 — p1)83),
Us-s = =-{~(p1 = p2) = (ps = ps)(1 = 85)61 + (o2 = p)63),
where

U= o=
por(1+€)(1 +8; + 6s)L°

Tl = M(Ts - Tl) + W(Tﬂ - Tl)

1y = 2Ca) gy _ ) o 8CTa) )

@(Ua 4)

. O(-Us_
Ty = (Vs 1)

(Ts - T3) + (Ty = T3),

. O(Us_ O(-Us_
Ty = %(Ta —Ty) + %(Ts —T3),

Ty = g(;[j:'%ﬁ(ﬂ -Ts) + ﬂ#(rﬂs -T5) + g—}ﬁ?—"“l(Ta -Ty),

Ty = QG (T, - To) + 2G U - To) + SAN(Ty - Ty).

and salinity:

. (U, - O(-U;-
51=%(5’5—51)+%(52—51

. o(U,- o(-U;-
8=t _ g,y ) g _g

5= 25— g5y 4 ATt 5, )

8, = O(Ua 4)(3 _S)+ O(- Us 4)(5 S5)

$5 = —(—5—“ (51 - 85) + Arel (55 - §5) + Sgp=tl(s; - 5)

= 2G5 (52 = 86) + 25=2(S5 — So) + 2g2(S4 — So)



Steady states

e Sensitivity to fresh water parameter
(sigma) introduced In the model equations
computing the bifurcation diagram for the
three model scenarios MO, M5 and M6,
with sigma a control parameter



results

 For small sigma two steady solution exist

« As sigma grows a linear oscillatory eigenmode
appears on the stable branch of solution

« MO, M5 and M6 are destabilized In
correspondence with slightly different value

The linearized dynamics is computed numerically from the definition:

e Fi(zr ... zj+ Az ...) }— Fi(x1 ... 55 — Az ...)] . (3)

where Az has been set equal to 10710,
The behaviour of the system around the branch of stable solution is summarized in figure 4
by showing the real and imaginary components of the eigenvalues corresponding to the first
unstable eigenvectors of A for the three model confisurations , M0, M5 and M6. These
are destabilized in correspondence with the following values of the control parameters o:

M0 — o,=1211
M5 — o,=1.151,
M6 — o,=1234.
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Only In the scenario M5 a salinity
gradient Is mainteined in the ocean
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Stochastically forced oscillations
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 Sampled stochastically sustained
oscillation for scenario MO (thin solid line),
M5 (thick solid line), M6 (dashed line)

* Meridional transport (U,_,) in the surface
layer (top), U:  In the intermediate layer
(center) and U,_, In the deep layer
(bottom) positive values corresponds to
northward transport
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A 2-D model

of the THC
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Stationary states in a symmetric 2-D model of the
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Intermediate Depth anomalies in a
symmetric in the THC
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Advective feedback ina ina 2-D

model of the THC
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2 Conceptual model of the Atlantic convevor belt

In this section, a conceptual model of the thermohaline
circulation is introduced which extends Stommel’s box
model to cross-hemispheric flow, making it directly ap-
plicable to NADW formation (Fig. 1). This is similar to
the models discussed by Rooth (1952) and Marotzke
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Fig. 1. A simple 4-box model of cross-hemispheric thermohaline
flow. North Atlantic Deep Water forms in box 2; its outflow to-
wards box [ is controlled by the density difference between boxes
2 and {. Salimities in the boxes are determined by the flow and
the surface freshwater fluxes entering boxes [, 2 and 3. Only two
of these three fluxes are independent, since their sum must van-
ish in a steady state. Therefore the surface freshwater fluxes are
portraved as two atmospheric vapour transports £, and F;, whose
significance is discussad in the text



NADW flow
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Iig. 1. The three flow regmmes (sofid) of the box model. The
:i':rs.itf:i' f[ine is an unmndltmnal]y unstable soluton. § is the sad-
dle-node bifurcation point



Fig. 4. A map of the four different regions where freshwater fore-
ing was perturbed by adding a slowly increasing flux. Global
mean salinity was conserved by an opposite perturbation in the
equatorial Pacific
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Fig. 5 Hysteresis response of the North Atlantic overturning to a
showly changing freshwater forcing (at a rate of 0.05 Sv/1000 v) in
region B. Point @ is the initial equilibriom state; from there the
freshwater forcing was gradually increased until the right edge of
the figure was reached, then decreased again mowving through
point ¢ towards the lefi edge, then increased once more through
point b, Open circles mark true equilibria as confirmed by con-
tinuing the integration with constant freshwater forcing for sev-
eral thousand years. Point & is thus the final equilibrium reached
after one (clockwise) hysteresis loop: it differs from a by the ab-
sznce of Labrador Sea convection. Point ¢ is a state with no
NADW formation and all deep water forming in the Southern
Hemisphere





