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Lecture 3
Motives of quadrics

We have a motivic functor

Sm.Proj./k
M→ Choweff(k),

which provides each smooth projective variety with its invariant the motive.
In Choweff(k) we get new objects - the direct summands in the motives

of smooth projective varieties. In particular, M(P1) will be decomposable.
Notice, that M(P1) is given by the pair ([P1], [∆(P1)] ∈ CH1(P

1×P
1)), but in

CH1(P
1×P

1) the class [∆(P1)] is equal to the sum of two mutually orthogonal
projectors (with respect to the composition operation ◦) [pt×P

1]+ [P1 ×pt],
where pt is any k-rational point on P

1. Thus, M(P1) = ([P1], [P1 × pt]) ⊕
([P1], [pt×P

1]). The first summand here is isomorphic to M(Spec(k)) and will
be denoted Z(0)[0] (or, simply, Z) - the trivial Tate-motive, and the second
is denoted Z(1)[2] - the Tate-motive. Choweff(k) is tenzor additive category
with M(X) ⊕ M(Y ) = M(X

∐
Y ), and M(X) ⊗ M(Y ) = M(X × Y ). Can

define Tate-motive Z(n)[2n] as (Z(1)[2])⊗n. It is given as a direct summand in
the motive of (P1)n, but will be also a direct summand in the motive M(X)
of any smooth projective n-dimensional variety X which has a k-rational
point - the respective projector is given by [pt×X] (in reality, you just need
a zero-cycle of degree 1).

Inside Choweff(k) you will meet only Tate motives Z(n)[m] with m =
2n. But Choweff(k) is naturally a full additive subcategory of the bigger
triangulated category of motives DMeff

− (k), and the latter category already
contains Tate-motives Z(n)[m] with all possible m and n. This is why we
will keep both numbers in the notation of Tate-motives, although, in our
situation, these numbers are not independent. We get

M(P1) = Z ⊕ Z(1)[2].

In the same way,

M(Pr) = Z ⊕ Z(1)[2] ⊕ . . . ⊕ Z(r)[2r].

with the projectors [Ps × P
r−s], for 0 � s � r.

Connection to Chow groups and motivic cohomology
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For smooth projective varieties one can naturally identify:

CHn(X) = HomChoweff (k)(M(X), Z(n)[2n]);

CHn(X) = HomChoweff (k)(Z(n)[2n], M(X)).

and since Choweff(k) is a full subcategory of DMeff
− (k), the former group

can be identified with Hom
DM

eff
− (k)(M(X), Z(n)[2n]) = H2n,n

M (X, Z) - the

motivic cohomology. Thus we see that

CHn(X) = H2n,n
M (X, Z).

Quadrics
The motive of a quadric is the simplest when the quadric is completely

split. In this case, it can be decomposed into the direct sum of Tate-motives.

M(Q) = ⊕[
dim(Q)

2
]

i=0 (Z(i)[2i] ⊕ Z(dim(Q) − i)[2 dim(Q) − 2i])

The respective projectors have the form [li × hi] and [hi × li], where hi is
a plane section of codimension i on Q, and li is a projective subspace of
dimension i on Q (which exists since Q is completely split). In particular,
one can observe that the motive of odd-dimensional split quadric coincides
with the motive of the projective space of the same dimension, although,
as algebraic varieties they are not isomorphic (when dimension > 1). This
shows that the variety can not be reconstructed from its motive, in general.

Using the fact that

HomChoweff (k)(Z(i)[2i], Z(j)[2j]) =

{
0, i �= j;

Z, i = j.

we can compute Chow groups of Q:

CHi(Q) =

⎧⎪⎨
⎪⎩

Z, 0 � i � dim(Q), i �= dim(Q)/2;

Z ⊕ Z, i = dim(Q)/2;

0, otherwise.

Examples:

1) C - split conic, M(C) = Z ⊕ Z(1)[2];
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2) Q - split 2-dimensional quadric, M(Q) = Z⊕Z(1)[2]⊕Z(1)[2]⊕Z(2)[4].

What if quadric is not completely split, but just isotropic? Let q = H ⊥
q′. Then

M(Q) = Z ⊕ M(Q′)(1)[2] ⊕ Z(dim(Q))[2 dim(Q)]

Applying inductively this fact one gets the case of the split quadric above.
Also, this shows that the motive of a quadric can be expressed in terms of
the Tate-motives and the motive of the anisotropic part of it.

But what if the quadric is anisotropic, can we still say something about
its motive?

Consider the case of a conic C. First of all we observe the following simple
fact:

C has a k - rational point ⇔ C ∼= P
1

Indeed, the (⇐) conclusion is obvious, since P
1 has plenty of k-rational points.

Conversely, let x ∈ C be some k-rational point. Then C is naturally identified
with the P

1 of projective lines on P
2 passing through x ⊂ C ⊂ P

2. Thus,
if conic is somewhat interesting (do not coincide with the projective line, at
least), then it has no rational points.

Suppose that C is arbitrary conic given by some equation Ax2
o+Bx2

1+Cx2
2.

We can divide it by A and get x2
0 − ax2

1 − bx2
2 (a = −B/A, b = −C/A), so

that our form is 〈1,−a,−b〉. Then it is a subform of a Pfister form 〈〈a, b〉〉.
By the Main property of Pfister forms, for arbitrary field extension E/k,

〈〈a, b〉〉|E is isotropic ⇔ 〈〈a, b〉〉|E is completely split.

Hence, this condition is also equivalent to: 〈1,−a,−b〉|E is isotropic. Really,
isotopity of 〈1,−a,−b〉|E implies isotropity of 〈〈a, b〉〉|E since the former is a
subform of the latter. In the other direction, if 〈〈a, b〉〉|E isotropic, then it is
completely split, that is, has a totally isotropic subspace of dimension 2, but
then such subspace should intersect nontrivially with the 1-codimensional
subform 〈1,−a,−b〉|E to produce isotropic vector for the latter.

Now, we can also remind, that for arbitrary field extension E/k,

〈〈a, b〉〉|E is completely split ⇔ {a, b}|E = 0.

This shows that our conic C{a,b} and the Pfister quadric Q{a,b} are the norm-
varieties for the pure symbol {a, b} ∈ KM

2 (k)/2. A variety X is called a
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norm-variety for α ∈ KM
n (k)/r if for arbitrary field extension E/k, X|E has

E-rational point if and only if α|E = 0 ∈ KM
n (E)/r.

Exactly the same considerations show that for arbitrary subform p of
〈〈a1, . . . , an〉〉 of dimension > 1

2
dim(〈〈a1, . . . , an〉〉) = 2n−1, the respective pro-

jective quadric will be a norm-variety for the symbol {a1, . . . , an} ∈ KM
n (k)/2.

Notice that we have many different varieties corresponding to the same sym-
bol. It is clear that all of them have something in common. And this some-
thing appears to be certain direct summand in their motives.

Consider again the case of 2-dimensional 2-fold Pfister quadric Q{a,b}.
Since determinant of 〈〈a, b〉〉 is 1, the projective lines on Q{a,b} split into two
families, each of which is naturally identified with C{a,b} (each line intersects
C{a,b} in a unique point - this defines the identification). This simultaneously
shows that Q{a,b} = C{a,b} × C{a,b} (since each point on Q{a,b} is determined
uniquely by the pair of projective lines on Q{a,b} (one from each of the two
families) passing through it), and identifies it with PC{a,b}

(V) - the projec-
tivisation of certain 2-dimensional vector bundle on C{a,b} (since there is a
natural projection Q{a,b} → C{a,b} given by the lines of one of the families,
with the fibers - those lines). It follows from the general theory that the
motive of the projective bundle is a direct summand of several copies of the
motive of the base with various Tate-twists (for U ∈ Ob(Choweff(k)) we call
U(n)[2n] := U ⊗ Z(n)[2n] - the Tate-twist of U). In our situation, we get:

M(Q{a,b}) = M(C{a,b}) ⊕ M(C{a,b})(1)[2].

This is the first example of the following general result obtained by M.Rost:

Theorem 0.1 (M.Rost) Let α ∈ KM
n (k)/2 be the pure symbol, and Qα be the

respective Pfister form. Then there exists such motive Mα ∈ Ob(Choweff(k))
that

M(Qα) = ⊕2n−1−1
i=0 Mα(i)[2i],

(then it is easy to see that Mα|k = Z ⊕ Z(2n−1 − 1)[2n − 2]), and Mα splits
into the sum of Tate-motives if and only if α = 0.

The motive Mα is called the Rost motive.
Examples:

1) n = 1, then M{a} = M(Spec(k
√

a));
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2) n = 2, then M{a,b} = M(C{a,b}).

3) For n > 3, Mα is no longer represented by the motive of any algebraic
variety, but only by a direct summand in such.

M.Rost also had shown that Mα is also a direct summand in the motives
of any subquadrics of Qα of codimension < 2n−1 (such subquadrics are called
Pfister neighbours). Let qα be n-fold Pfister form, p ⊂ qα a subform of
dimension 2n−1 + m, m > 0, and p⊥ be the complimentary form (qα = p ⊥
p⊥). Then

M(P ) = ⊕m−1
i=0 Mα(i)[2i] ⊕ M(P⊥)(m)[2m].

And the appearence of Mα in this decomposition explains why all such
quadrics are the norm-varieties for the pure symbol α. Namely, the exis-
tence of a rational point on P is equivalent to M(P ) containing Tate-motive
Z as a direct summand (follows from the Theorem of Springer), and is further
equivalent to Mα containing such a summand - equivalent to Mα being split,
which happens if and only if α = 0.

Applying the above statement inductively, one gets that the motive of an
excellent quadric is a sum of Rost-motives (of different foldness).

Examples:

1) The motive of 3-fold Pfister form Q{a,b,c} can be visualized as

•

•

M{a,b,c}

•
M{a,b,c}(1)[2]

•

M{a,b,c}(2)[4]

• • •

• M{a,b,c}(3)[6]

where each • represents a Tate-motive over k, ranging from Z on the
left to Z(6)[12] on the right, and each pair of connected •’s represents
the copy of the Rost-motive M{a,b,c}(i)[2i].

2) Let q be 5-dimensional excellent form 〈1,−c, ac, bc,−abc〉, then M(Q)
can be visualized as

•

M{a,b,c}

•

M{a,b}(1)[2]

• •
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3) Let q be 11-dimensional excellent form (〈〈a, b, c, d〉〉⊥−〈〈a, b, c〉〉⊥〈〈a, b〉〉⊥
−〈1〉)an. (we assume a, b, c, d algebraically independent). Then M(Q)

looks as

•

M{a,b,c,d}

•

M{a,b,c,d}(1)[2]

•

M{a,b,c,d}(2)[4]

•
M{a,b,c}(3)[6]

•
M{a,b}(4)[8]

• • • • •

Hypothetically, the Rost-motives are the only possible binary direct sum-
mands (that is, motives, which split into the direct sum of exactly 2 Tate-
motives over k) in the motives of quadrics, and the excellent forms are the
only forms whose motives split into binary direct summands.

Motivic decomposition type

Definition 0.2 For the quadric Q let us denote as Λ(Q) the set of Tate-
motives in the decomposition of its motive over k:

M(Q|k) = ⊕λ∈Λ(Q)Z(iλ)[2iλ].

Then for any direct summand N of M(Q) we can identify the set Λ(N) of
Tate-motives in the decomposition of N |k with the subset of Λ(Q). We say
that λ ∈ Λ(Q) and µ ∈ Λ(Q) are connected, if for any direct summand N
of M(Q), λ ∈ Λ(N) ⇔ µ ∈ Λ(N). The presentation of Λ(Q) as the disjoint
union of its connected components is called motivic decomposition type of Q
- MDT (Q).

The motivic decomposition type can be visualized as a picture of the same
sort as above.

Examples:

1) Let q = 〈〈a〉〉 · 〈b, c, d, e〉, where a, b, c, d are algebraically independent.
Then M(Q) splits into the sum of two (isomorphic up to Tate-shift)
indecomposable direct summands, and MDT (Q) looks as

•

•

N

• • • • •

•
N(1)[2]
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2) Let q be Albert form 〈a, b,−ab,−c,−d, cd〉. Then M(Q) is indecom-
posable, and MDT (Q) consists of one connected component:

•

• • • •

•

3) Let q be 9-dimensional form (〈〈a, b, c〉〉 ⊥ −〈1,−e,−f〉)an, where a, b, c, d, e, f
are algebraically independent. Then MDT (Q) looks as:

• • • • • • • •

4) Let q be 9-dimensional form 〈〈a〉〉 · 〈b, c, d, e〉 ⊥ 〈1〉, where a, b, c, d, e are
algebraically independent. Then MDT (Q) looks as:

• • • • • • • •

Splitting pattern
Another discrete invariant of quadrics is the splitting pattern invariant.

Introduced by M.Knebusch, U.Rehmann and J.Hurrelbrink, it measures what
are possible Witt-indices iW (q|E) of our form over all possible field extensions
E/k. One gets the increasing sequence of natural numbers j0 < j1 < j2 <
. . . < jh - the possible values of iW (q|E). The numbers il := jl−jl−1, l � 1 are
called the higher Witt indices. Assuming q-anisotropic (j0 = 0), the sequence
(i1, i2, . . . , ih) is called the splitting pattern SP (Q). The number h is called
the height of Q.

Examples:

1) For the n-fold Pfister form qα, SP (Qα) = (2n−1), and the height is 1,
since the Pfister form becomes complitely split as soon as it is isotropic.
The Pfister quadrics and the subquadrics of codimension 1 in them are
the only examples of (anisotropic) quadrics of height 1.

2) For Albert form q = 〈a, b,−ab,−c,−d, cd〉, we have SP (Q) = (1, 2),
and h(Q) = 2.

3) For the generic form q = 〈b1, . . . , bm〉, where b1, . . . , bm are algebraically
independent, SP (Q) = (1, 1, . . . , 1), and h(Q) = [m/2].
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4) For the form q = 〈〈a1, . . . , an〉〉·〈b1, . . . , b2r〉, where a1, . . . , an, b1, . . . , b2r

are algebraically independent, SP (Q) = (2n, 2n, . . . , 2n), and h(Q) = r.

5) An (anisotropic) excellent form q of dimension 19 has the splitting
pattern (3, 5, 1) and height 3.

It is an important problem in the theory of quadratic forms to find all the
possible values of the invariants MDT (Q) and SP (Q). Among the partial
results I should mention the Theorem of N.Karpenko, which claims that
(i1(q) − 1) should always be a remainder of the division of (dim(q) − 1) by
some power of 2. Although, we understand MDT and SP to some extent,
there is no even hypothetical description of the possible answer. Nevertheless,
the interaction between the splitting pattern and motivic decomposition type
invariants provides a lot of information about both of them. This suggests
that one should try to embed them as faces into some larger invariant, where
one can expect to have more structure. In the next lecture we will introduce
such big invariant of geometric origin, called Generic discrete invariant of Q.
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