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3. ToOoPOLOGICAL K-THEORY

In this lecture, we will discuss some of the machinery which makes topological
K-theory both useful and computable. Not only does topological K-theory play a
very important role in topology, but also it has played the most important guiding
role in the development of algebraic K-theory.

3.1. The Classifying space BU x Z. The following statements about topological
vector bundles are not valid (in general) for algebraic vector bundles. These prop-
erties suggest that topological K-theory is better behaved than algebraic K-theory.

Proposition 3.1. (¢f. [?]) Let T be a compact Hausdorff space. If p: E — T is
a topological vector bundle on T, then for some N > 0 there is a surjective map of
bundles on T, (CN*t x T) — E.

Any surjective map E — F of topological vector bundles on T admits a splitting
over T'.

The set of homotopy classes of maps [T, BU(n)] is in natural 1-1 correspondence
with the set of isomorphism classes of rank n topological vector bundles on T

Proof. The first statement is proved using a partition of unity argument.

The proof of the second statement is proved by establishing a Hermetian metric
on E (so that E ~ F & F), which is achieved by once again using a partition of
unity argument.

To prove the last statement, one verifies that if T'x I — G is a homotopy relating
continuous maps f,g : T'— G and if F is a topological vector bundle on G, then
f*E ~ g*FE as topological vector bundles on T. Once again, a partition of unity
argument is the key ingredient in the proof. 0

Proposition 3.2. For any space T, the set of homotopy classes of maps
T, BU x 7], BU =lim BU,
%
admits a natural structure of an abelian group induced by block sum of matrices
U, X Up, = Upimn. We define

K, (T) = [T, BU x ZJ.
For any compact, Hausdorff space T, Kfop(T) s naturally isomorphic to the

Grothendieck group of topological vector bundles on T':

Z[iso classes of top vector bundles on T
[E] = [El] + [EQ], whenever F ~ E1 D EQ.
Proof. (External) direct sum of matrices gives a monoid structure on LI, BU,, which

determines a (homotopy associative and commutative) H-space structure on BU x Z
which we view as the mapping telescope of the self map

U,BU, — U,BU,, BU; x {x € BU}} — BUj,.
1

KO

top

(1) =



2

The (abelian) group structure on [T, BU x Z] is then determined.

To show that this mapping telescope is actually an H-space, one must verify that
it has a 2-sided identity up to pointed homotopy: one must verify that product on
the left with x € BU; gives a self map of BU x Z which is related to the identity
via a base-point preserving homotopy. (Such a verification is not difficult, but the
analogous verification fails if we replace the topological groups U,, by discrete groups
GL,(A) for some unital ring A.) O

Example 3.3. Since the Lie groups U, are connected, the spaces BU, are simply
connected and thus

(81 = m(BU x Z) = 0.

top

It is useful to extend K7, (—) to a relative theory which applies to pairs (T, A) of

spaces (i.e., T is a topological space and A C T is a closed subset). In the special
case that A = (), then T'//() = T', /*, the pointed space obtained by taking the disjoint
union of 7" with a point x which we declare to be the basepoint.

Definition 3.4. If T is a pointed space with basepoint ty, we define the reduced
K-theory of T' by
K*

top

(T) = K

top

(T7 tO) .
For any pair (7, A), we define
KO

top

(T, A) = Ky, (T/A)

thereby extending our earlier definition of K}, (T').
For any n > 0, we define

top(T A) top(zn(T/A»
In particular, for any n > 0, we define
K;og(T) top (T ®> top(Zn(T-‘r))
Observe that
tap(S A T) - k'@?"{ top(S X T) - Ktoop(S) @ Ki?ap(T)}
so that (external) tensor product of bundles induces a natural pairing
Ktop(s) ® Ktop(T> - Kto; ]<S X T)

Just to get the notation somewhat straight, let us take T" to be a single point
T = {t}. Then T, = {t, }, the 2-point space with new point x as base-point. Then
Y2(T,) is the 2-sphere S?, and thus

Ko ({t}) = ker{K,,, (%)) — Kip,(+)}.

We single out a special element, the Bott element

B =[O (1)] - [On] € K (pt)),
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where we have abused notation by identifying (P!)%" with S? and the images of

algebraic vector bundles on P* in Kj) ((P')*") have the same names as in Ko(P*).

3.2. Bott periodicity. Of fundamental importance in the study of topological K-
theory is the following theorem of Raoul Bott. Recall that if (X, z) is pointed space,
then the loop space QX is the function complex (with the compact-open topology)
of continuous maps from (S*, 00) to (X, z). The loop space functor Q(—) on pointed
spaces is adjoint to the suspension functor X(—): there is a natural bijection

Maps(X2(X),Y) ~ MapsX,Q(Y))
of sets of continuous, pointed (i.e, base point preserving) maps.

Theorem 3.5. (Bott Periodicity) There are the following homotopy equivalences.
e From BO X Z to its 8-fold loop space:

BO X Z ~ Q*(BO x Z)
Moreover, the homotopy groups m;(BO X Z) are given by
Z, )2, Z./2, 0, Z, 0, 0, 0

depending upon whether i is congruent to 0,1,2,3,4,5,6,7 modulo 8.
e From BU X 7Z to its 2-fold loop space:

BU x Z ~ Q*(BU x Z)
Moreover, m;(BU x Z) is Z if i is even and equals 0 if i is odd.
Atiyah interprets this 2-fold periodicity in terms of K-theory as follows.
Theorem 3.6. (Bott Periodicity) For any space T and any i > 0, mutliplication by

the Bott element induces a natural isomorphism
G K{O;(T) — K, "3(T).

top

Using the above theorem, we define K} (X)) for any topological space X and any

- top
integer i as K7,
In particular, taking 7" to be a point, we conclude that K, (S%) = Z, generated

by the Bott element.

(X), where 7 is 0 if 7 is even and 7 is -1 if 7 is odd.

Example 3.7. Let S° denote {*,*} = %,. According to our definitions, the K-
theory Kj.(x), of a point equals the reduced K-theory of S°. In particular, for
n >0,

Kin(x) = Kim(8%) = K7, (S™) = m,(BU).

top - top
Thus, we conclude

n
Ktop

Z if n is even
(*)_{O if n is odd
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We can reformulate this by writing
A if 2 + n is even

Kiop(S >:{0 if i +n is odd

3.3. Spectra and Generalized Cohomology Theories. Thus, both BO x Z and
BU x Z are “infinite loop spaces” naturally determining ()2-spectra in the following
sense.

Definition 3.8. A spectrum E is a of pointed spaces { E°, E', ...}, each of which has
the homotopy type of a pointed C.W. complex, together with continuous structure
maps L(E) — B

The spectrum E is said to be an Q-spectrum if the adjoint E* — Q(E™!) of each
map is a homotopy equivalence; in other words, a sequence of pointed homotopy
equivalences

E°SQF' S Q’FP S ... S QPE" — -
Each spectrum E determines an Q-spectrum E defined by setting
E, = lim WY "(E,).
-
j

The importance of 2-spectra is clear from the following theorem which asserts

that an 2-spectrum determines a “generalized cohomology theory”

Theorem 3.9. (cf. [Spanier]) Let E be an Q-spectrum. For any topological space
X with closed subspace A C X, set
Mp(X,A) =[(X,A), E"], n>0

Then (X, a) — h”E(X, A) is a generalized cohomology theory; namely, this satisfies

all of the Eilenberg-Steenrod axioms except that its value at a point (i.e., (x,0)) may
not be that of ordinary cohomology:
(a.) h’E(—) is a functor from the category of pairs of spaces to graded abelian groups.

(b.) for each n > 0 and each pair of spaces (X, A), there is a functorial connecting
homomorphism O : h”E(A) — hEl(X, A).
(c.) the connecting homomorphisms of (b.) determine long exact sequences for every
pair (X, A).
d.) Wn(—) satisfies excision: i.e., for every pair (X, A) and every subspace U C A
E
whose closure lies in the interior of A, Wp(X,A) = (X = U, A=U).

Observe that in the above definition we use the notation At (X) for (X, 0) =
hE(X+, %), where X is the disjoint union of X and a point *. -

Definition 3.10. The (periodic) topological K-theories KOj, (—), K}, (—) are the
generalized cohomology theories associated to the (2-spectra given by BO x Z and

BU x 7Z with their deloopings given by Bott periodicity.



In particular, whenever X is a finite dimensional C.W. complex,

(X)=[X,BU x 7], KZ'(X)=[X,U],

2j
K top

top

(X) (and similarly KOY (X)).

so that we recover our definition of K} top

top

Let us restrict attention to K, (X) which suffices to motivate our further dis-
cussion in algebraic K-theory. (K0j,,(X) motivates Hermetian algebraic K-theory.)
There are also other interesting generalized cohomology theories (e.g., cobordism
theory represented by the infinite loop space MU) which play a role in algebraic K-
theory, and there are also more sophisticated equivariant K-theories, none of which
will we discuss in these lectures.
Tensor product of vector bundles induces a multiplication
(X)®@ Ky, (X) — Kp (X)

top top

Ktoop
for any finite dimensional C.W. complex X. This can be generalized by observing
that tensor product induces group homomorphisms U(m) x U(n) — U(n 4+ m) and
thereby maps of classifying spaces

BU(m) x BU(n) — BU(n +m).

With a little effort, one can show that these multiplication maps are compatible up
to homotopy with the standard embeddings U(m) C U(m + 1),U(n) C U(n + 1)
and thereby give us a pairing

(BU xZ) x (BU xZ) — BU X Z

(factoring through the smash product). In this way, BU x Z has the structure of
an H-space which induces a pairing of spectra and thus a multiplication for the
generalized cohomology theory K7, (—). (A completely similar argument applies to
KO?O;D<_)>'

Remark: Each of the topological K-groups, K, (X), i € N, is given as Kj, (X°X)
where XX is the " suspension of X. On the other hand, algebraic K-groups in

non-zero degree are not easily related to the algebraic Ky of some associated ring.

As an example of how topological K-theory inspired even the early (very algebraic)
effort in algebraic K-theory we mention the following classical theorem of Hyman
Bass. The analogous result in topological K-theory for rank e vector bundles over a
finite dimension C.W. complex of dimension d < e can be readily proved using the
standard method of “obstruction theory”.

Theorem 3.11. (Bass stability theorem) Let A be a commutative, noetherian ring
of Krull dimension d. Then for any two projective A-modules P, P' of rank e > d,
if [P] = [P'] € Ko(A) then P must be isomorphic to P'.
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3.4. Skeleta and Postnikov towers. If X is a C.W. complex then we can define
its p-skeleton sk,(X) for each p > 0 as the subspace of X consisting of the union of
those cells of dimension < p. Thus, the C.W. complex can be written as the union
(or colimit) of its skeleta,
X = Upsk,(X).

There is a standard way to “chop off” the bottom homotopy groups of a space (or
an {2-spectrum) using an analogue of the universal covering space of a space (which
“chops off” the fundamental group).

Definition 3.12. Let X be a C.W. complex. For each n > 0, construct a map
X — X[n] by attaching cells (proceeding by dimension) to kill all homotopy groups
of X above dimension n — 1. Define

X" to X, htyfib{X — X[n]}.

So defined, X™ — X induces an isomorphism on homotopy groups m;, i > n and
(X)) =0, j <n.

The Postinov tower of X is the sequence of spaces
X .. — X0t o x()

Thus, X can be viewed as the “homotopy inverse limit” of its Postnivkov tower.
Algebraic K-theory corresponds most closely the topological K-theory which is
obtained by replacing the Q-spectrum K = BU x Z by kU = bu x Z obtained
by taking at stage i the i*" connected cover of BU x Z starting at stage 0. The
associated generalized cohomology theory is denoted kU*(—) and satisfies

KUYX) ~ K (X), i<0.

top

3.5. The Atiyah-Hirzebruch Spectral sequence. The Atiyah-Hirzebruch spec-
tral sequence for topological K-theory has been a strong motivating factor in recent
developments in algebraic K-theory. Indeed, perhaps the fundamental criterion for
motivic cohomology is should satisfy a relationship to algebraic K-theory strictly
analogous to the relationship of singular cohomology to topological K-theory.

Theorem 3.13. (Atiyah-Hirzebruch spectral sequence) For any generalized coho-

*

mology theory hE(—) and any topological space X, there exists a right half-plane
spectral sequence of cohomological type

BT = HP(X, hi(x)) = hp(X).

The filtration on hE(X) is given by
FPEL = ker{h(X) — B(sky(X)}.
In the special case of K}, (), this 1;/665 the fo?lowz'ng form
Byt = HP(X,Z(q/2)) = K" (X)

top



where Z(q/2) = Z if q is even and 0 otherwise.
In the special case of kU*(—), this takes the following form

By = HP(X,Z(q/2)) = kUP™(X)
where Z(q/2) =7 if q is an even non-positive integer and 0 otherwise.

Proof. There are two basic approaches to proving this spectral sequence. The first
is to assume 7' is a cell complex, then consider T as a filtered space with 7}, C T the
union of cells of dimension < n. The properties of K}, (—) stated in the previous
theorem give us an exact couple associated to the long exact sequences

— @, (S") = Ky (To/Tamr) — Kipp(T) — Kiy(Toor) — @KL, (S") — -

top top top

where the direct sum is indexed by the n-cells of 7.

The second approach applies to a general space T" and uses the Postnikov tower
of BU x 7Z. This is a tower of fibrations whose fibers are Eilenberg-MacLane spaces
for the groups which occur as the homotopy groups of BU x Z.

What is a spectral sequence of cohomological type? This is the data of a 2-
dimensional array EP? of abelian groups for each r > rqg (typically, o equals 0, or 1
or 2; in our case ro = 2) and homomorphisms

P9 . P9 p+r,g—r+1
dPi ;. EP9 — EPTT

such that the next array E'Y, is given by the cohomology of these homomorphisms:

B2 = ker{dg"} fim{dg 71,

To say that the spectral sequence is “right half plane” is to say EPY = 0 whenever
p < 0. We say that the spectral sequence converges to the abutment E7
(in our case hj(X)) if at each spot (p,q) there are only finitely many non-zero

homomorphisms going in and going out and if there exists a decreasing filtration
{FPEZ} on each E” so that

EL, = |JFPEL, 0=(FEL,
p p
FPE" JFPYIETY = BP0 R >> 0.
O
The Postnikov tower argument together with a knowledge of the k-invariants of

BU x Z shows that after tenoring with Q this Atiyah-Hirzebruch spectral sequence
collapses; in other words, that £ @ Q = E** @ Q.

Theorem 3.14. (Atiyah-Hirzebruch) Let X be a C.W. complex. Then there are
isomorphisms

FOX) ©Q = HY(X,Q), kU™(X)® Q= H™(X,Q).



These isomorphisms are induced by the Chern character
ch =Y chi: Ko(—=) — H"(-,Q)

discussed in Lecture 4.
While we are discussing spectral sequences, we should mention the following:

Theorem 3.15. (Serre spectral sequence) Let (B,b) be a connected, pointed C.W.
complex. For any fibration p : E — B of topological spaces with fibre F = p~1(b) and
for any abelian group A, there exists a convergent first quadrant spectral sequence of
cohomological type

EPY = HP(B, HY(F, A)) = HP™1(E, A)
provided that (B, b) acts trivially on H*(F, A).

The non-existence of an analogue of the Serre spectral sequence in algebraic ge-
ometry (for cohomology theories based on algebraic cycles or algebraic K-theory)
presents one of the most fundamental challenges to computations of algebraic K-
groups.

3.6. K-theory Operations. There are several reasons why topological K-theory
has sometimes proved to be a more useful computational tool than singular coho-
mology.
e K}, (—) can be torsion free, even though H*(—,Z) might have torsion. This
is the case, for example, for compact Lie groups.
e K}, (—) is essentially Z/2-graded rather than graded by the natural numbers.
e K}, (—) has interesting cohomology operations not seen in cohomology. These
operations originate from the observation that the exterior products A’(P)
of a projective module P are likewise projective modules and the exterior
products AY(E) of a vector bundle E are likewise vector bundles.

Definition 3.16. Let X be a finite dimensional C.W. complex and £ — X be a
topological vector bundle of rank r. Define
M(E) =) [NEE € K, (X[,
i=0
a polynomial with constant term 1 and thus an invertible element in K7, (X)[[t]].
Extend this to a homomorphism

)\tZKO

top(X> - (1 + Kz?op(X)HtH)*?
(using the fact that \(E @ F) = X\(E) - \(F)) and define X' : K} (T) — K,

- top (T)
to be the coefficient of ¢* of \;.
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For a general topological space X, define these A operations on Ktoop(X ) for by

defining them first on the universal vector bundles over Grassmannians and using
the functoriality of K}, (—).

In particular, J. Frank Adams introduced operations

V(=) s Koo (=) = Kp (=), k>0

top

(called Adams operations) which have many applications and which are similarly
constructed for algebraic K-theory.

Definition 3.17. For any topological space T', define

Yilw) =Y (X))t = rank(z) —t - %(log)\_t(:ﬁ))

i>0

for any = € K}, (T).

The Adams operations " satisfy many good properties, some of which we list
below.

Proposition 3.18. For any topological space T, any x,y € Kfop(T), any k>0

o UMz +y) =9 (z) + UM (y).

o Vr(ay) = M (z)UM(y).

o UMY () = vH(x).

o chy(V*(z)) = kich,(x) € H*(T, Q).

e YP(x) is congruent modulo p to z* if p is a prime number.
o ¥ (x) = 2% whenever x is a line bundle

In particular, if E is a sum of line bundles @;L;, then ¢*(E) = &((L;)*), the k-th
power sum. By the splitting principle, this property alone uniquely determines .
We introduce further operations, the y-operations on Ki(T).

Definition 3.19. For any topological space T', define

Ye(w) =Y AX)E = Njio()

>0

for any = € K}, (T).

Basic properties of these y-oerations include the following

(1) ve(x +y) = (2)v(y)
(2) Y([L] = 1) =1+ (L] = 1).
(3) )‘S(g") = 75/14—5(33)

Using these v operations, we define the ~ filtration on K7, (T') as follows.
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Definition 3.20. For any topological space T, define K;[;;(T) as the kernel of the
rank map
K2N(T) = ker{rank : K?

top top

(T) — Kppp(mo(T))}-
For n > 1, define

Kpp(T)™" C Kio(T) = Ky,,(T)
to be the subgroup generated by monomials " (1) - - -y () With >0 i; > n, 2; €
Koo (T).

3.7. Applications. We can use the Adams operations and the ~-filtration to de-
scribe in the following theorem the relationship between K7, (T'), a group which has
no natural grading, and the graded group H®(T, Q).

Theorem 3.21. Let T be a finite cell complex. Then for any k > 0, 1* restricts to
a self-map of each KZ;’;(T) and satisfies the property that it induces multiplication

by k™ on the quotient
W) = K x, w e KR/ (T)).

top
Furthermore, the Chern character ch induces an isomorphism

chy : KJM(T) /K" N(T) @ Q ~ H*(T,Q).

top top

In particular, the preceding theorem gives us a K-theoretic way to define the
grading on K}, (T) ® Q induced by the Chern character isomorphism. The graded
piece of (the associated graded of) K}, (T') ® Q corresponding to H*"(T', Q) consists
of those classes z for which ¢*(z) = k"x for some (or all) k > 0.

Here is a short list of famous theorems of Adams using topological K-theory and
Adams operations:

Application 3.22. Adams used his operations in topological K-theory to solve fun-
damental problems in algebraic topology. Eramples include:

e Determination of the number of linearly independent vector fields on the n-
sphere S™ for alln > 1.

e Determination of the only dimensions (namely, n = 1,2,4,8) for which R"
admits the structure of a division algebra. (The examples of the real numbers
R, the complex numbers C, the quaternions, and the Cayley numbers gives
us structures in these dimensions.)

e Determination of those (now well understood) elements of the homotopy

groups of spheres associated with KO?OP(S”).





