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Lecture 5
Algebraic Cobordism. Landweber-Novikov and Steenrod

operations. Symmetric operations.

Let k be a field of characteristic 0, and (Sm.Q. − P.)/k be the category
of smooth quasiprojective varieties over k.

The generalized oriented cohomology theory is a contravariant functor

(Sm.Q.− P.)/k
A∗

−→ {Z− graded rings }

X �→ A∗(X)

(f : X → Y ) �→ (f ∗ : A∗(Y )→ A∗(X))

together with the push-forward morphisms f∗ : A∗(X) → A∗−d(Y ) for pro-
jective equidimensional maps f : X → Y of relative dimension d.

All these data should satisfy certain compatibility axioms.
Generalized oriented cohomology theory possesses Chern classes.
Chern classes
Let L/X be line bundle. Consider the zero section j : X ↪→ L. Then one

can assign to L its first Chern class c1(L) := j∗j∗(1
A
X) ∈ A1(X).

Now, if U is some vector bundle on X, by the projective bundle axiom of
the generalized oriented cohomology theory,

A∗(PX(U∨)) = ⊕dim(U)−1
i=0 ρi · A∗(X),

where ρ := c1(O(1)), and U∨ is the vector bundle dual to U . In particular,
there is the unique relation:

ρdim(U) − λ1 · ρ
dim(U)−1 + λ2 · ρ

dim(U)−2 − . . . (−1)dim(U)λdim(U),

for certain λi ∈ Ai(X). These coefficients are called the Chern classes of
the bundle U : ci(U) := λi (we assume c0 = λ0 = 1). Denote as c•(U) the
total Chern class

∑
i�0 ci(U). These classes satisfy the Cartan formula: if

0→ U1 → U2 → U3 → 0 is a short exact sequence, then

c•(U1) · c•(U3) = c•(U2).

Cartan formula permits to define Chern classes on the formal differences
V − U of vector bundles, that is, on K0.

Examples (of theories):
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1) CH∗ - the Chow groups.

2) K0[β, β−1] - the algebraic K0 (it is convenient to add the formal invert-
ible parameter β to it).

Among such theories there is the universal one Ω∗ called Algebraic Cobor-
dism. This theory was constructed by M.Levine and F.Morel (further sim-
plified by M.Levine and R.Pandharipande).

Ω∗(X) is additively generated by the classes [v : V → X], where V is
smooth and v is projective. One imposes certain relations:

1) Elementary cobordism relations
The classes [v0 : V0 → X] and [v1 : V1 → X] are elementary cobordant,

if there exists projective map w : W → X × P1 from a smooth variety W ,
which is transversal to X × {0} ↪→ X × P1 and X × {1} ↪→ X × P1 and
w|X×{0} = v0, w|X×{1} = v1.

We recall that the morphisms f, g from the Cartesian square

B ×A C
g′

−−−→ C

f ′

⏐⏐�
⏐⏐�f

B −−−→
g

A

with A, B, C - smooth are called transversal, if the natural map of tangent
bundles (f ′)∗TB⊕(g′)∗TC → (f ◦g′)∗TA is surjective. Then B×AC is smooth,
and the sequence

0→ TB×AC → (f ′)∗TB ⊕ (g′)∗TC → (f ◦ g′)∗TA → 0

is exact. The transversal cartesian squares behave especially well with respect
to the pull-back and push-forward morphisms, and they are used in the
definition of the generalized oriented cohomology theory.

In topology these would be all the relations, but in algebraic geometry
one has to impose more.

2) Double point relations (following M.Levine - R.Pandharipande) Let
[w : W → X×P1] be such projective map that w is transversal to X×{0} →
X × P1, where w|X×{0} = v0 : V0 → X, and w−1(X × {1}) consists of
two smooth components V1,a and V1,b intersecting transversally on W at
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U = V1,a∩V1,b. Let N = NU⊂V1,a
be the normal bundle (it is easy to see that

then NU⊂V1,b
= N−1). Then we impose the relation:

[v0 : V0 → X] = [v1,a : V1,a → X] + [v1,b : V1,b → X]− [PU(N ⊕O)→ X].

Notice, that this relation is symmetric with respect to a↔ b, since PU(N⊕O)
is isomorphic to PU(O ⊕N−1).

One generates all the relations in Ω∗ by applying the push-forward oper-
ation f∗ with respect to all proper morphisms f : X → Y to the two types
of relations above, where f∗([v : V → X]) := [f ◦ v : V → Y ]. As was men-
tioned, the resulting theory Ω∗ is universal oriented generalized cohomology
theory. The universality follows from the fact that oriented theories have
push-forwards: the canonical map

Ω∗(X)→ A∗(X)

is given by
[v : V → X] �→ (vA)∗(1

A
V ) ∈ Acodim(V ⊂X)(X).

Remark: It should be mentioned, that it is quite nontrivial to define the
pull-back operations f ∗ on Ω∗. One can find details in the book of M.Levine
and F.Morel.

Properties of Ω∗

(1) Ω∗(Spec(k)) = MU2∗(pt) = L, where MU is the C-oriented cobordism
in topology, and L is the Lazard ring - the coefficient ring of the universal
formal group law. In particular, we see that the result does not depend on k
(it does not matter, if k is algebraically closed, or not).

formal group laws
(commutative, 1-dimensional) formal group law is given by the following

data: (R, F (x, y)), where R is a coefficient ring (associative, commutative,
unital), and F (x, y) ∈ R[[x, y]] is a power series, satisfying:

(i) F (x, 0) = x, F (0, y) = y;

(ii) F (x, y) = F (y, x) - commutativity;

(iii) F (F (x, y), z) = F (x, F (y, z)) - associativity.
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From conditions (i) and (ii) it follows that F (x, y) = x + y +
∑

i,j�1 ai,jx
iyj,

with ai,j = aj,i.
Examples:

1) Additive group law: Fa(x, y) = x + y with R-any ring;

2) multiplicative group law: Fm(x, y) = x + y − β · xy, where β ∈ R is
invertible.

Among the group laws there is the universal one (RU , FU(x, y)) such that
there is 1− 1 correspondence

{ f.g.laws (R, F (x, y))} ↔ { ring homomorphisms RU
fF→ R},

where F (x, y) = fF (FU(x, y)). Clearly, it is sufficient to take

RU := Z[ai,j , i, j � 1]/(assoc., comm.)

with the FU = x+y+
∑

i,j�1 ai,jx
iyj. The coefficient ring RU of the universal

formal group law is called the Lazard ring L. The following important result
is due to Lazard:

Theorem 0.1

L = Z[z1, z2, . . .], with deg(zl) = l, where deg(ai,j) = i + j − 1.

Projective bundle axiom implies that A∗(P∞) = A∗[[t]], where A∗ :=
A∗(Spec(k)), and t = c1(O(1)). Consider the Segre embedding

P
∞ × P

∞ Segre
−→ P

∞.

It induces the pull-back homomorphism

A∗[[x, y]]
Segre∗

←− A∗[[t]].

It is easy to check that the pair (A∗, FA(x, y)), where FA(x, y) := (Segre)∗(t)
will be a formal group law. Thus to each generalized cohomology theory one
can assign the formal group law

A∗(X) �→ (A∗, FA(x, y)).

Examples:
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1) CH∗ �→ (Z, Fa(x, y));

2) K0[β, β−1] �→ (Z[β, β−1], Fm(x, y)).

Due to the result of M.Levine and F.Morel, the theories CH∗ and K0[β, β−1]
are the universal ones among the additive and multiplicative theories, respec-
tively.

It appears that the formal group law assigned to the Algebraic Cobor-
dism theory Ω∗ will be the universal one. That is, FΩ(x, y) = FU (x, y), and
Ω∗(Spec(k)) = L. In particular, since Ω∗(Spec(k)) is additively generated by
the classes of smooth projective varieties over k, the universal constants ai,j

can be interpreted as Z-linear combinations of such classes.
Examples:

1) a1,1 = −[P1];

2) a2,1 = [P1 × P1]− [P2].

In general, dim(ai,j) = i + j − 1.

(2) We have canonical map of theories pr : Ω∗ → CH∗ given by

[v : V → X] �→ v∗(1V ) ∈ CHdim(V )(X).

There is the following important result of M.Levine and F.Morel:

Theorem 0.2

CH∗(X) = Ω∗(X)/L
�0 · Ω∗(X).

Thus, CH∗ can be computed out of Ω∗.
Remark: The topological counterpart of this statement, as well as the

one with the motivic cohomology in place of the Chow groups are false.

Landweber-Novikov operations

Let R(σ1, σ2, . . .) ∈ L[σ1, σ2, . . .] be some polynomial, where we assign
grading: deg(σi) = i. Then one can define Landweber-Novikov operation

SR
L−N : Ω∗(X)→ Ω∗+deg(R)(X)

by the rule: SR
L−N([v : V → X]) := v∗(R(c1, c2, . . .)), where ci = ci(Nv) ∈

Ωi(V ), and Nv := −TV + v∗TX - the virtual normal bundle.
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There is another parametrization of Landweber-Novikov operations - the
one using partitions. Partition is the nonordered set of natural numbers
a = (a1, a2, . . . , am) with |a| =

∑
i ai. To each partition a one can assign the

minimal symmetric polynomial, containing the monomial b
a

=
∏

i b
ai

i . This
polynomial can be expressed in terms of elementary symmetric polynomials
σi(b1, b2, . . .) on bi’s. Let Ra(σ1, σ2, . . .) be the respective expression. Then
one defines Sa

L−N : Ω∗(X)→ Ω∗+|a|(X) as SRa

L−N . Parametrized this way, the
Landweber-Novikov operations can be easily organized into the multiplicative
operation

STot
L−N :=

∑
a

b
a
· Sa

L−N : Ω∗(X)→ Ω∗(X)⊗Z Z[b1, b2, . . .].

Multiplicativity property means that

STot
L−N(x · y) = STot

L−N(x) · STot
L−N(y).

Specializing bi to some values in L one gets the multiplicative operations
Ω∗(X)→ Ω∗(X).

Each multiplicative operation G : A∗(X)→ B∗(X) provides a homomor-
phism of formal group laws

γG : (A∗, FA(x, y))→ (B∗, FB(x, y)),

that is, the ring homomorphism G : A∗ → B∗ together with the (change
of parameter) power series γG(z) ∈ B∗[[z]] such that G(FA)(γG(x), γG(y)) =
γG(FB(x, y)). For such operation to be stable (in certain sense) one needs
the first coefficient of γG(z) to be 1 (γG(z) = z + b1z

2 + b2z
3 + . . .). The to-

tal Landweber-Novikov operation STot
L−N is the universal multiplicative stable

operation - here the coefficients b1, b2, . . . in the change of parameter are just
independent variables.

When R = σi (that is, a = (1, 1, . . . , 1) - i-times), we will denote the
respective operations Sσi

L−N simply as Si
L−N . One can organize Si

L−N into the
multiplicative operation S•

L−N =
∑

i S
i
L−N : Ω∗(X) → Ω∗(X). Clearly, this

is just the specialization of STot
L−N at b1 = 1; bi = 0, i � 2.

Steenrod operations

Let pr : Ω∗(X)→ CH∗(X) be the projection. The following result is due
to P.Brosnan, M.Levine and A.Merkurjev:
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Theorem 0.3 There exists (unique) operation Si : CH∗(X)/2→ CH∗+i(X)/2
called Steenrod operation making commutative the following diagram:

Ω∗
Si

L−N
−−−→ Ω∗+i

pr

⏐⏐�
⏐⏐�pr

CH∗ /2
Si

−−−→ CH∗+i /2.

Both Steenrod and Landweber-Novikov operations commute with the
pull-back morphisms.

In a similar way one can construct reduced power operations

P i : CH∗(X)/l→ CH∗+i(l−1)(X)/l

corresponding to other primes l. Here one should use Sa
L−N with

a = (l − 1, l − 1, . . . , l − 1) - i-times. In the algebro-geometric context these
operations were originally constructed by V.Voevodsky in a more general
situation of motivic cohomology.

Remark: Note, that if you choose some arbitrary partition a and ar-
bitrary number l, you, in general, will not be able to find any operation
CH∗ /l→ CH∗+|a| /l making the respective diagram commutative.

Symmetric operations

It follows from the explicite construction of Steenrod operations by P.Brosnan
that Si|CHm /2 = 0, if i > m, and Sm|CHm /2 coinside with the operation square
� : CHm /2→ CH2m /2. It follows from the diagram above that

(pr ◦ Si
L−N)(Ωm(X)) ⊂ 2 · CHm+i(X), for i > m, and

(pr ◦ (Sm
L−N −�))(Ωm(X)) ⊂ 2 · CH2m(X).

Thus, up to 2-torsion, we have well defined operations

φti−m

:=
pr ◦ Si

L−N

2
: Ωm(X)→ CHm+i(X)/(2− tors.), for i > m, and

φt0 :=
pr ◦ (Sm

L−N −�)

2
: Ωm(X)→ CH2m(X)/(2− tors.).

In reality, this operations can be lifted to some well-defined operations

Φtj : Ω∗ → Ω2∗+j .
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To construct such operations consider the following objects. Let W →
X be some smooth morphism (roughly speaking, all the fibers are smooth
varieties) of smooth varieties. Denote as �(W/X) the relative square W ×X

W ; as �̃(W/X) the Blow-up variety Bl∆(W )⊂�(W/X), and as C̃2(W/X) the

quotient variety of �̃(W/X) under the natural (interchanging of factors)

Z/2-action. Notice, that the locus of fixed points on �̃(W/X) under our

action will be the smooth (special) divisor of �̃(W/X) - the preimage of the

diagonal. Thus, C̃2(W/X) will be a smooth variety. These objects fit into
the diagram

PW (TW/X)
j

−−−→ �̃(W/X)
p

−−−→ C̃2(W/X)

ε

⏐⏐�
⏐⏐�π

⏐⏐�ξ

W −−−→
∆

�(W/X) −−−→ X.

Variety C̃2(W/X) has natural line bundle L such that p∗(L) = O(1) -
the canonical line bundle of the Blow-up variety. Denote ρ := c1(L−1) ∈

Ω1(C̃2(W/X)). When X = Spec(k) we will omit X in the respective nota-

tions: �̃(W ), C̃2(W ). Notice, that C̃2(W ) is nothing else but Hilb2(W ) - the
Hilbert scheme of the length 2 subschemes on W .

Let v : V → X be the projective morphism of smooth varieties. We can

decompose it in the form V
g
→W

f
→ X, where g is a regular embedding, and

f is smooth projective morphism. Then we get the following natural diagram:

C̃2(V )
α
↪→ C̃2(W )

β
←↩ C̃2(W/X)

γ
→ X,

where all the maps are projective.
Symmetric operations will be parametrized by the power series q(t) ∈

L[[t]]:
Φq(t) : Ω∗(X)→ Ω∗(X).

Φq(t)([v : V → X]) := γ∗β
∗α∗(q(ρ)) ∈ Ω∗(X).

For given variety X we can extend symmetric operations by Ω∗(X)-linearity
on q(t), and assume that q(t) ∈ Ω∗(X)[[t]].

Properties:
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(0)
Φq(t)(x + y) = Φq(t)(x) + Φq(t)(y) + q(0)xy

In particular Φq(t) is linear if q(0) = 0.

(1) Φq(t) commutes with the pull-back morphisms;

(2) If f : X ↪→ Y is a regular embedding with normal bundle Nf , and
q(t) ∈ Ω∗(Y )[[t]]. Then

Φq(t)(f∗(x)) = f∗Φ
f∗(q(t))·cΩ

•
(Nf )(t)(x),

where cΩ
• (V)(t) =

∏
i(λi −Ω t), where λi ∈ Ω1 are roots of V, and −Ω is

the subtraction in the sense of the universal formal group law.

(3) Φq(t) is trivial on the classes of embeddings. Really, if v : V → X is an

embedding, we can take W = X, and then the variety C̃2(W/X) will
be empty. Thus, the symmetric operations provide the obstructions for
the cobordism class to be represented by the embedding.

(4) 2 · (pr ◦ Φtr)|Ωm = (−1)r · (pr ◦ Sr+m
L−N). Thus, with the help of the

symmetric operations one can get cycles twice as small as with the help
of the Landweber-Novikov operations. This difference can be crusial
if one works with the varieties where the effect related to prime 2 are
important (like quadrics, for example).

Remark: Actually, the properties (0)− (3) determine the operations Φq(t)

uniquely up to renormalization q(t) �→ q(t)·r(t), where r(t) ∈ L[[t]], r(0) = 1.
The most interesting symmetric operations are not expressible in terms

of Landweber-Novikov operations, and can not be organized into the multi-
plicative operation. Nevetheless, some of them are, and these operations are
related to the Steenrod operations in Cobordism theory.
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