
Lecture 6
u-invariants of fields.

In this lecture we will demonstrate the applications of the technique dis-
cussed earlier to the u-invariants of fields.

Let k be a field. Define the u-invariant of k as

u(k) := max(dim(q)|q − anisotropic form over k).

Examples:

(1) k-algebraically closed, then u(k) = 1;

(2) u(R) = ∞;

(3) k-finite, then u(k) = 2;

(4) k-local, then u(k) = 4;

(5) k-global, then u(k) =

{

∞, if there are real embeddings k ⊂ R;

4, otherwise
.

(6) k = F [[t1, . . . , tn]], where F -algebraically closed, then u(k) = 2n.

So, in a certain sense, the u-invariant gives some idea how far our field is from
being algebraically closed (of course, it can see only one of the projections of
such a distance).

The natural question arises: what are the possible values of this invariant?
It is easy to see that u(k) can not take values 3, 5, and 7.
Example: Let us show that u(k) 6= 3. Really, if u(k) would be 3, then

all the forms of dimension > 4 over k would be isotropic, and some form of
dimension 3 would be anisotropic. Up to a scalar, such form is 〈1,−a,−b〉 and
the respective projective quadric is conic C{a,b}. But as we saw in Lecture
3, such conic is isotropic if and only if the respective 2-dimensional 2-fold
Pfister quadric Q{a,b} is (for example, because Q{a,b} = C{a,b} × C{a,b}). This
gives a contradiction, since dim(〈〈a, b〉〉) = 4.

“Conjecture” of Kaplansky (1953) predicted that the only possible values
are powers of two.
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It was disproved by A.Merkurjev (1989), who constructed fields with all
even u-invariants. Further disproved by O.Izhboldin (1999), who constructed
the field k with u(k) = 9 - the first odd value (> 1).

The basic ingredient of the construction is the
Merkurjev tower of fields
Let F be some field, and M ∈ N. We want to construct some extension

of F , where all forms of dimension > M will be isotropic. Suppose we have
just one form q over F . There are many extensions of F making q isotropic.
For example F - the algebraic closure of F . But we want the one which
would behave in a most gentle way with respect to everything. Such field is,
of course, F (Q) - the generic point of the quadric Q - any other field making
q isotropic will be a specialization of this one. If we want to make two forms
q1, q2 isotropic, when we should use the field F (Q1 × Q2), etc. ... .

Denote as J the set of all forms of dimension > M over F , and define the
new field F ′ by the formula

lim
→I⊂J

F (×i∈IQi),

where I runs over all finite subsets of J . This field has the property, that
any form q of dimension > M defined over F is isotropic over F ′. And it is
universal one among the extensions E/F with such property.

Starting with some field k, consider the sequence of fields

k = k0 ↪→ k1 ↪→ k2 ↪→ . . . ,

where ki+1 := (ki)
′. Denote k∞ := lim→i

ki. Then all the forms of dimen-
sion > M defined over k∞ are isotropic (since any such form is defined on
some finite level ki, and, thus becomes isotropic over ki+1). In other words,
u(k∞) 6 M . But we would want the equality. For this we need some
anisotropic form p of dimension M over k∞. Better to have it already over
k, and then check that it stays anisotropic over k∞. Of course, to be able to
control this, one needs to know something interesting about p (not just the
fact that it is anisotropic). Formalizing, we need a form p of dimension M
over k, and two properties A and B on the set of field extensions E/k, where

A(E) is satisfied ⇔ p|E is anisotropic,

and A and B satisfy the following axioms:

2



(1) B ⇒ A;

(2) B(k) is satisfied;

(3) B(F ) is satisfied, dim(q) > M ⇒ B(F (Q)) is satisfied;

(4) B(Fj), for directed system of fields is satisfied ⇒ B(lim→j
Fj) is satis-

fied.

In this case, A(k∞) is satisfied, and u(k∞) = M .
So, we need only to choose the form p and the right property B.
Choice of Merkurjev:
To each quadratic form p one can assign its Clifford algebra C(q) defined

as Tk(Vp)/(v2 − p(v), ∀v ∈ Vp) - the quotient of the tensor algebra of the
underlying vector space by the explicite relations. This algebra has a natural
Z/2-grading, and it “is not far” from being a central simple algebra. We
will be interested only in the case, where p ∈ I2, that is, dim(p) is even and
det±(p) = 1. In such a case, C(p) = Mat2×2(k) ⊗k C ′(p), where C ′ is a
central simple algebra over k. In the case M = 2n - even, Merkurjev have
chosen the following property:

B(E) is satisfied ⇔ C ′(p|E) is a division algebra.

One should start with the generic quadratic form of dimension 2n from I2 -
that is, the form 〈a1, . . . , a2n−1,

∏2n−1
i=1 ai〉 over the field k = F (a1, . . . , a2n−1).

Let us check the axioms:
1) B ⇒ A, since p = H ⊥ r ⇒ C ′(p) = Mat2×2(k) ⊗k C ′(r).
2) B(k) is satisfied, since the C ′ of the generic form as above is division.
4) Clear, since zero divisors are defined on the finite level.
3) This is the only nontrivial part. The proof here is based on the Index

reduction formula of Merkurjev. This formula describes what happens to the
index of the central simple algebra over the generic point of a quadric. It
says that the index of the division algebra C over k(Q) can drop at most
by the factor 2, and the latter happens if and only if there is a k-algebra
homomorphism C0(q) → C, where C0(q) is the even Clifford algebra of q
(the degree zero part of C(q)).

Notice, that C0(q) is either a simple algebra, or a product of two isomor-
phic simple algebras, and if dim(p) = 2n is even, and dim(q) > dim(p), then
the size of each simple factor in C0(q) will be bigger than the size of C ′(p),
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so we do not have maps C0(q) → C ′(p). Thus, the condition (3) is fulfilled,
and u(k∞) = 2n.

Another choice for even M
Let us make another choice of the property B. We will choose one

based on the EDI - the elementary discrete invariant of quadrics (see Lec-
ture 4). Namely, we start with the generic form p = 〈a1, . . . , a2n〉 over
k = F (a1, . . . , a2n), and the property:

B(E) is satisfied ⇔ yd,0(p|E) is not defined over k,

where d = [dim(P )/2] = n − 1.
In other words, EDI(p|E) should have the form

◦ ? ? ... ?

? ? ? ... ?

? ? ? ... ?

... ... ... ... ...

? ? ? ... ?

1) B ⇒ A since A(E) is satisfied if and only if y0,0 is not defined over E
(we remind, that y0,0 is just the class of a rational point on P |E), and yi,j is
defined implies yl,j is defined for any l > i.

2) B(k) is satisfied, since EDI of the generic form is empty.
4) Follows, since for any X/k, CH∗(X|lim→j Fj

) = lim→j CH∗(X|Fj
) (with

any coefficients).
3) This is again the only nontrivial part, and it follows from the following:

Theorem 0.1 Let Y be smooth quasiprojective variety over some field k of

characteristic zero. Let Q be smooth projective quadric over k, and y ∈
CHm(Y |k)/2 be some element. Suppose 2m < dim(Q). Then

y is defined over k ⇔ y|k(Q) is defined over k(Q).

Indeed, one just needs to take y = yd,0. Then m = dim(P ) − d = d <
dim(Q)/2 for any q bigger than p, and the Theorem implies what we need.
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Shortly, we succeded by controling not the class y0,0, but the smaller
codimensional (!) class yd,0. The point, of course, is: the smaller is the
codimension of the cycle, the easier it is to control its rationality.

Notice, that the bound 2m < dim(Q) is optimal: for any pair dim(Q), m
not satisfying the inequality, one can find variety Y , cycle y, and a quadric
Q of needed codimension and dimension, so that y|k(Q) is defined over k(Q),
but y is not defined over k. Just take Q generic, and y = yd,0 × pt on
G(d, Q) × P

m−d.
The proof of the above Theorem uses the Symmetric operations in Alge-

braic Cobordism (see Lecture 5). If y|k(Q) is defined over k(Q), then we lift

the respective element first to CH∗(Y × Q)/2, and, finally, to Ω∗(Y × Q),
then we restrict it to Y × Qs for the subquadrics es : Qs → Q of different
dimensions, and apply the composition of the various symmetric operations
with the projection (πs)∗, after which we map the results to CH∗(Y )/2, and
add them with certain coefficients.

CH∗(Y |k(Q))/2 CH∗(Y ×Q)/2oooo Ω∗(Y ×Q)oooo e∗s // Ω∗(Y ×Qs)

(πs)∗��
CH∗(Y )/2

OO

Ω∗(Y )oo

It appears, that if 2m < dim(Q), one can choose the coefficients in such a
way that all the choices we made will be cancelled, and the result will be
equal to y when restricted to k.

Let me demonstrate the usefulness of our Theorem on the following:
Example: EDI of a Pfister forms. Let α ∈ KM

n (k)/2 be nonzero pure
symbol, and qα = 〈〈α〉〉 be the respective anisotropic Pfister form. Then
in EDI(Qα) the marked points will be the ones strictly above the Main
(NW-SE) diagonal. Indeed, consider Q = Qα, Y = G(i, Qα), y = yi,j ∈
CHdim(Qα)−i−j(Y )/2. Since Qα|k(Qα) is complitely split, all elementary classes
on Qα are defined over this field. But then, by the Theorem, those ones which
are of sufficiently small codimension, i.e., exactly the ones living strictly above
the Main diagonal, are defined already over the base field k. It remains to
see that the other ones are not defined. Because of the rule • •

•

OO__@
@

@

@

@

it is

sufficient to check that the NW-corner (yd,0) is not defined over k. But if it
would be defined, all the elementary classes yd,j on the last Grassmannian

5



G(d, Qα) would be defined. But the product
∏d

j=0 yd,j of these classes is equal
to the class of rational point on G(d, Qα)|k. So, this would imply that Qα

is complitely split (we use the Theorem of Springer here, claiming that the
quadric has a rational point, if it has one of odd degree). Thus, yd,0 is not
defined over k, and EDI(Qα) is as we described:

◦ • • ... • •

◦ ◦ • ... • •

◦ ◦ ◦ ... • •

... ... ... ... ... ...

◦ ◦ ◦ ... ◦ •

◦ ◦ ◦ ... ◦ ◦

u-invariants 2r + 1, r > 3
The same ideas can be used to construct the fields with some odd u-

invariants. These values are 2r +1, r > 3. In the case of u-invariant 9 we get
method different from that of O.Izhboldin, and for r > 3 we get the values
not known before.

For odd dimensional form p we can not use the class yd,0 anymore, since
for q = p ⊥ 〈det±(p)〉, the class yd,0(p|k(Q)) will always be defined, although
dim(q) > dim(p). So, our condition should involve somehow the classes yi,0

i < d, since these are the only ones which are defined as soon as P has a
rational point.

We have the following:

Theorem 0.2 Let dim(p) = 2r + 1, r > 3, and EDI(P ) looks as

? ◦ ◦ ... ◦

◦ ◦ ◦ ... ◦

◦ ◦ ◦ ... ◦

... ... ... ... ...

◦ ◦ ◦ ... ◦
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Suppose dim(q) > dim(p). Then EDI(P |k(Q)) has the same property.

The above theorem immediately implies that the property:

B(E) is satisfied ⇔ EDI(p|E) is as above

satisfies the axiom (3). Let us take the generic form p of dimension 2r + 1,
then all the other axioms will be readily fulfilled as well, and u(k∞) = 2r +1.

The proof of Theorem 0.2 uses certain extensions of Theorem 0.1, the
knowledge of action of the Steenrod operations on the elementary classes
and the fact that on the last Grassmannian the subring of k-rational cycles
is always generated by the k-rational elementary classes. So, it involves a bit
more than the case of even u-invariants.

In the end, let me mention some useful literature:
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