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3. Topological K-theory

In this lecture, we will discuss some of the machinery which makes topological
K-theory both useful and computable. Not only does topological K-theory play a
very important role in topology, but also it has played the most important guiding
role in the development of algebraic K-theory.

3.1. The Classifying space BU ×Z. The following statements about topological
vector bundles are not valid (in general) for algebraic vector bundles. These prop-
erties suggest that topological K-theory is better behaved than algebraic K-theory.

Proposition 3.1. (cf. [?]) Let T be a compact Hausdorff space. If p : E → T is
a topological vector bundle on T , then for some N > 0 there is a surjective map of
bundles on T , (CN+1 × T ) → E.

Any surjective map E → F of topological vector bundles on T admits a splitting
over T .

The set of homotopy classes of maps [T,BU(n)] is in natural 1-1 correspondence
with the set of isomorphism classes of rank n topological vector bundles on T .

Proof. The first statement is proved using a partition of unity argument.
The proof of the second statement is proved by establishing a Hermetian metric

on E (so that E � F ⊕ F⊥), which is achieved by once again using a partition of
unity argument.

To prove the last statement, one verifies that if T × I → G is a homotopy relating
continuous maps f, g : T → G and if E is a topological vector bundle on G, then
f ∗E � g∗E as topological vector bundles on T . Once again, a partition of unity
argument is the key ingredient in the proof. �
Proposition 3.2. For any space T , the set of homotopy classes of maps

[T,BU × Z], BU = lim−→
n

BUn

admits a natural structure of an abelian group induced by block sum of matrices
Un × Um → Un+m. We define

K0
top(T ) ≡ [T,BU × Z].

For any compact, Hausdorff space T , K0
top(T ) is naturally isomorphic to the

Grothendieck group of topological vector bundles on T :

K0
top(T ) � Z[iso classes of top vector bundles on T ]

[E] = [E1] + [E2], whenever E � E1 ⊕ E2

.

Proof. (External) direct sum of matrices gives a monoid structure on �nBUn which
determines a (homotopy associative and commutative)H-space structure on BU×Z
which we view as the mapping telescope of the self map

�nBUn → �nBUn, BUi × {� ∈ BU1} → BUi+1.
1
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The (abelian) group structure on [T,BU × Z] is then determined.
To show that this mapping telescope is actually an H-space, one must verify that

it has a 2-sided identity up to pointed homotopy: one must verify that product on
the left with � ∈ BU1 gives a self map of BU × Z which is related to the identity
via a base-point preserving homotopy. (Such a verification is not difficult, but the
analogous verification fails if we replace the topological groups Un by discrete groups
GLn(A) for some unital ring A.) �
Example 3.3. Since the Lie groups Un are connected, the spaces BUn are simply
connected and thus

K0
top(S

1) = π1(BU × Z) = 0.

It is useful to extend K0
top(−) to a relative theory which applies to pairs (T,A) of

spaces (i.e., T is a topological space and A ⊂ T is a closed subset). In the special
case that A = ∅, then T/∅ = T+/�, the pointed space obtained by taking the disjoint
union of T with a point � which we declare to be the basepoint.

Definition 3.4. If T is a pointed space with basepoint t0, we define the reduced
K-theory of T by

K̃∗
top(T ) ≡ K∗

top(T, t0).

For any pair (T,A), we define

K0
top(T,A) ≡ K̃0

top(T/A)

thereby extending our earlier definition of K0
top(T ).

For any n > 0, we define

Kn
top(T,A) ≡ K̃0

top(Σ
n(T/A)).

In particular, for any n ≥ 0, we define

K−n
top (T ) ≡ K−n

top (T, ∅) ≡ K̃0
top(Σ

n(T+)).

Observe that

K̃0
top(S ∧ T ) = ker{K0

top(S × T ) → K0
top(S) ⊕K0

top(T )},
so that (external) tensor product of bundles induces a natural pairing

K−i
top(S) ⊗K−j

top(T ) → K−i−j
top (S × T ).

Just to get the notation somewhat straight, let us take T to be a single point
T = {t}. Then T+ = {t, �}, the 2-point space with new point � as base-point. Then
Σ2(T+) is the 2-sphere S2, and thus

K−2
top({t}) = ker{K0

top(S
2)) → K0

top(�)}.
We single out a special element, the Bott element

β = [OP1(1)] − [OP1 ] ∈ K−2
top(pt)),
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where we have abused notation by identifying (P1)an with S2 and the images of
algebraic vector bundles on P1 in K0

top((P
1)an) have the same names as in K0(P

1).

3.2. Bott periodicity. Of fundamental importance in the study of topological K-
theory is the following theorem of Raoul Bott. Recall that if (X, x) is pointed space,
then the loop space ΩX is the function complex (with the compact-open topology)
of continuous maps from (S1,∞) to (X, x). The loop space functor Ω(−) on pointed
spaces is adjoint to the suspension functor Σ(−): there is a natural bijection

Maps(Σ(X), Y ) � MapsX,Ω(Y ))

of sets of continuous, pointed (i.e, base point preserving) maps.

Theorem 3.5. (Bott Periodicity) There are the following homotopy equivalences.

• From BO × Z to its 8-fold loop space:

BO × Z ∼ Ω8(BO × Z)

Moreover, the homotopy groups πi(BO × Z) are given by

Z, Z/2, Z/2, 0, Z, 0, 0, 0

depending upon whether i is congruent to 0, 1, 2, 3, 4, 5, 6, 7 modulo 8.
• From BU × Z to its 2-fold loop space:

BU × Z ∼ Ω2(BU × Z)

Moreover, πi(BU × Z) is Z if i is even and equals 0 if i is odd.

Atiyah interprets this 2-fold periodicity in terms of K-theory as follows.

Theorem 3.6. (Bott Periodicity) For any space T and any i ≥ 0, mutliplication by
the Bott element induces a natural isomorphism

β : K−i
top(T ) → K−i−2

top (T ).

Using the above theorem, we define Ki
top(X) for any topological space X and any

integer i as Ki
top(X), where i is 0 if i is even and i is -1 if i is odd.

In particular, taking T to be a point, we conclude that K̃0
top(S

2) = Z, generated
by the Bott element.

Example 3.7. Let S0 denote {∗, �} = ∗+. According to our definitions, the K-
theory Ktop(∗), of a point equals the reduced K-theory of S0. In particular, for
n > 0,

K−n
top (∗) = K̃−n

top (S0) = K̃0
top(S

n) = πn(BU).

Thus, we conclude

Kn
top(∗) =

{
Z if n is even

0 if n is odd
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We can reformulate this by writing

Ki
top(S

n) =

{
Z if i+ n is even

0 if i+ n is odd

3.3. Spectra and Generalized Cohomology Theories. Thus, both BO×Z and
BU × Z are “infinite loop spaces” naturally determining Ω-spectra in the following
sense.

Definition 3.8. A spectrum E is a of pointed spaces {E0, E1, . . .}, each of which has
the homotopy type of a pointed C.W. complex, together with continuous structure
maps Σ(Ei) → Ei+1.

The spectrum E is said to be an Ω-spectrum if the adjoint Ei → Ω(Ei+1) of each
map is a homotopy equivalence; in other words, a sequence of pointed homotopy
equivalences

E0 �→ ΩE1 �→ Ω2E2 �→ · · · �→ ΩnEn → · · ·
Each spectrum E determines an Ω-spectrum Ẽ defined by setting

Ẽn = lim−→
j

ΩjΣj−n(En).

The importance of Ω-spectra is clear from the following theorem which asserts
that an Ω-spectrum determines a “generalized cohomology theory”

Theorem 3.9. (cf. [Spanier]) Let E be an Ω-spectrum. For any topological space
X with closed subspace A ⊂ X, set

hn

E(X,A) = [(X,A), En], n ≥ 0

Then (X, a) �→ h∗E(X,A) is a generalized cohomology theory; namely, this satisfies

all of the Eilenberg-Steenrod axioms except that its value at a point (i.e., (∗, ∅)) may
not be that of ordinary cohomology:
(a.) h∗E(−) is a functor from the category of pairs of spaces to graded abelian groups.

(b.) for each n ≥ 0 and each pair of spaces (X,A), there is a functorial connecting
homomorphism ∂ : hn

E(A) → hn+1

E (X,A).

(c.) the connecting homomorphisms of (b.) determine long exact sequences for every
pair (X,A).
(d.) h∗E(−) satisfies excision: i.e., for every pair (X,A) and every subspace U ⊂ A

whose closure lies in the interior of A, h∗E(X,A) � h∗E(X − U,A− U).

Observe that in the above definition we use the notation h∗E(X) for h∗E(X, ∅) =

h∗E(X+, ∗), where X+ is the disjoint union of X and a point ∗.
Definition 3.10. The (periodic) topological K-theories KO∗

top(−), K∗
top(−) are the

generalized cohomology theories associated to the Ω-spectra given by BO × Z and
BU × Z with their deloopings given by Bott periodicity.
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In particular, whenever X is a finite dimensional C.W. complex,

K2j
top(X) = [X,BU × Z], K2j−1

top (X) = [X,U ],

so that we recover our definition of K0
top(X) (and similarly KO0

top(X)).

Let us restrict attention to K∗
top(X) which suffices to motivate our further dis-

cussion in algebraic K-theory. (K0∗top(X) motivates Hermetian algebraic K-theory.)
There are also other interesting generalized cohomology theories (e.g., cobordism
theory represented by the infinite loop space MU) which play a role in algebraic K-
theory, and there are also more sophisticated equivariant K-theories, none of which
will we discuss in these lectures.

Tensor product of vector bundles induces a multiplication

K0
top(X) ⊗K0

top(X) → K0
top(X)

for any finite dimensional C.W. complex X. This can be generalized by observing
that tensor product induces group homomorphisms U(m) × U(n) → U(n+m) and
thereby maps of classifying spaces

BU(m) ×BU(n) → BU(n+m).

With a little effort, one can show that these multiplication maps are compatible up
to homotopy with the standard embeddings U(m) ⊂ U(m + 1), U(n) ⊂ U(n + 1)
and thereby give us a pairing

(BU × Z) × (BU × Z) → BU × Z

(factoring through the smash product). In this way, BU × Z has the structure of
an H-space which induces a pairing of spectra and thus a multiplication for the
generalized cohomology theory K∗

top(−). (A completely similar argument applies to
KO∗

top(−)).

Remark: Each of the topological K-groups, K−i
top(X), i ∈ N, is given as K0

top(Σ
iX)

where ΣiX is the ith suspension of X. On the other hand, algebraic K-groups in
non-zero degree are not easily related to the algebraic K0 of some associated ring.

As an example of how topologicalK-theory inspired even the early (very algebraic)
effort in algebraic K-theory we mention the following classical theorem of Hyman
Bass. The analogous result in topological K-theory for rank e vector bundles over a
finite dimension C.W. complex of dimension d < e can be readily proved using the
standard method of “obstruction theory”.

Theorem 3.11. (Bass stability theorem) Let A be a commutative, noetherian ring
of Krull dimension d. Then for any two projective A-modules P, P ′ of rank e > d,
if [P ] = [P ′] ∈ K0(A) then P must be isomorphic to P ′.
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3.4. Skeleta and Postnikov towers. If X is a C.W. complex then we can define
its p-skeleton skp(X) for each p ≥ 0 as the subspace of X consisting of the union of
those cells of dimension ≤ p. Thus, the C.W. complex can be written as the union
(or colimit) of its skeleta,

X = ∪pskp(X).

There is a standard way to “chop off” the bottom homotopy groups of a space (or
an Ω-spectrum) using an analogue of the universal covering space of a space (which
“chops off” the fundamental group).

Definition 3.12. Let X be a C.W. complex. For each n ≥ 0, construct a map
X → X[n] by attaching cells (proceeding by dimension) to kill all homotopy groups
of X above dimension n− 1. Define

X(n) to X, htyfib{X → X[n]}.
So defined, X(n) → X induces an isomorphism on homotopy groups πi, i ≥ n and
πj(X

(n)) = 0, j ≤ n.

The Postinov tower of X is the sequence of spaces

X · · · → X(n+1) → X(n) → · · ·
Thus, X can be viewed as the “homotopy inverse limit” of its Postnivkov tower.

Algebraic K-theory corresponds most closely the topological K-theory which is
obtained by replacing the Ω-spectrum K = BU × Z by kU = bu × Z obtained
by taking at stage i the ith connected cover of BU × Z starting at stage 0. The
associated generalized cohomology theory is denoted kU∗(−) and satisfies

kU i(X) � Ki
top(X), i ≤ 0.

3.5. The Atiyah-Hirzebruch Spectral sequence. The Atiyah-Hirzebruch spec-
tral sequence for topological K-theory has been a strong motivating factor in recent
developments in algebraic K-theory. Indeed, perhaps the fundamental criterion for
motivic cohomology is should satisfy a relationship to algebraic K-theory strictly
analogous to the relationship of singular cohomology to topological K-theory.

Theorem 3.13. (Atiyah-Hirzebruch spectral sequence) For any generalized coho-
mology theory h∗E(−) and any topological space X, there exists a right half-plane

spectral sequence of cohomological type

Ep,q
2 = Hp(X, hq(∗)) ⇒ hp+q

E (X).

The filtration on h∗E(X) is given by

F pE∗
∞ = ker{h∗E(X) → h∗E(skp(X)}.

In the special case of K∗
top(−), this takes the following form

Ep,q
2 = Hp(X,Z(q/2)) ⇒ Kp+q

top (X)
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where Z(q/2) = Z if q is even and 0 otherwise.
In the special case of kU∗(−), this takes the following form

Ep,q
2 = Hp(X,Z(q/2)) ⇒ kUp+q(X)

where Z(q/2) = Z if q is an even non-positive integer and 0 otherwise.

Proof. There are two basic approaches to proving this spectral sequence. The first
is to assume T is a cell complex, then consider T as a filtered space with Tn ⊂ T the
union of cells of dimension ≤ n. The properties of K∗

top(−) stated in the previous
theorem give us an exact couple associated to the long exact sequences

· · · → ⊕Kq
top(S

n) � Kq
top(Tn/Tn−1) → Kq

top(Tn) → Kq
top(Tn−1) → ⊕Kq+1

top (Sn) → · · ·
where the direct sum is indexed by the n-cells of T .

The second approach applies to a general space T and uses the Postnikov tower
of BU ×Z. This is a tower of fibrations whose fibers are Eilenberg-MacLane spaces
for the groups which occur as the homotopy groups of BU × Z.

What is a spectral sequence of cohomological type? This is the data of a 2-
dimensional array Ep,q

r of abelian groups for each r ≥ r0 (typically, r0 equals 0, or 1
or 2; in our case r0 = 2) and homomorphisms

dp,q
r : Ep,q

r → Ep+r,q−r+1
r

such that the next array Ep,q
r+1 is given by the cohomology of these homomorphisms:

Ep,q
r+1 = ker{dp,q

r }/im{dp−r,q+r−1
r }.

To say that the spectral sequence is “right half plane” is to say Ep,q
r = 0 whenever

p < 0. We say that the spectral sequence converges to the abutment E∗
∞

(in our case h∗E(X)) if at each spot (p, q) there are only finitely many non-zero

homomorphisms going in and going out and if there exists a decreasing filtration
{F pEn

∞} on each En
∞ so that

En
∞ =

⋃
p

F pEn
∞, 0 =

⋂
p

F pEn
∞,

F pEn
∞/F

p+1En
∞ = Ep,n−p

R , R >> 0.

�

The Postnikov tower argument together with a knowledge of the k-invariants of
BU ×Z shows that after tenoring with Q this Atiyah-Hirzebruch spectral sequence
collapses; in other words, that E∗,∗

2 ⊗ Q = E∗,∗
∞ ⊗ Q.

Theorem 3.14. (Atiyah-Hirzebruch) Let X be a C.W. complex. Then there are
isomorphisms

kU0(X)) ⊗ Q � Hev(X,Q), kU−1(X) ⊗Q � Hodd(X,Q).
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These isomorphisms are induced by the Chern character

ch =
∑

i

chi : K0(−) → Hev(−,Q)

discussed in Lecture 4.
While we are discussing spectral sequences, we should mention the following:

Theorem 3.15. (Serre spectral sequence) Let (B, b) be a connected, pointed C.W.
complex. For any fibration p : E → B of topological spaces with fibre F = p−1(b) and
for any abelian group A, there exists a convergent first quadrant spectral sequence of
cohomological type

Ep,q
2 = Hp(B,Hq(F,A)) ⇒ Hp+q(E,A)

provided that π1(B, b) acts trivially on H∗(F,A).

The non-existence of an analogue of the Serre spectral sequence in algebraic ge-
ometry (for cohomology theories based on algebraic cycles or algebraic K-theory)
presents one of the most fundamental challenges to computations of algebraic K-
groups.

3.6. K-theory Operations. There are several reasons why topological K-theory
has sometimes proved to be a more useful computational tool than singular coho-
mology.

• K0
top(−) can be torsion free, even though Hev(−,Z) might have torsion. This

is the case, for example, for compact Lie groups.
• K∗

top(−) is essentially Z/2-graded rather than graded by the natural numbers.
• K∗

top(−) has interesting cohomology operations not seen in cohomology. These

operations originate from the observation that the exterior products Λi(P )
of a projective module P are likewise projective modules and the exterior
products Λi(E) of a vector bundle E are likewise vector bundles.

Definition 3.16. Let X be a finite dimensional C.W. complex and E → X be a
topological vector bundle of rank r. Define

λt(E) =
r∑

i=0

[ΛiE]ti ∈ K0
top(X)[t],

a polynomial with constant term 1 and thus an invertible element in K0
top(X)[[t]].

Extend this to a homomorphism

λt : K0
top(X) → (1 +K0

top(X)[[t]])∗,

(using the fact that λt(E ⊕ F ) = λt(E) · λt(F )) and define λi : K0
top(T ) → K0

top(T )

to be the coefficient of ti of λt.
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For a general topological space X, define these λ operations on K0
top(X) for by

defining them first on the universal vector bundles over Grassmannians and using
the functoriality of K0

top(−).

In particular, J. Frank Adams introduced operations

ψk(−) : K0
top(−) → K0

top(−), k > 0

(called Adams operations) which have many applications and which are similarly
constructed for algebraic K-theory.

Definition 3.17. For any topological space T , define

ψt(x) =
∑
i≥0

ψi(X)ti ≡ rank(x) − t · d
dt

(logλ−t(x))

for any x ∈ K0
top(T ).

The Adams operations ψk satisfy many good properties, some of which we list
below.

Proposition 3.18. For any topological space T , any x, y ∈ K0
top(T ), any k > 0

• ψk(x+ y) = ψk(x) + ψk(y).
• ψk(xy) = ψk(x)ψk(y).
• ψk(ψ�(x) = ψk�(x).
• chq(ψ

k(x)) = kqchq(x) ∈ H2q(T,Q).
• ψp(x) is congruent modulo p to xp if p is a prime number.
• ψk(x) = xk whenever x is a line bundle

In particular, if E is a sum of line bundles ⊕iLi, then ψk(E) = ⊕((Li)
k), the k-th

power sum. By the splitting principle, this property alone uniquely determines ψk.
We introduce further operations, the γ-operations on Ktop

0 (T ).

Definition 3.19. For any topological space T , define

γt(x) =
∑
i≥0

γi(X)ti ≡ λt/1−t(x)

for any x ∈ K0
top(T ).

Basic properties of these γ-oerations include the following

(1) γt(x+ y) = γt(x)γt(y)
(2) γ([L] − 1) = 1 + t([L] − 1).
(3) λs(x) = γs/1+s(x)

Using these γ operations, we define the γ filtration on K0
top(T ) as follows.
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Definition 3.20. For any topological space T , define Kγ,1
top(T ) as the kernel of the

rank map
Kγ,1

top(T ) ≡ ker{rank : K0
top(T ) → K0

top(π0(T ))}.
For n > 1, define

K0
top(T )γ,n ⊂ Kγ,0

top(T ) ≡ K0
top(T )

to be the subgroup generated by monomials γi1(x1) · · · γik(xk) with
∑

j ij ≥ n, xi ∈
Kγ,1

top(T ).

3.7. Applications. We can use the Adams operations and the γ-filtration to de-
scribe in the following theorem the relationship between K0

top(T ), a group which has
no natural grading, and the graded group Hev(T,Q).

Theorem 3.21. Let T be a finite cell complex. Then for any k > 0, ψk restricts to
a self-map of each Kγ,n

top (T ) and satisfies the property that it induces multiplication
by kn on the quotient

ψk(x) = kn · x, x ∈ Kγ,n
top (T )/Kγ,n+1

top (T )).

Furthermore, the Chern character ch induces an isomorphism

chn : Kγ,n
top (T )/Kγ,n+1

top (T )) ⊗Q � H2n(T,Q).

In particular, the preceding theorem gives us a K-theoretic way to define the
grading on K0

top(T ) ⊗ Q induced by the Chern character isomorphism. The graded

piece of (the associated graded of) K0
top(T )⊗Q corresponding to H2n(T,Q) consists

of those classes x for which ψk(x) = knx for some (or all) k > 0.
Here is a short list of famous theorems of Adams using topological K-theory and

Adams operations:

Application 3.22. Adams used his operations in topological K-theory to solve fun-
damental problems in algebraic topology. Examples include:

• Determination of the number of linearly independent vector fields on the n-
sphere Sn for all n > 1.

• Determination of the only dimensions (namely, n = 1, 2, 4, 8) for which Rn

admits the structure of a division algebra. (The examples of the real numbers
R, the complex numbers C, the quaternions, and the Cayley numbers gives
us structures in these dimensions.)

• Determination of those (now well understood) elements of the homotopy
groups of spheres associated with KO0

top(S
n).




