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6. Beilinson’s vision partially fulfilled

6.1. Motivation. In this lecture, we will discuss Alexander Beilinson’s vision of
what algebraic K-theory should be for smooth varieties over a field k. In particular,
we will provide some account of progress towards the solution of these conjectures.
Essentially, Beilinson conjectures that algebraic K-theory can be computed using a
spectral sequence of Atiyah-Hirzebruch type using “motivic complexes” Z(n) which
satisfy various good properties and whose cohomology plays the role of singular
cohomology in the Atiyah-Hirzebruch spectral sequence for topological K-theory.

Although our goal is to describe conjectures which would begin to “explain” al-
gebraic K-theory, let me start by mentioning one (of many) reasons why algebraic
K-theory is so interesting to algebraic geometers (and algebraic number theorists).
It has been known for some time that there can not be an algebraic theory whose
values on complex algebraic varieties is integral (or even rational) singular homology
of the associated analytic space. Indeed, Jean-Pierre Serre observed that this is not
possible even for smooth projective algebraic curves because some such curves have
automorphism groups which do not admit a representation which would be implied
by functoriality. On the other hand, algebraic K-theory is in some sense integral
– we define it without inverting residue characteristics or considering only mod-n
coefficients. Thus, if we can formulate a sensible Atiyah-Hirzebruch type spectral
sequence converging to algebraic K-theory, then the E2-term offers an algebraic
formulation of integral cohomology.

Before we launch into a discussion of Beilinson’s Conjectures, let us recall two
results relating algebraic cycles and algebraic K-theory which precede these conjec-
tures.

The first is the theorem of Grothendieck mentioned earlier relating algebraic
K0(X) to the Chow ring of algebraic cycles modulo algebraic equivalence.

Theorem 6.1. If X is a smooth variety over a field k, then the Chern character
determines an isomorphism

ch : K0(X) ⊗ Q � CH∗(X) ⊗ Q.

The second is Bloch’s formula proved in degree 2 by Bloch and in general by
Quillen.

Theorem 6.2. Let X be a smooth variety over a field and let Ki denote the Zariski
sheaf associated to the presheaf U �→ Ki(U) for an open subset U ⊂ X. Then there
is a convergent spectral sequence of the form

Ep,q
2 = Hp

Zar(X,Kq) ⇒ Kq−p(X).

6.2. Statement of conjectures. We now state Beilinson’s conjectures and use
these conjectures as a framework to discuss much interesting mathematics. It is
worth emphasizing that one of the most important aspects of Beilinson’s conjectures
is its explicit nature: Beilinson conjectures precise values for algebraic K-groups,
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rather than the conjectures which preceded Beilinson which required the degree to
be large or certain torsion to be ignored.

Conjecture 6.3. (Beilinson’s Conjectures) For each n ≥ 0 there should be com-
plexes Z(n), n ≥ 0 of sheaves on the Zariski site of smooth quasi-projective varieties
over a field k, (Sm/k)Zar which satisfy the following:

(1) Z(0) = Z, Z(1) � O∗[−1].
(2) Hn(Spec F, Z(n)) = KMilnor

n (F ) for any field F finitely generated over k.
(3) H2n(X, Z(n)) = CHn(X) whenever X is smooth over k.
(4) Vanishing Conjecture: Z(n) is acyclic outside of [0, n]:

Hp(X, Z(n)) = 0, p < 0.

(5) Motivic spectral sequences for X smooth over k:

Ep,q
2 = Hp−q(X, Z(−q)) ⇒ K−p−q(X),

Ep,q
2 = Hp−q(X, Z/�(−q)) ⇒ K−p−q(X, Z/�), if 1/� ∈ k.

(6) Beilinson-Lichtenbaum Conjecture:

Z(n) ⊗L Z/� � τ≤nRπ∗µ⊗n
� , if 1/� ∈ k

where π : etale site → Zariski site is the natural “forgetful continuous map”
and τ≤n indicates truncation.

(7) H i(X, Z(n)) ⊗ Q � K2n−i(X)
(n)
Q .

In other words, Beilinson conjectures that there should be a bigraded motivic
cohomology groups Hp(X, Z(q)) computed as the Zariski cohomology of motivic
complexes Z(q) of sheaves which satisfy good properties and are related to algebraic
K-theory as singular cohomology is related to topological K-theory.

6.3. Status of Conjectures. Bloch’s higher Chow groups CHq(X, n) serve as mo-
tivic cohomology groups which are known to satisfy most of the conjectures, where
the correspondence of indexing is as follows:

(1) CHq(X, n) � H2q−n(X, Z(q)).

Furthermore, Suslin and Voevodsky have formulated complexes Z(q), q ≥ 0 and Vo-
evodsky has proved that the (hyper-)cohomology groups of these complexes satisfy
the relationship to Bloch’s higher Chow groups as in (1).

Presumably, these constructions will be discussed in detail in the lectures of Pro-
fessor Levine. For completeness, I sketch the definitions. Recall that the standard
(algebro-geometric) n-simplex ∆n over a field F (which we leave implicit) is given
by Spec F [t0, . . . , tn]/Σiti = 1.

Definition 6.4. Let X be a quasi-projective variety over a field. For any q, n ≥ 0,
we define zq(X, n) to be the free abelian group on the set of cycles W ⊂ X × ∆n

of codimension q which meet all faces X × ∆i ⊂ X × ∆n properly. This admits



3

the structure of a simplicial abelian group and thus a chain complex with boundary
maps given by restrictions to (codimension 1) faces.

The Bloch higher Chow group CHq(X, n) is defined by

CHq(X, n) = H2q−n(zq(X, ∗)).
The values of Bloch’s higher Chow groups are ”correct”, but they are not given

as (hyper)-cohomology of complexes of sheaves and they are so directly defined that
abstract properties for them are difficult to prove. The Suslin-Voevodsky motivic
cohomology groups fit in a good formalism as envisioned by Beilinson and agree
with Bloch’s higher Chow groups as verified by Voevodsky.

Definition 6.5. Let X be a quasi-projective variety over a field. For any q ≥ 0, we
define the complex of sheaves in the cdh topology (the Zariski topology suffices if
X is smooth over a field of characteristic 0)

Z(q) = C∗(cequi(P
n, 0)/cequi(P

n−1, 0))[−2n]

defined as the shift 2n steps to the right of the complex of sheaves whose value on
a Zariski open subset U ⊂ X is the complex

j �→ cequi(P
n, 0)(∆j)/cequi(P

n−1)(U × ∆j)

where cequi(P
n, 0)(U × ∆j) is the free abelian group on the cycles on Pn × U × ∆j

which are equi-dimensional of relative dimension 0 over U × ∆j.

Conjecture (1) is essentially a normalization, or it specifies what Z(0) and Z(1)
must be. Bloch verified Conjecture 2 (essentially, a result of Suslin), Conjecture 3,
and Conjecture 7 (the latter with help from Levine) for his higher Chow groups.
Bloch and Lichtenbaum produced a motivic spectral sequence for X = Spec k; this
was generalized to a verification of the full Conjecture (5) by Friedlander and Suslin,
and later proofs were given by Levine and then Suslin following work of Grayson.

The Beilinson-Lichtenbaum conjecture in some sense ”identifies” mod-� motivic
cohomology in terms of etale cohomology. Suslin and Voevodsky proved that this
Conjecture (6) follows from the following:

Conjecture 6.6. (Bloch-Kato Conjecture) For fields F finitely generated over k,

KMilnor
n ⊗ Z/� � Hn

et(Spec F, µ⊗n
� ).

In particular, the Galois cohomology of the field F is generated mulitplicatively by
classes in degree 1.

For � = 2, the Bloch-Kato Conjecture is a form of Milnor’s Conjecture which
has been proved by Voevodsky. For � > 2, a proof of Bloch-Kato Conjecture has
apparently been given by Rost and Voevodsky, although not all details have been
made available. This conjecture will be the main focus of Professor Weibel’s lectures.

This leaves Conjecture (4), one aspect of this is the following Vanishing Conjecture
due to Beilinson and Soulé.
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Conjecture 6.7. For fields F ,

Kp(F )
(q)
Q = 0, 2q ≤ p, p > 0.

Reindexing according to Conjecture (7), this becomes

H i(Spec F, Z(q)) = 0, i ≤ 0, q �= 0.

The status of this Conjecture (4), and in particular the Beilinson-Soué vanishing
conjecture, is up in the air. Experts are not at all convinced that this conjecture
should be true for a general field F . It is known to be true for a number field.

6.4. The Meaning of the Conjectures. Let us begin by looking a bit more closely
at the statement

Z(1) � O∗[−1]

of Conjecture (1).

Convention If C∗ is a cochain complex (i.e., the differential increases degree by 1,
d : Ci → Ci+1), we define the chain complex C∗[n] for any n ∈ Z as the shift of C∗

“n places to the right”. In other words, (C∗[n])j = C∗−j.

In particular, O∗[−1] is the complex (of Zariski sheaves) with only one non-zero
term, the sheaf O∗ of units, placed in degree -1 (i.e., shifted 1 place to the left). In
particular,

H∗
Zar(X,O∗[−1]) = H∗−1

Zar (X,O∗);

thus,

Pic(X) = H1
Zar(X,O∗

X) = H2(X, Z(1)).

This last equality is a special case of item (3).
Perhaps it would be useful to be explicit about what we mean by the cohomology

of a complex C∗ of Zariski sheaves on X. A quick way to define this is as follows:
find a map of complexes C∗ → I∗ with each Ij an injective object in the category
of sheaves (an injective sheaf) such that the map on cohomology sheaves is an
isomorphism; in other words, for each j, the map of presheaves

ker{d : Cj → Cj+1}/im{d : Cj−1 → Cj}
→ ker{d : Ij → Ij+1}/im{d : Ij−1 → Ij}

induces an isomorphism on associated sheaves

Hj(C∗) � Hj(I∗)

for each j. A fundamental property of this cohomology is the existence of “hyper-
cohomology spectral sequences”

′Ep,q
1 = Hp(X, Cq) ⇒ Hp+q(X, C∗)

Ep,q
2 = Hq(X,Hj(C∗)) ⇒ Hp+q(X, C∗)
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Conjecture (2) helps to pin down motivic cohomology by specifying what the
top dimensional motivic cohomology (thanks to Conjecture (4)) should be for a
field. Since Milnor K-theory and algebraic K-theory of the field k are different, this
difference must be reflected in the other motivic cohomology groups of the field and
tied together with the spectral sequence of Conjecture (5).

Conjecture (2) can be viewed as “arithmetic” for it deals with subtle invari-
ants of the field k. Conjecture (3) is “geometric”, stating that motivic cohomol-
ogy reflects global geometric properties of X. Observe that since we are taking
Zariski cohomology, Hn(Spec k,−) = 0 for n > 0 and this item simply says that
CH0(Spec k) = Z, CHn(Spec k) = 0, n > 0.

Bloch has also proved that the spectral sequence of Conjecture (5) collapses
after tensoring with Q; indeed, Conjecture (7) proved by Bloch is a refinement
of this “rational collapse”. Conjectures (3) and (5) together with this collapsing
gives Grothendieck’s isomorphism K(X)Q � CH∗(X). By simply re-indexing, one
can write the spectral sequence of Conjecture (5) in the more familiar “Atiyah-
Hirzeburch manner”

Ep,q
2 = Hp(X,Z(−q/2)) ⇒ K−p−q(X)

where Z(−q/2) = 0 if q is not an even non-positive integer and Z(−q/2) = Z(i) is
−q = 2i ≥ 0.

Let me try to “draw” this spectral sequence, using the notation

K
(q)
q−i ≡ H i(X, Z(q)

as in Conjecture (7). This is copied from a picture drawn years ago by Dan Grayson.

Z

0 O∗ Pic(X)

0? K
(2)
3 K

(2)
2

• CH2(X)

0? K
(3)
5 K

(3)
4 K

(3)
3

• • CH3(X)

0? K
(4)
7 K

(4)
6 K

(4)
5 K

(4)
4

• • • CH4(X)

In this picture, the associated graded of K0 is given by the right-most diagonal,
then gr(K1) by the next diagonal to the left, etc. The top horizontal row is the
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“weight 0” part of K∗, the next row down is the “weight 1” part of K∗, etc. There
is conjectured vanishing at and to the left of the positions with 0? in the picture –
i.e., to the left.

6.5. Etale cohomology. Our final task is to introduce the etale topology and
attempt to give some understanding why Conjecture (6) of the Beilinson Conjectures
comparing mod-� motivic cohomology with mod-� etale cohomology makes motivic
cohomology more understandable.

Grothendieck had the insight to realize that one could formulate sheaves and
sheaf cohomology in a setting more general than that of topological spaces. What
is essential in sheaf theory is the notion of a covering, but such a covering need not
consist of open subsets.

Definition 6.8. A (Grothendieck) site is the data of a category C/X of schemes
over a given scheme X which is closed under fiber products and a distinguished
class of morphisms (e.g., Zariski open embeddings; or etale morphisms) closed under
composition, base change and including all isomorphisms. A covering of an object
Y ∈ C/X for this site is a family of distinguished morphisms {gi : Ui → Y } with
the property that Y = ∪igi(Ui).

The data of the site C/X together with its associated family of coverings is called
a Grothendieck topology on X.

Example 6.9. Recall that a map f : U → X of schemes is said to be etale if it
is flat, unramified, and locally of finite type. Thus, open immersions and covering
space maps are examples of etale morphisms. If f : U → X is etale, then for each
point u ∈ U there exist affine open neighborhoods SpecA ⊂ U of u and SpecR ⊂ X
of f(u) so that A is isomorphic to (R[t]/g(t))h for some monic polynomial g(t) and
some h so that g′(t) ∈ (R[t]/g(t))h is invertible.

The (small) etale site Xet has objects which are etale morphisms Y → X and
coverings {Ui → Y } consist of families of etale maps the union of whose images
equals Y . The big etale site XET has objects Y → X which are locally of finite
type over X and coverings {Ui → Y } defined as for Xet consisting of families of
etale maps the union of whose images equals Y . If k is a field, we shall also consider
the site (Sm/k)et which is the full subcategory of (Spec k)ET consisting of smooth,
quasi-projective varieties Y over k.

An instructive example is that of X = SpecF for some field F . Then an etale
map Y → X with Y connected is of the form SpecE → SpecF , where E/F is a
finite separable field extension.

Definition 6.10. A presheaf sets (respectively, groups, abelian groups, rings, etc)
on a site C/X is a contravariant functor from C/X to (sets) (resp., to groups, abelian
groups, rings, etc). A presheaf P : (C/X)op → (sets) is said to be a sheaf if for every
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covering {Ui → Y } in C/X the following sequence is exact:

P (Y ) →
∏

i

P (Ui)
→→

∏

i,j

P (Ui ×X Uj).

(Similarly, for presheaves of groups, abelian presheaves, etc.) In other words, if
for every Y , the data of a section s ∈ P (Y ) is equivalent to the data of sections
si ∈ P (Ui) which are compatible in the sense that the restrictions of si, sj to Ui×X Uj

are equal.

The category of abelian sheaves on a Grothendieck site C/X is an abelian category
with enough injectives, so that we can define sheaf cohomology in the usual way. If
F : C/X)op → (Ab) is an abelian sheaf, then we define

H i(XC/X , F ) = RiΓ(X, F ).

Etale cohomology has various important properties. We mention two in the fol-
lowing theorem.

Theorem 6.11. Let X be a quasi-projective, complex variety. Then the etale co-
homology of X with coefficients in (constant) sheaf Z/n, H∗(Xet, Z/n), is naturally
isomorphic to the singular cohomology of Xan,

H∗(Xet, Z/n) � H∗
sing(X

an, Z/n).

Let X = Speck, the spectrum of a field. Then an abelian sheaf on X for the
etale topology is in natural 1-1 correspondence with a (continuous) Galois module
for the Galois group Gal(k/k). Moreover, the etale cohomology of X with coefficients
in such a sheaf F is equivalent to the Galois cohomology of the associated Galois
module,

H∗(ket, F ) � H∗(Gal(F/F ), F (k)).

From the point of view of sheaf theory, the essence of a continuous map g : S → T
of topological spaces is a mapping from the category of open subsets of T to the
open subsets of S. In the context of Grothendieck topologies, we consider a map
of sites g : C/X → D/Y , a functor from C/Y to cC/X which takes distinguished
morphisms to distinguished morphisms. In particular, For example, Conjecture (6)
of Beilinson’s Conjectures involves the map of sites

π : Xet → XZar, (U ⊂ X) �→ U → X.

Such a map of sites induces a map on sheaf cohomology: if F : (D/Y )op → (Ab) is
an abelian sheaf on C/Y , then we obtain a map

H∗(YD/Y , F ) → H∗(XC/X , g∗F ).
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6.6. Voevodsky’s sites. We briefly mention two Grothendieck sites introduced by
Voevodsky which are central to his approach to motivic cohomology.

Definition 6.12. The Nisnevich site on smooth quasi-projective varieties over a
field k, (Sm/k)Nis, is determined by specifying that a covering {Ui → U} of some
U ∈ (Sm/k) is an etale covering with the property that for each point x ∈ U there
exists some i and some point ũ ∈ Ui such that the induced map on residue fields
k(u) → k(ũ) is an isomorphism.

Definition 6.13. The cdh (or completely decomposed, homotopy) site on smooth
quasi-projective varieties over a field k, (Sm/k)cdh, is determined as the site whose
coverings of a smooth variety X are generated by Nisnevich coverings of X and
coverings {Y → X, X ′ → X} consisting of a closed immersion i : Y → X and a
proper map g : X ′ → X with the property that the restriction of g to g−1(X\i(Y ))
is an isomorphism.




