

The Abdus Salam International Centre for Theoretical Physics

SMR/1839-2

Workshop on the Physics of Tsunami, Hazard Assessment Methods and Disaster Risk Management (Theories and Practices for **Implementing Proactive Countermeasures)**

14 - 18 May 2007

Simulation Analyses of Tsunami caused by Chilean and Nihon-Kai Chubu Earthquakes at Nuclear Power Plant Sites in Japan

> Kazunari MORI IAEA/NSNI/ESS

Workshop on the Physics of Tsunami, Hazard Assessment Methods and Disaster Risk Management (Theories and Practices for Implementing Proactive Countermeasure)

SIMULATION ANALYSES OF TSUNAMI CAUSED BY CHILEAN AND NIHON-KAI CHUBU EARTHQUAKES AT NUCLEAR POWER PLANT SITES IN JAPAN

14-18 May, 2007 Trieste, Italy Kazunari Mori, IAEA/NSNI/ESS

Contents of the Presentation

- 1. IAEA Activities on Tsunami Hazards
- 2. Test Cases of

Tsunami Hazard Assessment

- 3. Outline of Tsunami Simulation Code
- 4. Examples of Tsunami Simulation

IAEA Activities on Tsunami Hazards

On December 26th 2004, a catastrophic earthquake occurred with epicenter off the Sumatra, Indonesia. The subsequent tsunami caused by the earthquake, devastated the coasts of the Indian Ocean. **IAEA started immediately activities to reassess tsunami hazard.**

IAEA Activities on Tsunami Hazards

- 1. "International Workshop on External Flooding Hazards at Nuclear Power Plant Sites", Kalpakkam, India, August 2005.
- 2. "Topical Consultancy on Tsunami Hazards, in Particular, and Coastal Flooding, in General, for Nuclear Facility Sites", 8-12 May 2006, in Trieste, Italy, IAEA and the International Centre for Theoretical Physics (ICTP).
- 3. EBP with Japan.
- 4. Review and revision of current Safety Guide NS-G-3.5 (to be proposed to NUSSC).
- 5. Co-ordination with UNESCO/ICO in relation to IAEA Emergency Response Centre.

IAEA Activities on Tsunami Hazards

Experts Meeting - ICTP, Trieste, May 2006:

- 15 Experts, from 6 Member States and 2 IO.
- Comments and Recommendations in relation to the Safety Guide. Proposal of future structure:
 - 1. General Considerations
 - 2. Tsunami Generating Sources
 - 3. Data Collection
 - 4. Probable Maximum Tsunami
 - 5. Hazard Assessment
 - 6. Tsunami Warning System
- IAEA proposal "Test Cases of Tsunami Hazard Assessment".

Test Cases of Tsunami Hazard Assessment

Assessment Methodology

"Tsunami Assessment Method for Nuclear Power Plants in Japan":

- JSCE (Japan Society of Civil Engineers)
- February 2002
- English version (May 2006).

Candidate of the Assessment

- India Kalpakkan NPP Site
- Pakistan Kanupp NPP Site
- Egypt El-Dabaa NPP Site

Tsunami Simulation Code

- Equations and models proposed by Prof. IMAMURA
- Use for tsunami generation and propagation analyses

Outline of Tsunami Simulation Code

	Functions	
	Near-field Tsunami Analysis	Far-field Tsunami Analysis
Tsunami Traveling Distance	Less than about 1,000 Km	More than about 1,000 Km
Geometric Coordinates for Modeling	Plane/ Cartesian coordinate	Spherical coordinate
Input	Seafloor's Topographical data	
	Depth of Sea	
	Earthquake Fault Parameters	
Output	Tsunami Heights	
	Tsunami Traveling Time	
	Flooded Areas for Run-up Higher than Ground Level	
Coefficients in Fundamental equations	Seawater Dynamic Viscosity	Coriolis Forces due to the Earth's Rotation
	Seafloor's Frictional Resistance	

Outline of the Tsunami Simulation Code

Input Data Example of the Code

Example of Tsunami Simulation by the Code

Two tsunami simulations are shown by the video:
(1) the 1960 Chilean Earthquake Tsunami selected as far-field tsunami.
(2) the 1983 Nihon-kai Chubu Earthquake Tsunami selected as near-field tsunami.

Simulation of The 1960 Chilean Earthquake Tsunami

Simulation of The 1983 Nihon-kai Chubu Earthquake Tsunami

