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Lecture 4
Generic discrete and elementary discrete invariants of quadrics

Last time were introduced two discrete invariants of quadrics: the mo-
tivic decomposition type and the splitting pattern. We will show that both
these invariants live inside some big discrete invariant of geometric origin
as (rather small) faces. The idea here is, instead of studying the faces, to
study the whole invariant, since it should posses more structure. Let us start
with MDT (Q). This invariant measures what are possible decompositions
of M(Q), that is, what kind of projectors we have in EndChoweff (k)(M(Q)).

Rost Nilpotence Theorem
The following result of M.Rost is central here:

Theorem 0.1 (RNT)

Ker(EndChoweff (k)(M(Q))
ac→ EndChoweff (k)(M(Q|k))

consists of nilpotents.

This implies that any projector in the image of ac can be lifted to a
projector in EndChoweff (k)(M(Q)), and two such liftings produce direct sum-

mands which are isomorphic as objects of Choweff(k). So, to know the
decomposition of M(Q) it is sufficient to know the

image(ac) = image(CHdim(Q)(Q×Q)→ CHdim(Q)(Q×Q|k)).

Consider for simplicity the case dim(Q)-odd (the other one can be done
similarly). Then 2 ·CHdim(Q)(Q×Q|k) ⊂ image(ac), since CHdim(Q)(Q×Q|k)
is additively generated by [li × hi], and 2 · li = hdim(Q)−i, which implies that
[hdim(Q)−i × li] ∈ image. Thus, after all, we need to know only the

image(CHdim(Q)(Q×Q)/2
ac→ CHdim(Q)(Q×Q|k)/2).

Example: Let dim(Q) is odd. Then M(Q) is indecomposable if and only
if the image above consists of just Z/2 · [∆Q].

Aside: RNT shows that M(Q) does not contain phantom direct sum-
mands. That is, if N is a direct summand, and N |k = 0, then N = 0.
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RNT is generalized to the case of arbitrary projective homogeneous va-
riety by V.Chernousov, A.Merkurjev and S.Gille. So, the motives of these
varieties also have no phantom direct summands.

Hypothetically, NT should hold for arbitrary smooth projective variety,
and so there should be no phantom objects in Choweff (k) at all. But this
is a very strong and complicated Conjecture (related to the Conjecture of
S.Bloch). Notice, that in DMeff

− (k) there is plenty of phantom objects, and
many of these were successfully used (most notably, by V.Voevodsky), but
they are infinite dimensional and do not live in Choweff(k).

Definition 0.2 Consider the following invariant of quadrics:

Q �→ image(CH∗(Q×N )/2
ac→ CH∗(Q×N |k)/2), for allN.

We call it Generic discrete invariant of quadrics (in noncompact form).

This invariant clearly contains MDT (Q). The disadvantage here is that one
has to consider infinitely many objects. But the invariant can be “compact-
ified”, and the above problem disappears.

To each smooth projective quadric Q one can assign the respective quadratic
Grassmannians:

Q �→ G(i, Q) − Grassmanian of i− dim. planes onQ.

This is smooth projective (homogeneous) variety, and E-rational points of
G(i, Q) are i-dimensional planes li ⊂ Q|E.

We get varieties:

Q = G(0, Q), G(1, Q), . . . , G(d, Q), where d =

[
dim(Q)

2

]
.

Examples:

1) dim(q) = 4, q = 〈a, b, c, d〉. Then G(1, Q) = C{−ab,−ac}×Spec(k)Spec(k
√

abcd)
- the conic over the quadratic extension. So, G(1, Q)|k = P

1
∐

P
1.
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2) dim(q) = 5, q = 〈a, b, c, d, e〉. Consider the auxiliary form p = q ⊥
〈−det(q)〉 = 〈a, b, c, d, e,−abcde〉. Then ∃λ (for example = abc), such
that λ·p = 〈A, B,−AB,−C,−D, CD〉 is an Albert form, corresponding
to the biquaternion algebra Al = Quat({A, B}, k)⊗k Quat({C, D}, k).
Then G(1, Q) = SB(Al) is a Severi-Brauer variety for the algebra Al.
In particular, G(1, Q)|k = P

3.

3) Let qα be the 3-fold Pfister form 〈〈a, b, c〉〉. Then G(3, Qα) = Qα

∐
Qα.

It appears that M(Q×N ) can be decomposed into the direct sum of the
motives of G(i, Q) with various Tate-shifts.

Example:

M(Q×Q) = M(Q)⊕(M(G(1, Q))⊕M(G(1, Q))(1)[2])⊕M(Q)(dim(Q))[2 dim(Q)].

Consequently, to know

image(CH∗(Q×N )/2
ac→ CH∗(Q×N |k)/2), for allN

is the same as to know

image(CH∗(G(i, Q))/2
ac→ CH∗(G(i, Q)|k)/2), for 0 � i � d =

[
dim(Q)

2

]

Definition 0.3 This invariant is called Generic discrete invariant (in com-
pact form) GDI(Q).

It contains not just MDT (Q), but the SP (Q) as well. Recall, that the
Splitting Pattern of Q measures what are possible Witt-indices of q|E for
all possible field extensions E/k. It follows from the Specialization the-
ory of M.Knebusch, that it is sufficient to consider only the fields E =
k(G(i, Q)), 0 � i � d - the generic points of quadratic Grassmannians.
In the end, one needs only to know, for which i there is a rational map
G(i, Q) ��� G(i + 1, Q), or, which is the same, the rational section of the
projection F (i, i+1, Q)→ G(i, Q) (from the variety of flags (li ⊂ li+1) to the
Grassmannian of i-planes on Q). Due to the Theorem of Springer (claiming
that Q is isotropic⇔ it has a zero-cycle of degree 1) this can be reduced to the
existence of cycles of certain type in CH∗(F (i, i+1; Q))/2. But F (i, i+1; Q)
is a projective bundle over G(i + 1, Q) and, consequently, M(F (i, i + 1; Q))
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is a direct sum of M(G(i + 1, Q)) with various Tate-shifts. Thus, GDI(Q)
contains SP (Q).

Varieties G(i, Q) are geometrically cellular, that is, can be “cut” into
pieces isomorphic to affine spaces A

rj - Schubert cells (to define such a cell,
fix a complete flag π0 ⊂ π1 ⊂ . . . ⊂ πd, and natural numbers n0, . . . , nd, then
the Cell(n0, . . . , nd) is given by the locus of those i-planes li that dim(li ∩
πj) = nj). Thus, M(G(i, Q)|k) is (canonically!) a sum of Tate-motives, and
CH∗(G(i, Q)|k) is a free abelian group with the canonical basis corresponding
to Schubert cells

Cell �→ [Cell] ∈ CH∗(G(i, Q)|k).
The Schubert cells are parametrized by some sort of Young diagrams, and
this way the ring CH∗(G(i, Q)|k)/2 appears as quite combinatorial object.
GDI(Q, i) is the subring of CH∗(G(i, Q)|k)/2 consisting of elements defined
over k. But the ring CH∗(G(i, Q)|k)/2 is still rather large. For example, for
i = d it has the rank = 2d+1. Need something handier. For this purpose there
is EDI(Q) - Elementary discrete invariant of Q. It does not determine the
whole image(ac), but just checks if some particular good classes are in the
image, or not. These classes are elementary classes. To define them , start
with the Grassmannian of 0-dimensional planes G(0, Q), that is, with the
quadric Q itself. Elementary classes on Q are just the classes l0, l1, . . . , ld in
CH∗(Q|k)/2 - these are the only interesting classes there (their k-rationality
measures only the Witt-index of q). Now, the elementary classes on other
Grassmannians can be produced from that on Q. Namely, we have natural
projections:

Q
αi← F (0, i; Q)

βi→ G(i, Q)

Definition 0.4 Define the elementary classes

yi,j := (βi)∗(αi)
∗(lj) ∈ CHdim(Q)−i−j(G(i, Q)|k)/2.

EDI(Q) measures which of yi,j are defined over k.

Our elementary classes are numbered by 0 � i, j � d, so EDI(Q) can be
visualized as d × d square, where integral node is marked iff the respective
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class yi,j is defined over k.

• • ◦ ... ◦ •

◦ • ◦ ... ◦ ◦

◦ ◦ ◦ ... ◦ ◦

... ... ... ... ... ...

◦ ◦ ◦ ... ◦ ◦

◦ ◦ ◦ ... ◦ ◦

j
��

i

��

Here each row corresponds to a particular Grassmannian, and codimension
decreases up and right. SW corner is marked ⇔ Q is isotropic; SE corner is
marked ⇔ it is completely split.

Examples:

1) q-generic (〈a1, . . . , an〉/k = F (a1, . . . , an)). Then EDI(Q) is empty.

2) q-completely split ⇒ everything is marked.

3) qα is (anisotropic) n-fold Pfister form. Then the marked points will be
exactly those which live strictly above the main (NW-SE) diagonal. In
the case of n = 3 we get:

◦ • • •

◦ ◦ • •

◦ ◦ ◦ •

◦ ◦ ◦ ◦

4) The EDI(Q) for the 10-dimensional excellent form looks as:

• • • • ◦

• • ◦ • ◦

• • ◦ ◦ ◦

◦ • ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦
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5) Let q = 〈a, b,−ab,−c,−d, cd〉 be an anisotopic Albert form. Then
EDI(Q) is

◦ ◦ •

◦ ◦ ◦

◦ ◦ ◦

The serious constraint on such marking is provided by the following:
Rule: • •

•

�����
�
�

Usually, one can not reconstruct GDI from EDI, but for i = d these two
invariants carry the same information due to the following result:

Theorem 0.5 GDI(Q, d) is generated as a ring by elementary classes con-
tained in it.

So, instead of studying the subrings of the ring of rank 2d+1 it is sufficient to
study the subset of the set of (d + 1) elements (0, 1, . . . , d), where j ↔ yd,j.
Moreover, the action of the Steenrod operations on GDI(Q, d) preserves
the elementary classes, and so, provides the action on EDI(Q, d). Hypo-
thetically, the restrictions coming from this action (j-defined,

(
j

r

)
-odd ⇒

(j + r)-defined) are the only restrictions on the possible subsets.
For other Grasmannians nothing of this sort is true. In particular, the

elementary classes do not determine GDI, and the rigidity structure on GDI
should involve all the Grassmannians simultaneously (in the contrast to the
last Grassmannian being “self-sufficient”).

It is an interesting task to translate EDI into the classical quadratic form
theory language. Here the dots living below the auxiliary (SW-NE) diagonal
are better understood. For such classes (i � j + 1) the k-rationality can be
hypothetically expressed in terms of dimensions of B.Kahn. This important
discrete inavriant of quadrics is defined as follows:

Definition 0.6

dimIn(q) = min(dim(p)| q ⊥ −p ∈ In).

This invariant measures how far is our form from the given power of the
fundamental ideal of even-dimensional forms.
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Conjecture 0.7 For i � j + 1, the following conditions are equivalent:

yi,j is k − rational⇔ dimIr(q) � c,

where c = dim(Q)− 2j, and r = [log2(dim(Q)− i− j + 1)] + 1.

Notice, that the dimensions of B.Kahn one encounters here are all in
the stable range < 2n−1 (for such dimensions the closest point in In (and
the form p above) is unique - follows from the Arason-Pfister Hauptsatz,
claiming that the dimensions of anisotropic forms in In are either 0, or � 2n).
It is expected that unstable dimensions of B.Kahn should appear when one
considers invariant similar to GDI, but with CH∗ /2 substituted by the ring
of Algebraic Cobordism Ω∗ (see the next lecture).

The other half of EDI(Q) (i > j + 1) is substantially less understood,
and in the known examples the description here involves invariants similar
to the Kahn’s dimensions, but of more complicated nature.
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