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4. Algebraic K-theory and Algebraic Geometry

4.1. Schemes. Although our primary interest will be in the K-theory of smooth,
quasi-projective algebraic varieties, for completeness we briefly recall the more gen-
eral context of schemes. A quasi-projective variety corresponds to a globalization of
a finitely generated commutative algebra over a field; a scheme similarly corresponds
to the globalization of a general commutative ring.

Recall that if A is a commutative ring we denote by Spec A the set of prime ideals
of A. The set X = SpecA is provided with a topology, the Zariski topology
defined as follows: a subset Y ⊂ X is closed if and only if there exists some ideal
I ⊂ A such that Y = {p ∈ X; I ⊂ p}. We define the structure sheaf OX of
commutative rings on X = Spec A by specifying its value on the basic open set
Xf = {p ∈ SpecA, f /∈ p} for some f ∈ A to be the ring Af obtained from A by
adjoining the inverse to f . (Recall that A → Af sends to 0 any element a ∈ A such
that fn · a = 0 for some n). We now use the sheaf axiom to determine the value
of OX on any arbitrary open set U ⊂ X, for any such U is a finite union of basic
open subsets. The stalk OX,p of the structure sheaf at a prime ideal p ⊂ A is easily
computed to be the local ring Ap = {f /∈ p}−1A.

Thus, (X = Spec A,OX) has the structure of a local ringed space: a topological
space with a sheaf of commutative rings each of whose stalks is a local ring. A map
of local ringed spaces f : (X,OX) → (Y,OY ) is the data of a continuous map
f : X → Y of topological spaces and a map of sheaves OY → f∗OX on Y , where
f∗OX(V ) = OX(f−1(V )) for any open V ⊂ Y .

If M is an A-module for a commutative ring A, then M defines a sheaf M̃ of OX-
modules on X = Spec A. Namely, for each basic open subset Xf ⊂ X, we define

M̃(Xf ) ≡ Af ⊗A M . This is easily seen to determine a sheaf of abelian groups on

X with the additional property that for every open U ⊂ X, M̃(U) is a sheaf of
OX(U)-modules with structure compatible with restriction to smaller open subsets
U ′ ⊂ U .

Definition 4.1. A local ringed space (X,OX) is said to be an affine scheme if
it is isomorphic (as local ringed spaces) to (X = Spec A,OX) as defined above. A
scheme (X,OX) is a local ringed space for which there exists a finite open covering
{Ui}i∈I of X such that each (Ui,OX|Ui

) is an affine scheme.
If k is a field, a k-variety is a scheme (X,OX) with the property there is a finite

open covering {Ui}i∈I by affine schemes with the property that each (Ui,OX|Ui
) �

(SpecAi,OSpecAi
) with Ai a finitely generated k-algebra without nilpotents. The

(Spec Ai,OSpec Ai
) are affine varieties admitting a locally closed embedding in PN ,

where N + 1 is the cardinality of some set of generators of Ai over k.

Example 4.2. The scheme P1
Z

is a non-affine scheme defined by patching together
two copies of the affine scheme SpecZ[t]. So P1

Z
has a covering {U1, U2} corresponding

to rings A1 = Z[u], A2 = Z[v]. These are “patched together” by identifying the open
1
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subschemes Spec(A1)u ⊂ SpecA1, Spec(A2)v ⊂ SpecA2 via the isomorphism of rings
(A1)u � (A2)v which sends u to v−1.

Note that we have used SpecR to denote the local ringed space (SpecR,OSpecR);
we will continue to use this abbreviated notation.

Definition 4.3. Let (X,OX) be a scheme. We denote by Vect(X) the exact category
of sheaves F of OX-modules with the property that there exists an open covering
{Ui} of X by affine schemes Ui = SpecAi and free, finitely generated Ai-modules Mi

such that the restriction F|Ui
of F to Ui is isomorphic to the sheaf M̃i on SpecAi.

In other words, Vect(X) is the exact category of coherent, locally free OX-modules
(i.e., of vector bundles over X).

We define the algebraic K-theory of the scheme X by setting

K∗(X) = K∗(Vect(X)).

4.2. Algebraic cycles. For simplicity, we shall typically restrict our attention to
quasi-projective varieties. In some sense, the most intrinsic objects associated to an
algebraic variety are the (algebraic) vector bundles E → X and the algebraic cycles
Z ⊂ X on X. As we shall see, these are closely related.

Definition 4.4. Let X be a scheme. An algebraic r-cycle on X if a formal sum
∑

Y

nY [Y ], Y irreducible of dimension r, nY ∈ Z

with all but finitely many nY equal to 0.
Equivalently, an algebraic r-cycle is a finite integer combination of (not necessarily

closed) points of X of dimension r. (This is a good definition even for X a quite
general scheme.)

If Y ⊂ X is a reduced subscheme each of whose irredicuble components Y1, . . . , Ym

is r-dimensional, then the algebraic r-cycle

Z =
m∑

i=1

[Yi]

is called the cycle associated to Y .
The group of (algebraic) r-cycles on X will be denoted Zr(X).

For example, if X is an integral variety of dimension d (i.e., the field of fractions
of X has transcendence d over k), then a Weil divisor is an algebraic d − 1-cycle.
In the following definition, we extend to r-cycles the equivalence relation we impose
on locally principal divisor when we consider these modulo principal divisors. As
motivation, observe that if C is a smooth curve and f ∈ frac(C), then f determines
a morphism f : C → P1 and

(f) = f−1(0) − f−1(∞),
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where f−1(0), f−1(∞) are the scheme-theoretic fibres of f above 0,∞.

Definition 4.5. Two r-cycles Z, Z ′ on a quasi-projective variety X are said to be
rationally equivalent if there exist algebraic r + 1-cycles W0, . . . , Wn on X × P1 for
some n > 0 with the property that each component of each Wi projects onto an
open subvariety of P1 and that Z = W0[0], Z ′ = Wn[∞], and Wi[∞] = Wi+1[0]
for 0 ≤ i < n. Here, Wi[0] (respectively, Wi[∞] denotes the cycle associated to
the scheme theoretic fibre above 0 ∈ P1 (resp., ∞ ∈ P1) of the restriction of the
projection X × P1 → P1 to (the components of) Wi.

The Chow group CHr(X) is the group of r-cycles modulo rational equivalence.

Observe that in the above definition we can replace the role of r + 1-cycles on
X × P1 and their geometric fibres over 0,∞ by r + 1-cycles on X × U for any non-
empty Zaristik open U ⊂ X and geometric fibres over any two k-rational points
p, q ∈ U .

Remark 4.6. Given some r +1 dimensional irreducible subvariety V ⊂ X together
with some f ∈ k(V ), we may define (f) =

∑
S ordS(f)[S] where S runs through the

codimension 1 irreducible subvarieties of V . Here, ordS(−) is the valuation centered
on S if V is regular at the codimension 1 point corresponding to S; more generally,
ordS(f) is defined to be the length of the OV,S-module OV,S/(f).

We readily check that (f) is rationally equivalent to 0: namely, we associate to
(V, f) the closure W = Γf ⊂ X × P1 of the graph of the rational map V ��� P1

determined by f . Then (f) = W [0] − W [∞].
Conversely, given an r +1-dimensional irreducible subvariety W on X ×P1 which

maps onto P1, the composition W ⊂ X × P1 pr2→ P1 determines f ∈ frac(W ) such
that

(f) = W [0] − W [∞].

Thus, the definition of rational equivalence on r-cycles of X can be given in terms
of the equivalence relation generated by

{(f), f ∈ frac(W ); W irreducible of dimension r + 1}
In particular, we conclude that the subgroup of principal divisors inside the group

of all locally principal divisors consists precisely of those locally principal divisors
which are rationally equivalent to 0.

4.3. Chow Groups. One should view CH∗(X) as a homology/cohomology theory.
These groups are covariantly functorial for proper maps f : X → Y and contravari-
antly functiorial for flat maps W → X, so that they might best be viewed as some
sort of “Borel-Moore homology theory.

Construction 1. Assume that X is integral and regular in codimension 1. Let
L ∈ Pic(X) be a locally free sheaf of rank 1 (i.e., a “line bundle” or “invertible
sheaf”) and assume that Γ(L) 	= 0. Then any 0 	= s ∈ Γ(L) determines a well



4

defined locally principal divisor on X, Z(s) ⊂ X. Namely, if L|U � OX|U is trivial
when restricted to some open U ⊂ X, then sU ∈ L(U) determines an element of
OX(U) well defined up to a unit in OX(U) (i.e., an element of O∗

X(U)) so that the
valuation vx(s) is well defined for every x ∈ U (1). We define Z(s) by the property
that Z(s)U = (sU)|U for any open U ⊂ X restricted to which L is trivial, and where
(sU) denotes the divisor of an element of OX(U) corresponding to sU under any
(OX)|U isomorphism L|U � (OX)|U .

Theorem 4.7. Assume that X is an integral variety regular in codimension 1. Let
D(X) denote the group of locally principal divisors on X modulo principal divisors.
Then the above construction determines a well defined isomoprhism

Pic(X) � D(X).

Moreover, if OX,x is a unique factorization domain for every x ∈ X, then D(X)
equals the group CH1(X) of codimension 1 cycles modulo rational equivalence.

Proof. If s, s′ ∈ Γ(L) are non-zero global sections, then there exists some f ∈ K =
frac(OX) such that with respect to any trivialization of L on some open covering
{Ui ⊂ X} of X the quotient of the images of s, s′ in OX(Ui) equals f . A line bundle
L is trivial if and only if it is isomorphic to OX which is the case if and only if it has
a global section s ∈ Γ(X) which never vanishes if and only if (s) = 0. If L1,L2 are
two such line bundles with non-zero global sections s1, s2, then (s1⊗s2) = (s1)+(s2).

Thus, the map is a well defined homomorphism on the monoid of those line bundles
with a non-zero global section. By Serre’s theorem concerning coherent sheaves
generated by global sections, for any line bundle L there exists a positive integer n
such that L⊗OX

OX(n) is generated by global sections (and in particular, has non-
zero global sections), where we have implicitly chosen a locally closed embedding
X ⊂ PM and taken OX(n) to be the pull-back via this embedding of OPM (n). Thus,
we can send such an L ∈ Pic(X) to (s) − (w), where s ∈ Γ(L ⊗OX

OX(n)) and
w ∈ Γ(OX(n)).

The fact that Pic(X) → D(X) is an isomorphism is an exercise in unravelling the
formulation of the definition of line bundle in terms of local data.

Recall that a domain A is a unique factorization domain if and only every prime
of height 1 is principal. Whenever OX,x is a unique factorization domain for every
x ∈ X, every codimension 1 subvariety Y ⊂ X is thus locally principal, so that the
natural inclusion D(X) ⊂ CH1(X) is an equality. �
Remark 4.8. This is a first example of relating bundles to cycles, and moreover
a first example of duality. Namely, Pic(X) is the group of rank 1 vector bundles;
the group CH1(X) of is a group of cycles. Moreover, Pic(X) is contravariant with
respect X whereas Z1(X) is covariant with respect to equidimensional maps. To
relate the two as in the above theorem, some smoothness conditions are required .

Example 4.9. Let X = AN . Then any N − 1-cycle (i.e., Weil divisor) Z ∈
CHN−1(A

N) is principal, so that CHN−1(A
N) = 0.
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More generally, consider the map µ : AN×A1 → PN×A1 which sends (x1, . . . , xn), t
to 〈t · x1, . . . , t · xn, 1〉, t. Consider an ireducible subvariety Z ⊂ AN of dimension
r > N not containing the origin and Z ⊂ PN be its closure. Let W = µ−1(Z × A1).
Then W [0] = ∅ whereas W [1] = Z. Thus, CHr(A

N) = 0 for any r < N .

Example 4.10. Arguing in a similar geometric fashion, we see that the inclusion
of a linear plane PN−1 ⊂ PN induces an isomorphism CHr(P

N−1) = CHr(P
N)

provided that r < N and thus we conclude by induction that CHr(P
N) = Z if

r ≤ N . Namely, consider µ : PN × A1 → PN × A1 sending 〈x0, . . . , xN〉, t to
〈x), . . . , xN−1, t·xN〉, t and set W = µ−1(Z×A1) for any Z not containing 〈0, . . . , 0, 1〉.
Then W [0] = prN∗(Z), W [1] = Z.

Example 4.11. Let C be a smooth curve. Then Pic(C) � CH0(X).

Definition 4.12. If f : X → Y is a proper map of quasi-projective varieties, then
the proper push-forward of cycles determines a well defined homomorphism

f∗ : CHr(X) → CHr(Y ), r ≥ 0.

Namely, if Z ⊂ X is an irreducible subvariety of X of dimension r, then [Z] is sent
to d · [f(Z)] ∈ CHr(Y ) where [k(Z) : k(f(Z))] = d if dim Z = dim f(Z) and is sent
to 0 otherwise.

If g : W → X is a flat map of quasi-projective varieties of relative dimension e,
then the flat pull-back of cycles induces a well defined homomorphism

g∗ : CHr(X) → CHr+e(W ), r ≥ 0.

Namely, if Z ⊂ X is an irreducible subvariety of X of dimension r, then [Z] is sent
to the cycle on W associated to Z ×X W ⊂ W .

Proposition 4.13. Let Y be a closed subvariety of X and let U = X\Y . Let
i : Y → X, j : U → X be the inclusions. Then the sequence

CHr(Y )
i∗→ CHr(X)

j∗→ CHr(U) → 0

is exact for any r ≥ 0.

Proof. If V ⊂ U is an irreducible subvariety of U of dimension r, then the closure of
V in X, V ⊂ X, is an irreducible subvariety of X of dimension r with the property
that j∗([V ]) = [V ]. Thus, we have an exact sequence

Zr(Y )
i∗→ Zr(X)

j∗→ Zr(U) → 0.

If Z =
∑

i ni[Yi] is a cycle on X with j∗(Z) = 0 ∈ CHr(U), then j∗Z =
∑

W,f (f)
where each W ⊂ U is an irreducible subvarieties of U of dimension r + 1 and
f ∈ k(W ). Thus, Z ′ =

∑
i ni[Y i] −

∑
W,f (f) is an r-cycle on Y with the property

that i∗(Z ′) is rationally equivalent to Z. Exactness of the asserted sequence of Chow
groups is now clear.

�
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Corollary 4.14. Let H ⊂ PN be a hypersurface of degree d. Then CHN−1(P
N\H) =

Z/dZ.

The following “examples” presuppose an understanding of “smoothness” briefly
discussed in the next section.

Example 4.15. Mumford shows that if S is a projective smooth surface with a non-
zerol global algebraic 2-form (i.e., H0(S, Λ2(ΩS)) 	= 0), then CH0(S) is not finite
dimensional (i.e., must be very large).

Bloch’s Conjecture predicts that if S is a projective, smooth surface with geometric
genus equal to 0 (i.e., H0(S, Λ2(ΩS)) = 0), then the natural map from CH0(S) to
the (finite dimensional) Albanese variety is injective.

4.4. Smooth Varieties. We restrict our attention to quasi-projective varieties over
a field k.

Definition 4.16. A quasi-projective variety X is smooth of dimension n at some
point x ∈ X if there exists an open neighborhood x ∈ U ⊂ X and k polynomials
f1, . . . , fk in n + k variables (viewed as regular functions on An+k) vanishing at 0 ∈
An+k with Jacobian | ∂fi

∂xj
|(0) of rank k and an isomorphism of U with Z(f1, . . . , fk) ⊂

An+k sending x to 0.
In more algebraic terms, a point x ∈ X is smooth if there exists an open neighbor-

hood x ∈ U ⊂ X and a map p : U → An sending x to 0 which is flat and unramified
at x.

Definition 4.17. Let X be a quasi-projective variety. Then K ′
0(X) is the Grothendieck

group of isomorphism classes of coherent sheaves on X, where the equivalence re-
lation is generated pairs ([E ], [E1] + [E2]) for short exact sequences 0 → E1 → E →
E2 → 0 of OX-modules.

Example 4.18. Let A = k[x]/x2. Consider the short exact sequence of A-modules

0 → k → A → k → 0

where k is an A-module via the agumentation map (i.e., x acts as multiplication by
0), where the first map sends a ∈ k to ax ∈ A, and the second map sends x to 0.
We conclude that the class [A] of the rank 1 free module equals 2[k].

On the other hand, because A is a local ring, K0(A) = Z, generated by the class
[A]. Thus, the natural map K0(Spec A) → K ′

0(Spec A) is not surjective. The map
is, however, injective, as can be seen by observing that dimk(−) : K ′

0(Spec A) → Z

is well defined.

Theorem 4.19. If X is smooth, then the natural map K0(X) → K ′
0(X) is an

isomorphism.
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Proof. Smoothness implies that every coherent sheaf has a finite resolution by vector
bundles, This enables us to define a map

K ′
0(X) → K0(X)

by sending a coherent sheaf F to the alternating sum ΣN
i=1(−1)iEi, where 0 → EN →

· · · E0 → F → 0 is a resolution of F by vector bundles.
Injectivity follows from the observation that the composition

K0(X) → K ′
0(X) → K0(X)

is the identity. Surjectivity follows from the observation that F = ΣN
i=1(−1)iEi so

that the composition

K ′
0(X) → K0(X) → K ′

0(X)

is also the identity. �

Perhaps the most important consequence of this is the following observation.
Grothendieck explained to us how we can make K ′

0(−) a covariant functor with
respect to proper maps. (Every morphism between projective varieties is proper.)
Consequently, restricted to smooth schemes, K0(−) is not only a contravariant func-
tor but also a covariant functor for proper maps.

“Chow’s Moving Lemma” is used to give a ring structure on CH∗(X) on smooth
varieties as made explicit in the following theorem. The role of the moving lemma is
to verify for an r-cycle Z on X and an s-cycle W on X that Z can be moved within its
rational equivalence class to some Z |prime such that Z ′ meets W “properly”. This
means that the intersection of any irreducible component of Z ′ with any irreducible
component of W is either empty or of codimension d − r − s, where d = dim(X).

Theorem 4.20. Let X be a smooth quasi-projective variety of dimension d. Then
there exists a pairing

CHr(X) ⊗ CHs(X)
•→ CHd−r−s(X), d ≥ r + s,

with the property that if Z = [Y ], Z ′ = [W ] are irreducible cycles of dimension r, s
respectively and if Y ∩W has dimension ≤ d− r− s, then Z •Z ′ is a cycle which is
a sum with positive coefficients (determined by local data) indexed by the irreducible
subvarieties of Y ∩ W of dimension d − r − s.

Write CHs(X) for CHd−s(X). With this indexing convention, the intersection
pairing has the form

CHs(X) ⊗ CH t(X)
•→ CHs+t(X).

4.5. Chern classes and Chern character. The following construction of Chern
classes is due to Grothendieck; it applies equally well to topological vector bundles
(in which case the Chern classes of a topological vector bundle over a topological
space T are elements of the singular cohomology of T ).
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If E is a rank r + 1 vector bundle on a quasi-projective variety X, we define
P(E) = Proj (SymOX

E) → X to be the projective bundle of lines in E . Then P(E)
comes equipped with a canonical line bundle OP(E)(1); for X a point, P(E) = Pr

and OP(E)(1) = OPr(1).

Construction 2. Let E be a rank r vector bundle on a smooth, quasi-projective
variety X of dimension d. Then CH∗(P(E)) is a free module over CH∗(X) with gen-
erators 1, ζ, ζ2, . . . , ζr−1, where ζ ∈ CH1(P(E)) denotes the divisor class associated
to OP(E)(1). .

We define the i-th Chern class ci(E) ∈ CH i(X) of E by the formula

CH∗(P(E)) = CH∗(X)[ζ]/
r∑

i=0

(−1)iπ∗(ci(E)) · ζr−i.

We define the total Chern class c(E) by the formula

c(E) =
r∑

i=0

ci(E)

and set ct(E) =
∑r

i=0 ci(E)ti. Then the Whitney sum formula asserts that ct(E⊕F) =
ct(E) · ct(F).

We define the Chern roots, α1, . . . , αr of E by the formula

ct(E) =
r∏

i=1

(1 + αit)

where the factorization can be viewed either as purely formal or as occurring in
F(E). Observe that ck(E) is the k-th elementary symmetric function of these Chern
roots.

In other words, the Chern classes of the rank r vector bundle E are given by the
expression for ζr ∈ CHr(P(E)) in terms of the generators 1, ζ, . . . , ζr−1. Thus, the
Chern classes depend critically on the identification of the first Chern class ζ of
OP(E)(1) and the multiplicative structure on CH∗(X). The necessary structure for
such a definition of Chern classes is called an oriented multiplicative cohomology the-
ory. The splitting principle guarantees that Chern classes are uniquely determined
by the assignment of first Chen classes to line bundles.

We refer the interested reader to [?] for the definition of “operational Chern
classes” defined for bundles on a non necessarily smooth variety.

Grothendieck introduced many basic techniques which we now use as a matter of
course when working with bundles. The following splitting principle is one such tech-
nique, a technique which enable one to frequently reduce constructions for arbitrary
vector bundles to those which are a sum of line bundles.
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Proposition 4.21. (Splitting Principle) Let E be a rank r + 1 vector bundle on a
quasi-projective variety X. Then p∗1 : CH∗(X) → CH∗+r(P(E)) is split injective and
p∗1(E) = E1 is a direct sum of a rank r bundle and a line bundle.

Applying this construction to E1 on P(E), we obtain p2 : P(E1) → P(E); proceeding
inductively, we obtain

p = pr ◦ · · · ◦ p1 : F(E) = P(Er−1) → X

with the property that p∗ : K0(X) → K0(F(E)) is split injective and p∗(E) is a direct
sum of line bundles.

One application of the preceding proposition is the following definition (due to
Grothendieck) of the Chern character.

Construction 3. Let X be a smooth, quasi-projective variety, let E be a rank r
vector bundle over X, and let π : F(E) → X be the associated bundle of flags of
E . Write π∗(E) = L1 ⊕ · · · ⊕ Lr, where each Li is a line bundle on F(E). Then
ct(π

∗(E)) =
∏r

i=1(1 ⊕ c1(Li))t.
We define the Chern character of E as

ch(E) =
r∑

i=1

{1 + c1(Li) +
1

2
c1(Li)

2 +
1

3!
c1(Li)

3 + · · · } =
r∑

i=1

exp(ct(Li)),

where this expression is verified to lie in the image of the injective map CH∗(X) ⊗
Q → CH∗(F(E))⊗Q. (Namely, one can identify chk(E) as the k-th power sum of the
Chern roots, and therefore expressible in terms of the Chern classes using Newton
polynomials.)

Since π∗ : K0(X) → K0(F(E)), π∗ : CH∗(X) → CH∗(F(E)) are ring homomor-
phisms, the splitting principle enables us to immediately verify that ch is also a
ring homomoprhism (i.e., sends the direct sum of bundles to the sum in CH∗(X) of
Chern characters, sends the tensor product of bundles to the product in CH∗(X) of
Chern characters).

4.6. Riemann-Roch. Grothendieck’s formulation of the Riemann-Roch theorem is
an assertion of the behaviour of the Chern character ch with respect to push-forward
maps induced by a proper smooth map f : X → Y of smooth varieties. It is not
the case that ch commutes with the these push-forward maps; one must modify the
push forward map in K-theory by multiplication by the Todd class.

This modification by multiplication by the Todd class is necessary even when
consideration of the push-forward of a divisor. Indeed, the Todd class

td : K0(X) → CH∗(X)

is characterized by the properties that

• i. td(L) = c1(L)/(1 − exp(−c1(L)) = 1 + 1
2
c1(L) + · · · ;

• ii. td(E1 ⊕ E2) = td(E1) · td(E2); and



10

• iii. td ◦ f ∗ = f ∗ ◦ td.

The reader is recommended to consult [?] for a very nice overview of Grothendieck’s
Riemann-Roch Theorem.

Theorem 4.22. (Grothendieck’s Riemann-Roch Theorem)
Let f : X → Y be a projective map of smooth varieties. Then for any x ∈ K0(X),

we have the equality

ch(f!(x)) · td(TY ) = f∗(ch(x) · td(TX))

where TX , TY are the tangent bundles of X, Y and td(TX), td(TY ) are their Todd
classes.

Here, f! : K0(X) → K0(Y ) is defined by identifying K0(X) with K ′
0(X), K0(Y )

with K ′
0(Y ), and defining f! : K ′

0(X) → K ′
0(Y ) by sending a coherent sheaf F on X

to
∑

i(−1)iRif∗(F ). The map f∗ : CH∗(X) → CH∗(Y ) is proper push-forward of
cycles.

Just to make this more concrete and more familiar, let us consider a very special
case in which X is a projective, smooth curve, Y is a point, and x ∈ K0(X) is the
class of a line bundle L. (Hirzebruch had earlier proved a version of Grothendieck’s
theorem in which the target Y was a point.)

Example 4.23. Let C be a projective, smooth curve of genus g and let f : C →
SpecC be the projection to a point. Let L be a line bundle on C with first Chern
class D ∈ CH1(C). Then

f!([L]) = dimL(C) − dimH1(C,L) ∈ Z,

and ch : K0(SpecC) = Z → A∗(SpecC) = Z is an isomorphism. Let K ∈ CH1(C)
denote the “canonical divisor”, the first Chern class of the line bundle ΩC , the dual
of TC . Then

td(TC) =
−K

1 − (1 + K + 1
2
K2)

= 1 − 1

2
K.

Recall that deg(K) = 2g − 2. Since ch([L]) = 1 + D, we conclude that

f∗(ch([L]) · td(TC)) = f∗((1 + D) · (1 − 1

2
K)) = deg(D) − 1

2
deg(K).

Thus, in this case, Riemann-Roch tell us that

dimL(C) − dimH1(C,L) = deg(D) + 1 − g.

For our purpose, Riemann-Roch is especially important because of the following
consequence.

Corollary 4.24. Let X be a smooth quasi-projective variety. Then

ch : K0(X) ⊗ Q → CH∗(X) ⊗ Q

is a ring isomorphism.
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Proof. The essential ingredient is the Riemann-Roch theorem. Namely, we have a
natural map CH∗(X) → K ′

0(X) sending an irreducible subvariety W to the OX-
module OW . We show that the composition with the Chern character is an isomor-
phism by applying Riemann-Roch to the closed immersion W\Wsing → X\Wsing.

�
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