

SMR/1837-12

2007 ICTP Oceanography Advanced School

30 April - 11 May, 2007

Ocean biological productivity and climate change - part III

R. Williams
University of Liverpool UK

Ocean biological productivity and climate change

Ric Williams, Earth & Ocean Sciences, Liverpool University

Lecture 1: basin scale view

- Background state
- High latitude productivity

Lecture 2: subtropical gyres

- Mid latitude productivity
- **Eddy transfers**

Lecture 3: boundary currents

- Barriers/blenders
- · Eddy lifecycles

Lecture 4: Climate change

- Heat content changes in the N. Atlantic
- Ocean overturning

False colour picture of chlorophyll concentration

September 97 - August 98, SeaWIFS, NASA

- 2. Western boundary currents/Jets

barrier or blender?

nutrient streams

1. Stirring

Welander (1955) stirring experiment

Tracer spreading set by relative size of strain rate & vorticity $\gamma^2-\zeta^2$

spread at a rate
$$\exp[(y^2 - \zeta^2)^2 t]$$

strain
$$\gamma^2 = \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right)^2$$
 vorticity
$$\zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

Snapshots of chlorophyll bloom

Snapshots of chlorophyll bloom (light) from Southern Ocean Iron release experiment (Abraham et al., 2000)

Initial iron release over limited path of 7 km in diameter

Filament 150 km long after 6 weeks.

 $\text{Effective strain rate } \qquad \gamma_e = \frac{1}{t} \log_e \left(\frac{\Delta x(t)}{\Delta x(0)} \right) \quad \text{\sim ln(150 km/30km)/33d = 0.05 day-1 $}$

For reactive tracers (e.g. chlorophyll), patterns reflect that of a physical tracer as long as effective strain rate > growth rate

2. Western boundary currents

Dispersion statistics for 95 floats released:

- a) 14.5-17°C;
- b) 12-14.5°C;
- c) 7-12°C.

Bower and Lozier (1994)

Again, more floats remain within the stream along the lighter surfaces.

No. of floats deployed

No. of floats in stream after 30 days

2.4 Kinematic view

Consider

- simple jet & propagating meander
- particles only cross jet via the meanders
- steering level (*u-c=0*) on flanks of jet at surface & at core of jet at depth
- enhanced transfer at steering level

Hence, strong property contrasts at surface

Weak contrasts at depth

Based on discussion by Pratt et al. (1995)

2.7 Eddy transfer of conserved tracers

derive Tracer variance equation

$$\frac{\partial C}{\partial t} + \mathbf{u} \cdot \nabla C = F \qquad \qquad \text{...writing } \mathbf{u} = \mathbf{u} + \mathbf{u}'$$
minus
$$\frac{\partial \overline{C}}{\partial t} + \mathbf{u} \cdot \nabla \overline{C} = \overline{F}$$

$$\frac{\partial C'}{\partial t} + \mathbf{u} \cdot \nabla C' + \mathbf{u}' \cdot \nabla \overline{C} - \overline{\mathbf{u}' \cdot \nabla C'} = F'$$

$$\frac{\partial}{\partial t} \left(\frac{C'^2}{2} \right) + \overline{\mathbf{u}} \cdot \nabla \left(\frac{C'^2}{2} \right) + \overline{\mathbf{u}' \cdot \nabla} \left(\frac{C'^2}{2} \right) + \overline{\mathbf{u}' \cdot C'} \cdot \nabla \overline{Q} = \overline{F' \cdot C'}$$

$$\frac{D}{Dt} \left(\overline{\frac{C'^2}{2}} \right) + \overline{\mathbf{u}' \cdot C'} \cdot \nabla \overline{Q} = \overline{F' \cdot C'}$$
Multiply by C' and take time-mean

Eddy flux directed down gradient

either when Lagrangian growth of variance or dissipation of variance

Double winddriven gyre

• 1/16 deg.

see tracer plotted on isopycnal

See fine eddy scales

Reversing pattern of up & down gradient fluxes

Systematic down-gradient transfer over ocean gyres

Wilson and Williams (2004) JPO

2.8 Eddy isopycnal fluxes for nutrients MODIS surface chlorophyll 16-20 June 2006 Eddy flux directed down gradient along isopycnals $\overline{u'N'}.\nabla\overline{N} < 0$ either when • growth of variance • strong conversion of inorganic to organic nutrients

Conclusions

Stirring

 Enhanced between eddies, reduced within vortices

Boundary currents

 Barrier / blender— link between tracer plume & kinematics of meanders & jet

Eddy fluxes

- Vertical rectification (important for biology)
- Isopycnic fluxes down-gradient when Lagrangian increase of variance or dissipation of variance

Challenge remains to address systematic effects of the fine scales on the larger-scale ocean

Further reading (in addition to those in last lecture):

Bower, A.S., H.T. Rossby and J.L. Lillibridge, 1985. The Gulf Stream -Barrier or Blender? J. Phys. Oceanogr., 15, 24-32.

Martin, A.P., 2003. Phytoplankton patchiness: the role of lateral stirring and mixing.Progr. in Oceanogr.,

57, 125-174.

Detailed References (in addition to those in last lecture):

Abraham, E.R., C.S. Law, P.W. Boyd, S.J. Lavender, M.T. Maldonado and A.R. Bowie, 2000. Importance of stirring in the development of an iron-fertilized phytoplankton bloom. Nature, 407, 727-730.

Bower, A.S. and T. Rossby, 1989. Evidence of cross-frontal exchange processes in the Gulf Stream based on isopycnal RAFOS float data. J. Phys. Oceanogr., 19, 1177--1190.

Bower, A.S. and M.S. Lozier, 1994. A closer look at particle exchange in the Gulf Stream. J. Phys. Oceanogr., 24, 1399-1418.

Halkin, D. and T. Rossby, 1985. The structure and transport of the Gulf Stream at 73W. J. Phys. Oceanogr., 15, 1439--1452

Lévy, M., P. Klein and A-M. Treguier, Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime. *J. Mar. Res.*, 59, 535-565, 2001 Pratt, L.J., M.S. Lozier and N. Beliakova, 1995. Parcel trajectories in quasigeostrophic jets: neutral modes. J.

Phys. Oceanogr., 25, 1451-1466.

Waugh, D.W., 1993. Subtropical stratospheric mixing linked to disturbances on the polar vortices. Nature, 365, 535-537

Waugh, D. W., E.R. Abraham and M. M. Bowen, 2006. Spatial variations of stirring in the surface ocean: A case Study of the Tasman Sea. J. Phys. Oceanogr., 36, 526–542.

Welander, P, 1955. Studies on the general development of motion in a two-dimensional, ideal fluid. Tellus, 7, 141-

-156.

Williams, R.G., C. Wilson and C.W. Hughes, 2007: Ocean and atmosphere storm tracks: the role of eddy vorticity forcing. Journal of Physical Oceanography, in press

Wilson, C. and R.G. Williams, 2004: Why are eddy fluxes of potential vorticity difficult to parameterise? Journal of Physical Oceanography, 34, 1, 142-155.

Wilson, C. and R.G. Williams, 2006: When are eddy tracer fluxes directed down gradient? Journal of Physical Oceanography, 36, 2, 189-201.

