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Some difficult problems



5. Some Difficult Problems

As we discuss in this lecture, many of the basic problems formulated years ago for
algebraic K-theory remain unsolved. This remains a subject in which much exciting
work remains to be done.

5.1. K∗(Z). Unfortunately, there are few examples (rings or varieties) for which a
complete computation of the K-groups is known. As we have seen earlier, one such
complete computation is the K-theory of an arbitrary finite field, K∗(Fq). Indeed,
general theorems of Quillen give us the complete computations

K∗(Fq[t]) = K∗(Fq), K∗(Fq([t, t
−1]) = K∗(Fq)⊕K∗−1(Fq).

Perhaps the first natural question which comes to mind is the folowing: “what is
the K-theory of the integers.”

In recent years, great advances have been made in computing K∗(OK) of a ring
of integers in a number field K (e.g., Z inside Q).

• K0(OK) ⊗ Q is 1 dimensional by the finiteness of the class number of K
(Minkowski).
• K1(OK)⊗Q has dimension r1 + r2− 1, where r1, r2 are the numbers of real

and complex embeddings of K. (Dirichlet).
• Quillen proved that Ki(OK) is a finitely generated abelian group for any i.
• For i > 1, Borel determined

(1) Ki(OK)⊗Q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, i ≡ 0 (mod 4)

r1 + r2, i ≡ 1 (mod 4)

0, i ≡ 2 (mod 4)

r2, i ≡ 3 (mod 4)

in terms of the numbers r1, r2.
• K∗(OK , Z/2) has been computed by Rognes-Weibel as a corollary of Voevod-

sky’s proof of the Milnor Conjecture.
• K∗(Z, Z/p) follows in all degrees not divisible by 4 from the Bloch-Kato

Conjecture, now seemingly proved by Rost and Voevodsky.

Here is a table of the values of K∗(Z) whose likely inaccuracy is due to my con-
fusion of indexing of Bernoulli numbers.
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Theorem 5.1. The K-theory of Z is given by (according to Weibel’s survey paper):

(2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K8k =?0?, 0 < k

K8k+1 = Z⊕ Z/2, 0 < k

K8k+2 = Z/2c2k+1 ⊕ Z/2

K8k+3 = Z/2d4k+2, i ≡ 3

K8k+4 = ?0?

K8k+5 = Z

K8k+6 = Z/c2k+2

K8k+7 = Z/d4k+4

Here, ck/dk is defined to be the reduced expression for Bk/4k, where Bk is the k-th
Bernoulli number (defined by

t

et − 1
= 1 +

∞∑
k=1

Bk

(2k)!
t2k .

Challenge 5.2. Prove the vanishing of K4i(Z), i > 0.

5.2. Bass Finiteness Conjecture. This is one of the most fundamental and oldest
conjectures in algebraic K-theory. Very little progress has been made on this in the
past 35 years.

Conjecture 5.3. (Bass finiteness) Let A be a commutative ring which is finitely
generated as an algebra over Z. Is K ′

n(A) (i.e., the Quillen K-theory of mod(A))
finitely generated for all n?

In particular, if A is regular as well as commutative and finitely generated over
Z, is each Kn(A) a finitely generated abelian group?

This conjecture seems to be very difficult, even for n = 0. There are similar
finiteness conjectures for the K-theory of projective varieties over finite fields.

Example 5.4. Here is an example of Bass showing that we must assume A is regular
or consider G∗(A). Let A = Z[x, y]/x2. Then the ideal (x) is infinitely additively
generated by x, xy, xy2, . . . . On the other hand, if t ∈ (x), then 1 + t ∈ A∗, so that
we see that K1(A) is not finitely generated.

Example 5.5. As pointed out by Bass, it is elementary to show (using general
theorems of Quillen and Quillen’s computation of the K-theory of finite fields) that
if A is finite, then Gn(A) � Gn(A/radA) is finite for every n ≥ 0. Subsequently,
Kuku proved that Kn(A) is also finite whenever A is finite.

There are many other finiteness conjectures involving smooth schemes of finite
type over a finite field, Z or Q. Even partial solutions to these conjectures would
represent great progress.
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5.3. Milnor K-theory. We recall Milnor K-theory, a major concept in Professor
Vishik’s lectures. This theory is motivated by Matsumoto’s presentation of K2(F )
(mentioned in Lecture 1),

Definition 5.6. (Milnor) Let F be a field with multiplicative group of units F×. The
Milnor K-group KMilnor

n (F ) is defined to be the n-th graded piece of the graded ring
defined as the tensor algebra

⊕
n≥0(F

×)⊗n modulo the ideal generated by elements
{a, 1− a} ∈ F ∗ ⊗ F ∗, a �= 1 �= 1− a.

In particular, K1(F ) = KMilnor
1 (F ), K2(F ) = KMilnor

2 (F ) for any field F , and
KMilnor

n (F ) is a quotient of Λn(F×). For F an infinite field, Suslin proved that there
are natural maps

KMilnor
n (F )→ Kn(F )→ KMilnor

n (F )

whose composition is (−1)n−1(n− 1)!. This immediately implies, for example, that
the higher K-groups of a field of high transcendence degree are very large.

Remark 5.7. It is difficult to even briefly mention K2 of fields without also men-
tioning the deep and import theorem of Mekurjev and Suslin: for any field F and
positive integer n,

K2(F )/nK2(F ) � H2(F, µ⊗2
n ).

In particular, H2(F, µ⊗2
n ) is generated by products of elements in H1(F, µn) =

µn(F ).
Moreover,if F contains the nth roots of unity, then

K2(F )/nK2(F ) � nBr(F ),

where nBr(F ) denotes the subgroup of the Brauer group of F consisting of elements
which are n-torsion. In particular, nBr(F ) is generated by “cyclic central simple
algebras.”

The most famous success of K-theory in recent years is the following theorem of
Voevodsky, establishing a result conjectured by Milnor.

Theorem 5.8. Let F be a field of characteristic �= 2. Let W (F ) denote the
Witt ring of F , the quotient of the Grothendieck group of symmetric inner prod-
uct spaces modulo the ideal generated by the hyperbolic space 〈1〉 ⊕ 〈−1〉 and let
I = ker{W (F )→ Z/2} be given by sending a symmetric inner product space to its
rank (modulo 2). Then the map

KMilnor
n (F )/2 ·KMilnor

n (F )→ In/In+1, {a1, . . . , an} �→
n∏

i=1

(〈ai〉 − 1)

is an isomorphism for all n ≥ 0. Here, 〈a〉 is the 1 dimensional symmetric inner
product space with inner product (−,−)a defined by (c, d)a = acd.
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Suslin proved that the natural map KM
∗ (F ) → K∗(F ) (whose existence is given

by Masumoto’s Theorem and the ring structure on K∗(F )) is complemented by a
natural map K∗(F ) → KM

∗ (F ) whose composition in degree n is multiplication by
(n− 1)!. In particular, this tells us that the cardinality of Kn(F ), n > 0 is large if
the cardinality of F is large.

On the other hand, Suslin has proved the following theorem.

Theorem 5.9. Let F be an algebraic closed field. If F has characteristic 0 and
i > 0, then K2i(F ) is a Q vector space and K2i−1(F ) is a direct sum of Q/Z and a
rational vector space. If F has characteristic p > 0 and i > 0, then K2i(F ) is a Q

vector space and K2i−1(F ) is a direct sum of ⊕��=pQ�/Z� and a rational vector space.

Question 5.10. What information is reflected in the uncountable vector spaces
Kn(C)⊗Q? Are there interesting structures to be obtained from these vector spaces?

5.4. Negative K-groups. Bass introduced negative algebraic K-groups, groups
which vanish for regular rings or, more generally, smooth varieties. These negative
K-groups measure the failure of K-theory in positive degree to obey “homotopy
invariance” and “localization” (i.e.,

K∗(X)
?
= K∗(X × A1), K∗(X)⊕K∗−1(X)

?
= K∗(X × A1\{0}).

Very recently, there has been important progress in computing these negative
K-groups by Cortinas, Haesemeyer, Schlicting, and Weibel.

Question 5.11. Can negative K-groups give useful invariants for the geometric
study of singularities?

5.5. Algebraic versus topological vector bundles. Let X be a complex pro-
jective variety, and let Xan denote the topological space of complex points of X
equipped with the analytic topology. Then any algebraic vector bundle E → X
naturally determines a topological vector bundle Ean → Xan. This determines a
natural map

K0(X) → K0
top(X

an).

Challenge 5.12. Understand the kernel and image of the above map, especially
after tensoring with Q:

(3) CH∗(X)⊗Q � K0(X)⊗Q → K0
top(X

an)⊗ � Hev(Xan, Q).

The kernel of (3) can be identified with the subspace of CH∗(X) ⊗ Q consist-
ing of rational equivalence classes of algebraic cycles on X which are homologically
equivalent to 0.

The image of (3) can be identified with those classes in H∗(Xan, Q) represented
by algebraic cycles – the subject of the Hodge Conjecture!

In positive degree, the analogue of our map is uninteresting.
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Proposition 5.13. If X is a complex projective variety, then the natural map

Ki(X)⊗Q → K−i
top(X

an), i > 0

is the 0-map.

5.6. K-theory with finite coefficients. Although the map in positive degrees

Ki(X) → K−i
top(X

an)

is typically of little interest, the situation changes drastically if we consider K-theory
mod-n.

As an example, we give the following special case of a theorem of Suslin. Recall
that (Spec C)an is a point, which we denote by �.

Theorem 5.14. The map

Ki(Spec C) → K−i
top(�)

is the 0-map for i > 0. On the other hand, for any positive integer n and any
interger i ≥ 0, the map

Ki(Spec C, Z/n) → K−i
top(�, Z/n)

is an isomorphism.

How can the preceding theorem be possibly correct? The point is that K2i−1(Spec C)
is a divisible group with torsion subgroup Q/Z. Then, we see that this Q/Z is odd
degree integral homotopy determines a Z/n in even degree mod-n homotopy. This
is exactly what K−∗

top(�) determines in even mod-n homotopy degree.
The K-groups modulo n are defined to be the homotopy groups modulo n of the

K-theory space (or spectrum).

Definition 5.15. For positive integers i, n > 1, let M(i, Z/n) denote the C.W.
complex obtained by attaching an i-cell Di to Si−1 via the map ∂(Di) = Si−1 → Si−1

given by multiplication by n.
For any connected C.W. complex, we define

πi(X, Z/n) ≡ [M(i, Z/n), X], i, n > 1.

If X = Ω2Y , we define

πi(X, Z/n) ≡ [M(i + 2, Z/n), Y ], i ≥ 0, n > 1.

Since Si−1 →M(i, Z/n) is the cone on the multiplication by n map Si−1 n→ Si−1,
we have long exact sequences

· · · → πi(X)
n→ πi(X)→ πi(X/Z/n)→ πi−1(X)→ · · ·

Perhaps this is sufficient to motivate our next conjecture, which we might call
the Quillen-Lichtenbaum Conjecture for smooth complex algebraic varieties. The
special case in which X = Spec C is the theorem of Suslin quoted above.
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Conjecture 5.16. (Q-L for smooth C varieties) If X is a smooth complex variety
of dimension d, then is the natural map

Ki(X, Z/n)→ Ktop
i (Xan, Z/n)

an isomorphism provided that i ≥ d− 1 ≥ 0?

Remark In “low” degrees, K∗(X, Z/n) should be more interesting and will not be
periodic. For example, Ktop

ev (X, Z/n) has a contribution from the Brauer group of
X whereas K0(X, Z/n) does not.

5.7. Etale K-theory. It is natural to try to find a good “topological model” for the
mod-n algebraic K-theory of varieties over fields other than the complex numbers.
Suslin’s Theorem in its full generality can be formulated as follows

Theorem 5.17. If k is an algebraically closed field of characteristic p ≥ 0, then
there is a natural isomorphism

K∗(k, Z/n)
�→ Ket

∗ (Spec k, Z/n), (n, p) = 1.

Moreover, if the characteristic of k is a positive integer p, then Ki(k, Z/p) = 0, for
all i > 0.

We have stated the previous theorem in terms of etale K-theory although this is
not the way Suslin formulated his theorem. We did this in order to introduce the
etale topology, a Grothendieck topology associated to the etale site. For this site,
the distinguished morphisms E are etale morphisms of schemes. A map of schemes
f : U → V is said to be etale (or “smooth of relative dimension 0) if there exist
affine open coverings {Ui} of U , {Vj} of V such that the restriction to Ui of f lies
in some Vj and such that the corresponding map of commutative rings Ai ← Rj is
unramified (i.e., for all homomorphisms from R to a field k, A⊗R k ← k is a finite
separable k algebra) and flat.

The etale topology was introduced by Grothendieck partly to reinterpret Galois
cohomology of fields and partly to algebraically realize singular cohomology of com-
plex algebraic varieties. The following “comparison theorem” proved by Michael
Artin and Alexander Grothendieck is an important property of the etale topology.
(See also Lecture 6.)

Theorem 5.18. (Artin, Grothendieck) If X is a complex algebraic variety, then

H∗
et(X, Z/n) � H∗

sing(X
an, Z/n).

Here, H∗
et(X, Z/n) denotes the derived functors of the global section functor applied

to the constant sheaf Z/n on the etale site.

The etale topology not only enables us to define etale cohomological groups, but
also etale homotopy types. Using the etale homotopy type, etale K-theory (defined
by Bill Dwyer and myself) can be defined in a manner similar to topological K-
theory.
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For this theory, there is an Atiyah-Hirzeburch spectral sequence

Ep,q
2 = Hp

et(X, Kq
et(�))⇒ Kp+q

et (X, Z/n)

provided that OX is a sheaf of Z[1/n]-modules. If we let µn denote the etale sheaf

of n-th roots of unity and let µ
⊗q/2
n denote µ⊗j

n if q = 2j and 0 if j is odd, then this
spectral sequence can be rewritten

Ep,q
2 = Hp

et(X, µ⊗q/2)⇒ Ket
q−p(X, Z/n).

Using etale K-theory, we can reformulate and generalize the Quillen-Lichtenbaum
Conjecture (originally stated for Spec K, where K is a number field), putting this
conjecture in a quite general context.

Conjecture 5.19. (Quillen-Lichtenbaum) Let X be a smooth scheme of finite type
over a field k, and assume that n is a positive integer with 1/n in k or A. Then the
natural map

Ki(X, Z/n)→ Ket
i (X, Z/n)

is an isomorphism for i − 1 greater or equal to the mod-n etale cohomological di-
mension of X.

This conjecture appears to be proven, or near-proven, thanks to the work of Rost
and Voevodsky on the Bloch-Kato Conjecture.

5.8. Integral conjectures. There has been much progress in understanding K-
theory with finite coefficients, but much less is known about the result of tensoring
the algebraic K-groups with Q.

The following theorem of Soué is proved by investigating the group homology of
general linear groups over fields. Soulé proves a vanishing theorem for more general
rings R with a range depending upon the “stable range” of R.

Theorem 5.20. (Soulé) For any field F ,

Kn(F )
(s)
Q = 0, s > n.

Here Kn(F )
(s)
Q is the s-eigenspace with respect to the action of the Adams operations

on Kn(F ).

This motivates the following Beilinson-Souè vanishing conjecture, part of the
Beilinson Conjectures discussed in the next lecture. This conjecture is now known
if we replace the coefficients Z(n) by their finite coefficients analgoue Z/�(n).

Conjecture 5.21. (Beilinson-Soulé) For any field F , the motivic cohomology groups
Hp(Spec F, Z(n)) equal 0 for p < 0.

Yet another “auxillary K-theory has been developed to investigate K-theory of
complex varieties, especially some aspects involving rational coefficients.
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Theorem 5.22. (Friedlander-Walker) Let X be a complex quasi-projective vari-
ety. The map from the algebraic K-theory spectrum K(X) to the topological K-
theory spectrum Ktop(X

an) factors through the “semi-topological K-theory spectrum
Ksst(X).

K(X) → Ksst(X) → Ktop(X
an).

The first map induces an isomorphism in homotopy groups modulo n, whereas the
second map induces an isomorphism for certain special varieties and typically in-
duces an isomorphism after “inverting the Bott element.”

This semi-topological K-theory is related to cycles modulo algebraic equivalence
is much the same way as usual algebraic K-theory is related to Chow groups (cycles
modulo rational equivalence).

One important aspect of this semi-topological K-theory is that leads to conjec-
tures which are “integral” whose reduction modulo n give the familiar Quillen-
Lichtenbaum Conjecture.

We state one precise form of such a conjecture, essentially due to Suslin.

Conjecture 5.23. Let X be a smooth, quasi-projective complex variety. Then the
natural map

Ksst
i (X) → K−i

top(X
an)

is an isomorphism for i ≥ dim(X)− 1 and a monomorphism for i = dim(X)− 2.

Now, we also have a “good semi-topological model” for the K-theory of quasi-
projective varieties over R, the real numbers. This is closely related to “Atiyah Real
K-theory rather than the topological K-theory we have discussed at several points
in these lectures.

Challenge 5.24. Develop a semi-topological K-theory for varieties over an arbitrary
field.

5.9. K-theory and Quadratic Forms. another topic of considerable interest is
Hermetian K-theory in which we take into account the presence of quadratic forms.
Perhaps this topic is best left to Professor Vishik!




