

SMR/1840-18

School and Conference on Algebraic K-Theory and its Applications

14 May - 1 June, 2007

Pure motives I: constructions

Marc Levine Universitaet Duisburg-Essen, Germany

Pure motives: Part I

School on Algebraic *K*-theory and its applications ICTP-May 14-26, 2007

Marc Levine

Outline:

- Pre-history of motives
- Adequate equivalence relations
- Weil cohomology
- Grothendieck motives

Pre-history of motives

Part I: Algebraic cycles

X: a scheme of finite type over a field k.

An algebraic cycle on X is $Z = \sum_{i=1}^{m} n_i Z_i$, $n_i \in \mathbb{Z}$, $Z_i \subset X$ integral closed subschemes.

 $\mathcal{Z}(X) :=$ the group of algebraic cycles on X.

 $\mathcal{Z}(X) = \mathcal{Z}_*(X) := \bigoplus_{r>0} \mathcal{Z}_r(X)$ graded by dimension.

 $\mathcal{Z}(X) = \mathcal{Z}^*(X) := \bigoplus_{r \ge 0} \mathcal{Z}^r(X)$ graded by codimension (for X equi-dimensional).

Functoriality $X \mapsto \mathcal{Z}_*(X)$ is a covariant functor for proper maps $f: X \to Y$:

$$f_*(Z) := \begin{cases} 0 & \text{if } \dim_k f(Z) < \dim_k Z\\ [k(Z) : k(f(Z))] \cdot f(Z) & \text{if } \dim_k f(Z) = \dim_k Z. \end{cases}$$

For $p: X \to \operatorname{Spec} k$ projective over k, have deg : $\mathcal{Z}_0(X) \to \mathbb{Z}$ by

$$\deg(z) := p_*(z) \in \mathcal{Z}_0(\operatorname{Spec} k) = \mathbb{Z} \cdot [\operatorname{Spec} k] \cong \mathbb{Z}.$$

 $X \mapsto \mathcal{Z}^*(X)$ is a contravariant functor for flat maps $f: Y \to X$:

$$f^*(Z) := \operatorname{cyc}(f^{-1}(Z)) := \sum_{T \subset f^{-1}(Z)} \ell_{\mathcal{O}_{Y,T}}(\mathcal{O}_{Z,T}) \cdot T;$$

sum over irreducible components T of $f^{-1}(Z)$.

Intersection theory Take X smooth, $Z, W \subset X$ irreducible.

Z and W *intersect properly* on X: each irreducible component T of $Z \cap W$ has

$$\operatorname{codim}_X T = \operatorname{codim}_X Z + \operatorname{codim}_X W.$$

The *intersection product* is

$$Z \cdot_X W := \sum_T m(T; Z \cdot_X W) \cdot T.$$

 $m(T; Z \cdot_X W)$ is Serre's intersection multiplicity:

$$m(T; Z \cdot_X W) := \sum_i (-1)^i \ell_{\mathcal{O}_{X,T}}(\operatorname{Tor}_i^{\mathcal{O}_{X,T}}(\mathcal{O}_{Z,T}, \mathcal{O}_{W,T})).$$

Extend to cycles $Z = \sum_i n_i Z_i$, $W = \sum_j m_j W_j$ of pure codimension by linearity.

Contravariant functoriality

Intersection theory extends flat pull-back to a partially defined pull-back for $f: Y \to X$ in Sm/k:

$$f^*(Z) := p_{1*}(\Gamma_f \cdot p_2^*(Z))$$

 $\Gamma_f \subset Y \times X$ the graph of $f, \ p_1: \Gamma_f \to Y, \ p_2: Y \times X \to X$ the projections.

And: a partially defined associative, commutative, unital graded ring structure on $\mathcal{Z}^*(X)$ with (when defined)

$$f^*(a \cdot b) = f^*(a) \cdot f^*(b)$$

and (the projection formula)

$$f_*(f^*(a) \cdot b) = a \cdot f_*(b)$$

for f projective.

Example: the zeta-function

X: smooth projective over \mathbb{F}_q .

$$Z_X(t) := \exp(\sum_{n \ge 1} \frac{\# X(\mathbb{F}_{q^n})}{n} \cdot t^n).$$

Note that

$$\#X(\mathbb{F}_{q^n}) = \deg(\Delta_X \cdot \Gamma_{Fr_X^n})$$

 $\Delta_X \subset X \times X$ the diagonal, Fr_X the *Frobenius*

 $Fr_X^*(h) := h^q.$

Part II: cohomology

Weil: the singular cohomology of varieties over \mathbb{C} should admit a purely algebraic version, suitable also for varieties over \mathbb{F}_q .

Grothendieck *et al.*: *étale cohomology* with \mathbb{Q}_{ℓ} coefficients ($\ell \neq$ char(k), $k = \overline{k}$) works.

Example. The Lefschetz trace formula \Longrightarrow

$$deg(\Delta_X \cdot \Gamma_{Fr_X^n}) = \sum_{i=0}^{2d_X} (-1)^i Tr(Fr_X^{n*}|_{H^i(\bar{X},\mathbb{Q}_\ell)})$$
$$Z_X(t) = \frac{det(1 - tFr_X^*|_{H^-(\bar{X},\mathbb{Q}_\ell)})}{det(1 - tFr_X^*|_{H^+(\bar{X},\mathbb{Q}_\ell)})}$$

Thus: $Z_X(t)$ is a *rational function* with \mathbb{Q} -coefficients.

A mystery

In fact, by the Weil conjectures, the characteristic polymomial $det(1-tFr_X^*|_{H^i(\bar{X},\mathbb{Q}_\ell)})$ has \mathbb{Q} (in fact \mathbb{Z}) coefficients, *independent* of ℓ .

However: Serre's example of an elliptic curve E over \mathbb{F}_{p^2} with $\operatorname{End}(E)_{\mathbb{Q}}$ a quaternion algebra shows: there is no "good" cohomology over $\overline{\mathbb{F}}_p$ with \mathbb{Q} -coefficients.

An "answer"

Grothendieck suggested: there is a \mathbb{Q} -linear category of "motives" over k which has the properties of a universal cohomology theory for smooth projective varieties over k.

This category would explain why the étale cohomology $H^*(-, \mathbb{Q}_{\ell})$ for different ℓ all yield the same data.

Grothendieck's idea: make a cohomology theory purely out of algebraic cycles.

Adequate equivalence relations

To make cycles into cohomology, we need to make the pull-back and intersection product everywhere defined. Consider an equivalence relation \sim on \mathcal{Z}^* for smooth projective varieties: for each $X \in \mathbf{SmProj}/k$ a graded quotient $\mathcal{Z}^*(X) \twoheadrightarrow \mathcal{Z}^*_{\sim}(X)$.

Definition \sim is an *adequate equivalence relation* if, for all $X, Y \in$ **SmProj**/k:

1. Given $a, b \in \mathbb{Z}^*(X)$ there is $a' \sim a$ such that a' and b intersect properly on X

2. Given $a \in \mathcal{Z}^*(X)$, $b \in \mathcal{Z}^*(X \times Y)$ such that $p_1^*(a)$ intersects b properly. Then

$$a \sim 0 \Longrightarrow p_{2*}(p_1^*(a) \cdot b) \sim 0.$$

For a field F (usually \mathbb{Q}) make the same definition with $\mathcal{Z}^*(X)_F$ replacing $\mathcal{Z}^*(X)$.

Functoriality

(1) and (2) imply:

• The partially defined intersection product on $\mathcal{Z}^*(X)$ descend to a well-defined product on $\mathcal{Z}^*_{\sim}(X)$.

• Push-forward for projective $f: Y \to X$ descends to $f_*: \mathcal{Z}_{\sim}(Y) \to \mathcal{Z}_{\sim}(X)$

• Partially defined pull-back for $f: Y \to X$ descends a well-defined $f^*: \mathcal{Z}^*_{\sim}(X) \to \mathcal{Z}^*_{\sim}(Y).$

Order adequate equivalence relations by $\sim_1 \succ \sim_2$ if $Z \sim_1 0 \Longrightarrow Z \sim_2 0$: \sim_1 is *finer than* \sim_2 .

Geometric examples Take $Z \in \mathcal{Z}^n(X)$.

1. $Z \sim_{\mathsf{rat}} 0$ if there is a $W \in \mathcal{Z}^*(X \times \mathbb{P}^1)$ with

$$p_{1*}[(X \times 0 - X \times \infty) \cdot W] = Z.$$

2. $Z \sim_{\text{alg}} 0$ if there is a smooth projective curve C with k-points c, c' and $W \in \mathcal{Z}^*(X \times C)$ with

$$p_{1*}[(X \times c - X \times c') \cdot W] = Z.$$
3. $Z \sim_{\mathsf{num}} 0$ if for $W \in \mathbb{Z}^{d_X - n}(X)$ with $W \cdot_X Z$ defined,

$$\deg(W \cdot_X Z) = 0.$$

Write $CH^*(X) := \mathcal{Z}^*_{\sim_{rat}}(X) = \mathcal{Z}^*_{rat}(X)$: the *Chow ring* of *X*. Write $\mathcal{Z}_{num} := \mathcal{Z}_{\sim_{num}}$, etc.

15

Remark \sim_{rat} is the *finest* adequate equivalence relation \sim :

i.
$$[0] \sim \sum_i n_i[t_i]$$
 with $t_i \neq 0$ all i by (1).

ii. Let
$$f(x) = 1 - \prod_i f_{t_i}(x)$$
,

 $f_{t_i}(x) \in k[x/(x-1)]$ minimal polynomial of t_i , normalized by $f_{t_i}(0) = 1$.

Then
$$f(0) = 0$$
 $f(t_i) = 1$, so
 $f_*([0] - \sum_i n_i[t_i]) = [0] - (\sum_i n'_i)[1] \sim 0$,
by (2), where $n'_i = [k(t_i) : k]n_i$.

iii. Send $x \mapsto 1/x$, get $[\infty] - (\sum_i n'_i)[1] \sim 0$, so $[0] \sim [\infty]$ by (2).

iv. $\sim_{rat} \succ \sim$ follows from (2).

Remark \sim_{num} is the coarsest non-zero adequate equivalence relation \sim (with fixed coefficient field $F \supset \mathbb{Q}$).

If $\sim \neq 0$, then $F = \mathcal{Z}^0(\operatorname{Spec} k)_F \to \mathcal{Z}^0_{\sim}(\operatorname{Spec} k)_F$ is an isomorphism: if not, $\mathcal{Z}^0_{\sim}(\operatorname{Spec} k)_F = 0$ so

$$[X]_{\sim} = p_X^*([\operatorname{Spec} k]_{\sim}) = 0$$

for all $X \in \mathbf{SmProj}/k$. But $? \cdot [X]_{\sim}$ acts as id on $\mathcal{Z}_{\sim}(X)_F$.

If $Z \sim 0$, $Z \in CH^{r}(X)_{F}$ and W is in $CH^{d_{X}-r}(X)$ then $Z \cdot W \sim 0$ so

$$0 = p_{X*}(Z \cdot W) \in \mathcal{Z}^0_{\sim}(\operatorname{Spec} k)_F = \mathcal{Z}^0_{\operatorname{num}}(\operatorname{Spec} k)_F$$

i.e. $Z \sim_{\operatorname{num}} 0$.

Weil cohomology

 $\operatorname{SmProj}/k :=$ smooth projective varieties over k.

 SmProj/k is a symmetric monoidal category with product $= \times_k$ and symmetry the exchange of factors $t : X \times_k Y \to Y \times_k X$.

 $Gr^{\geq 0}Vec_K$ is the tensor category of graded finite dimensional K vector spaces $V = \bigoplus_{r \geq 0} V^r$.

 $\operatorname{Gr}^{\geq 0}\operatorname{Vec}_{K}$ has tensor \otimes_{K} and symmetry

 $\tau(v\otimes w):=(-1)^{\deg v \deg w}w\otimes v$

for homogeneous elements v, w.

Definition A Weil cohomology theory over k is a symmetric monoidal functor

$$H^*: \mathbf{SmProj}/k^{\mathsf{op}} \to \mathbf{Gr}^{\geq 0} \mathsf{Vec}_K,$$

K is a field of characteristic 0, satisfying some axioms.

Note: H^* monoidal means: $H^*(X \times Y) = H^*(X) \otimes H^*(Y)$. Using

$$\delta_X^* : H^*(X \times X) \to H^*(X)$$

makes H^* a functor to graded-commutative K-algebras.

The axioms

is a

- 1. dim_K $H^2(\mathbb{P}^1) = 1$. Write V(r) for $V \otimes_F H^2(\mathbb{P}^1)^{\otimes -r}$, $r \in \mathbb{Z}$.
- 2. If X has dimension d_X , then there is an isomorphism $Tr_X : H^{2d_X}(X)(d_X) \to K$

such that $Tr_{X \times Y} = Tr_X \otimes Tr_Y$ and the pairing

$$H^{i}(X) \otimes H^{2d_{X}-i}(X)(d_{X}) \xrightarrow{\cup_{X}} H^{2d_{X}}(X)(d_{X}) \xrightarrow{Tr_{X}} K$$

perfect duality.

3. There is for $X \in \mathbf{SmProj}/k$ a cycle class homomorphism $\gamma_X^r : \mathbf{CH}^r(X) \to H^{2r}(X)(r)$ compatible with f^* , \cdot_X and with $Tr_X \circ \gamma_X^{d_X} = \deg$.

Remarks

By (2), $H^i(X) = 0$ for $i > 2d_X$. Also, $H^0(\operatorname{Spec} k) = K$ with $1 = \gamma([\operatorname{Spec} k])$. $\gamma_X([X])$ is the unit in $H^*(X)$.

Using Poincaré duality (2), we have $f_* : H^*(X)(d_X) \to H^{*+2c}(Y)(d_Y)$ for $f : X \to Y$ projective, $c = 2d_Y - 2d_X$ defined as the dual of f^* . $Tr_X = p_{X*}$

By (3), the cycle class maps γ_X are natural with respect to f_* .

Correspondences

For $a \in CH^{\dim X+r}(X \times Y)$ define: $a_* : H^*(X) \to H^{*+2r}(Y)(r)$ $a_*(x) := p_{2*}(p_{1*}(x) \cup \gamma(a))).$

Example $a = {}^t\Gamma_f$ for $f : Y \to X$ (r = 0). $a_* = f^*$.

 $a = \Gamma_g$ for $g: X \to Y$ $(r = \dim Y - \dim X)$. $a_* = f_*$.

Composition law

Given
$$a \in CH^{\dim X+r}(X \times Y)$$
, $b \in CH^{\dim Y+s}(Y \times Z)$ set
 $b \circ a := p_{13*}(p_{12}^*(a) \cdot p_{23}^*(b)) \in CH^{\dim X+r+s}(X \times Z).$
Then

$$(b \circ a)_* = b_* \circ a_*.$$

Lemma $H^1(\mathbb{P}^1) = 0.$

Proof. Set $i := i_0$: Spec $k \to \mathbb{P}^1$, $p : \mathbb{P}^1 \to \operatorname{Spec} k$.

$$\begin{split} \Gamma_{\mathrm{id}_{\mathbb{P}^{1}}} &= \Delta_{\mathbb{P}^{1}} \sim_{\mathrm{rat}} 0 \times \mathbb{P}^{1} + \mathbb{P}^{1} \times 0 \Longrightarrow \\ \mathrm{id}_{H^{1}(\mathbb{P}^{1})} &= \Delta_{\mathbb{P}^{1}*} \\ &= (0 \times \mathbb{P}^{1})_{*} + (\mathbb{P}^{1} \times 0)_{*} \\ &= p^{*}i^{*} + i_{*}p_{*}. \end{split}$$

But $H^n(\operatorname{Spec} k) = 0$ for $n \neq 0$, so

 $i^*: H^1(\mathbb{P}^1) \to H^1(\operatorname{Spec} k); \ p_*: H^1(\mathbb{P}^1) \to H^{-1}(\operatorname{Spec} k)(-1)$ are zero. A Weil cohomology H yields an adequate equivalence relation: \sim_H by

$$Z \sim_H \mathsf{0} \Longleftrightarrow \gamma(Z) = \mathsf{0}$$

Note: $\sim_{\mathsf{rat}} \succ \sim_H \succ \sim_{\mathsf{num}}$.

Lemma $\sim_{\text{alg}} \succ \sim_{H}$.

Take $x, y \in C(k)$. $p : C \to \operatorname{Spec} k$. Then $p_* = Tr_C : H^2(C)(1) \to H^0(\operatorname{Spec} k) = K$ is an isomorphism and

$$Tr_C(\gamma_C(x-y)) = \gamma_{\operatorname{Spec} k}(p_*(x-y)) = 0$$

so $\gamma_C(x-y) = 0$. Promote to \sim_{alg} by naturality of γ .

Conjecture: \sim_H is independent of the choice of Weil cohomology H.

We write \sim_H as \sim_{hom} .

Lefschetz trace formula

 $V = \bigoplus_r V_r$: a graded K-vector space with dual $V^{\vee} = \bigoplus_r V_{-r}^{\vee}$ and duality pairing

$$\langle , \rangle_V : V \otimes V^{\vee} \to K.$$

Identify $(V^{\vee})^{\vee} = V$ by $\langle v^{\vee}, v \rangle_{V^{\vee}} := (-1)^{\deg v} \langle v, v^{\vee} \rangle$.

 $\operatorname{Hom}_{\operatorname{GrVec}}(V,V) \cong \oplus_r V_{-r}^{\vee} \otimes V_r$ and for $f = v^{\vee} \otimes v : V \to V$ the graded trace is

$$Tr_V f = \langle v^{\vee}, v \rangle = (-1)^{\deg v} v^{\vee}(v).$$

The graded trace is $(-1)^r$ times the usual trace on V_r .

If $W = \bigoplus_s W_s$ is another graded K vector space, identify $(V^{\vee} \otimes W)^{\vee} = V \otimes W^{\vee}$ by the pairing

$$<\!\!v^{\vee} \otimes w, v \otimes w^{\vee}\!\!> := (-1)^{\deg w \deg v} <\!\!v^{\vee}, v\!> <\!\!w, w^{\vee}\!>$$

Given

$$\phi \in \operatorname{Hom}_{\operatorname{GrVec}}(V, W) \subset V^{\vee} \otimes W$$
$$\psi \in \operatorname{Hom}_{\operatorname{GrVec}}(W, V) \subset W^{\vee} \otimes V$$

get $\phi \circ \psi : W \to W$.

Let $c: W^{\vee} \otimes V \to V \otimes W^{\vee}$ be the exchange isomorphism, giving $c(\psi) \in V \otimes W^{\vee} = (V^{\vee} \otimes W)^{\vee}.$

Checking on decomposable tensors gives the LTF:

 $Tr_W(\phi \circ \psi) = \langle \phi, c(\psi) \rangle_{V^{\vee} \otimes W}.$

Apply the LTF to $V = W = H^*(X)$. We have

$$V^{\vee} = H^*(X)(d_X)$$

$$\oplus_r V_r \otimes V_{-r}^{\vee} = \oplus_r H^r(X) \otimes H^{2d_X - r}(X)(d_X) = H^{2d_X}(X \times X)(d_X)$$

$$<,>_V = Tr_X \circ \delta_X^* : H^{2d_X}(X \times X)(d_X) \to K$$

Theorem (Lefschetz trace formula) Let $a, b \in \mathbb{Z}^{d_X}(X \times X)$ be correspondences. Then

$$\deg(a \cdot {}^{t}b) = \sum_{i=0}^{2d_{X}} (-1)^{i} Tr(a_{*} \circ b_{*})_{|H^{i}(X)}.$$

Just apply the LTF to $\phi = a_* = H^*(a)$, $\psi = b_* = H^*(b)$ and note: H^* intertwines t and c and $\deg(a \cdot tb) = \langle H^*(a), H^*(tb) \rangle_{H^*(X)}$.

Taking $b = \Delta_X$ gives the Lefschetz fixed point formula.

Classical Weil cohomology

- 1. Betti cohomology $(K = \mathbb{Q})$: $\sigma : k \to \mathbb{C} \rightsquigarrow H^*_{\mathfrak{B},\sigma}$ $H^*_{\mathfrak{B},\sigma}(X) := H^*(X_{\sigma}(\mathbb{C}),\mathbb{Q})$
- 2. De Rham cohomology (K = k, for char k = 0): $H^*_{dR}(X) := \mathbb{H}^*_{\mathsf{Zar}}(X, \Omega^*_{X/k})$
- 3. Étale cohomology ($K = \mathbb{Q}_{\ell}, \ \ell \neq \operatorname{char} k$):

$$H^*_{\text{\'et}}(X)_{\ell} := H^*_{\text{\'et}}(X \times_k k^{sep}, \mathbb{Q}_{\ell})$$

In particular: for each k, there exists a Weil cohomology theory on \mathbf{SmProj}/k .

An application

Proposition Let *F* be a field of characteristic zero. $X \in \mathbf{SmProj}/k$. Then the intersection pairing

$$\cdot_X : \mathcal{Z}^r_{\mathsf{num}}(X)_F \otimes_F \mathcal{Z}^{d_X - r}_{\mathsf{num}}(X)_F \to F$$

is a perfect pairing for all r.

Proof. May assume F = the coefficient field of a Weil cohomology H^* for k.

$$H^{2r}(X)(r) \hookrightarrow \mathcal{Z}^r_{\mathsf{hom}}(X)_F \twoheadrightarrow \mathcal{Z}^r_{\mathsf{num}}(X)_F$$

so dim_F $\mathcal{Z}^r_{\mathsf{num}}(X)_F < \infty$.

By definition of \sim_{num} , \cdot_X is non-degenerate; since the factors are finite dimensional, \cdot_X is perfect.

Matsusaka's theorem (weak form)

Proposition
$$\mathcal{Z}^1_{\text{alg}}(X)_{\mathbb{Q}} = \mathcal{Z}^1_H(X)_{\mathbb{Q}} = \mathcal{Z}^1_{\text{num}}(X)_{\mathbb{Q}}.$$

Proof. Matsusaka's theorem is $\mathcal{Z}^1_{\text{alg}\mathbb{Q}} = \mathcal{Z}^1_{\text{num}\mathbb{Q}}$.

But $\sim_{alg} \succ \sim_H \succ \sim_{num}$.

Grothendieck motives

How to construct the category of motives for an adequate equivalence relation \sim .

Pseudo-abelian categories

An additive category \mathcal{C} is *abelian* if every morphism $f : A \to B$ has a (categorical) kernel and cokernel, and the canonical map coker(ker f) \to ker(cokerf) is always an isomorphism.

An additive category \mathcal{C} is *pseudo-abelian* if every idempotent endomorphism $p: A \rightarrow A$ has a kernel:

 $A \cong \ker p \oplus \ker \mathbf{1} - p.$

The pseudo-abelian hull

For an additive category \mathcal{C} , there is a universal additive functor to a pseudo-abelian category $\psi : \mathcal{C} \to \mathcal{C}^{\natural}$.

 \mathcal{C}^{\natural} has objects (A, p) with $p : A \to A$ an idempotent endomorphism,

$$\operatorname{Hom}_{\mathcal{C}^{\natural}}((A,p),(B,q)) = q\operatorname{Hom}_{\mathcal{C}}(A,B)p.$$

and $\psi(A) := (A,\operatorname{id}), \ \psi(f) = f.$

If ${\mathfrak C},\otimes$ is a tensor category, so is ${\mathfrak C}^{\natural}$ with

$$(A,p)\otimes (B,q):=(A\otimes B,p\otimes q).$$

Correspondences again

The category $Cor_{\sim}(k)$ has the same objects as SmProj/k. Morphisms (for X irreducible) are

$$\operatorname{Hom}_{\operatorname{Cor}_{\sim}}(X,Y) := \mathcal{Z}^{d_X}_{\sim}(X \times Y)_{\mathbb{Q}}$$

with composition the composition of correspondences.

In general, take the direct sum over the components of X.

Write X (as an object of $Cor_{\sim}(k)$) = $h_{\sim}(X)$ or just h(X). For $f: Y \to X$, set $h(f) := {}^t\Gamma_f$. This gives a functor

$$h_{\sim}$$
: SmProj/ $k^{\text{op}} \rightarrow \text{Cor}_{\sim}(k)$.

1. $\operatorname{Cor}_{\sim}(k)$ is an additive category with $h(X) \oplus h(Y) = h(X \amalg Y)$.

2. $\operatorname{Cor}_{\sim}(k)$ is a tensor category with $h(X) \otimes h(Y) = h(X \times Y)$. For $a \in \mathbb{Z}^{d_X}_{\sim}(X \times Y)_{\mathbb{Q}}$, $b \in \mathbb{Z}^{d_{X'}}_{\sim}(X' \times Y')_{\mathbb{Q}}$

$$a \otimes b := t^*(a \times b)$$

with $t: (X \times X') \times (Y \times Y') \rightarrow (X \times Y) \times (X' \times Y')$ the exchange.

 h_{\sim} is a symmetric monoidal functor.

Effective pure motives

Definition
$$M^{\text{eff}}_{\sim}(k) := \operatorname{Cor}_{\sim}(k)^{\natural}$$
. For a field $F \supset \mathbb{Q}$, set
 $M^{\text{eff}}_{\sim}(k)_F := [\operatorname{Cor}(k)_F]^{\natural}$

Explicitly, $M^{\text{eff}}_{\sim}(k)$ has objects (X, α) with $X \in \operatorname{SmProj}/k$ and $\alpha \in \mathcal{Z}^{d_X}_{\sim}(X \times X)_{\mathbb{Q}}$ with $\alpha^2 = \alpha$ (as correspondence mod \sim).

 $M^{\text{eff}}_{\sim}(k)$ is a tensor category with unit $1 = (\operatorname{Spec} k, [\operatorname{Spec} k]).$

Set
$$\mathfrak{h}_{\sim}(X) := (X, \Delta_X)$$
, for $f : Y \to X$, $\mathfrak{h}_{\sim}(f) := {}^t \Gamma_f$.

This gives the symmetric monoidal functor

$$\mathfrak{h}_{\sim} : \mathbf{SmProj}(k)^{\mathsf{op}} \to M^{\mathsf{eff}}_{\sim}(k).$$

Universal property

Theorem Let H be a Weil cohomology on SmProj/k . Then the functor $H^* : \operatorname{SmProj}/k^{\operatorname{op}} \to \operatorname{Gr}^{\geq 0}\operatorname{Vec}_K$ extends to a tensor functor $H^* : M_{\operatorname{hom}}^{\operatorname{eff}}(k) \to \operatorname{Gr}^{\geq 0}\operatorname{Vec}_K$ making

commute.

Proof. Extend H^* to $\operatorname{Cor}_{\operatorname{hom}}(k)$ by $H^*(a) = a_*$ for each correspondence a. Since $\operatorname{Gr}^{\geq 0}\operatorname{Vec}_K$ is pseudo-abelian, H^* extends to $M_{\operatorname{hom}}^{\operatorname{eff}}(k) = \operatorname{Cor}_{\operatorname{hom}}(k)^{\natural}$.

Examples 1. $\Delta_{\mathbb{P}^1} \sim \mathbb{P}^1 \otimes 0 + 0 \otimes \mathbb{P}^1$ gives $\mathfrak{h}(P^1) = (\mathbb{P}^1, \mathbb{P}^1 \otimes 0) \oplus (\mathbb{P}^1, 0 \times \mathbb{P}^1).$ The maps i_0 : Spec $k \to \mathbb{P}^1$, $p : \mathbb{P}^1 \to \text{Spec } k$, give $p^* : \mathfrak{h}(\text{Spec } k) \to \mathfrak{h}(\mathbb{P}^1)$ $i_0^* : \mathfrak{h}(\mathbb{P}^1) \to \mathfrak{h}(\text{Spec } k)$

and define an isomorphism

$$\mathbb{1} \cong (\mathbb{P}^1, 0 \times \mathbb{P}^1).$$

The remaining factor $(\mathbb{P}^1, \mathbb{P}^1 \otimes 0)$ is the *Lefschetz motive* \mathbb{L} .

2. $\Delta_{\mathbb{P}^n} \sim \sum_{i=0}^n \mathbb{P}^i \times \mathbb{P}^{n-i}$. The $\mathbb{P}^i \times \mathbb{P}^{n-i}$ are orthogonal idempotents so

$$\mathfrak{h}(\mathbb{P}^n) = \oplus_{i=0}^n (\mathbb{P}^n, \mathbb{P}^i \times \mathbb{P}^{n-i}).$$

In fact $(\mathbb{P}^n, \mathbb{P}^i \times \mathbb{P}^{n-i}) \cong \mathbb{L}^{\otimes i}$ so

$$\mathfrak{h}(\mathbb{P}^n)\cong \oplus_{i=0}^n \mathbb{L}^i.$$

3. Let *C* be a smooth projective curve with a *k*-point 0. $0 \times C$ and $C \times 0$ are orthogonal idempotents in Cor(C, C). Let $\alpha := \Delta_C - 0 \times C - C \times 0$ so

 $\mathfrak{h}(C) = (C, 0 \times C) + (C, \alpha) + (C, C \times 0) \cong \mathbb{1} \oplus (C, \alpha) \oplus \mathbb{L}$

Each decomposition of $\mathfrak{h}(X)$ in $M_{\text{hom}}^{\text{eff}}(k)$ gives a corresponding decomposition of $H^*(X)$ by using the action of correspondences on H^* .

1. The decomposition $\mathfrak{h}(\mathbb{P}^1) = \mathbb{1} \oplus \mathbb{L}$ decomposes $H^*(\mathbb{P}^1)$ as $H^0(\mathbb{P}^1) \oplus H^2(\mathbb{P}^1)$, with $\mathbb{1} \leftrightarrow H^0(\mathbb{P}^1) = K$ and $\mathbb{L} \leftrightarrow H^2(\mathbb{P}^1) = K(-1)$. Set

$$\mathfrak{h}^0_{\sim}(\mathbb{P}^1) := (\mathbb{P}^1, 0 \times \mathbb{P}^1), \mathfrak{h}^2_{\sim}(\mathbb{P}^2) := (\mathbb{P}^1, \mathbb{P}^1 \times 0)$$

so $\mathfrak{h}_{\sim}(\mathbb{P}^1) = \mathfrak{h}^0_{\sim}(\mathbb{P}^1) \oplus \mathfrak{h}^2_{\sim}(\mathbb{P}^1)$ and

 $H^*(\mathfrak{h}^i_{\mathsf{hom}}(\mathbb{P}^1)) = H^i(\mathbb{P}^1)$

2. The factor $(\mathbb{P}^n, \mathbb{P}^{n-i} \times \mathbb{P}^i)$ of $[\mathbb{P}^n]$ acts by

$$(\mathbb{P}^i \times \mathbb{P}^{n-i})_* : H^*(\mathbb{P}^n) \to H^*(\mathbb{P}^n)$$

which is projection onto the summand $H^{2i}(\mathbb{P}^n)$. Since $(\mathbb{P}^n, \mathbb{P}^i \times \mathbb{P}^{n-i}) \cong \mathbb{L}^{\otimes i}$ this gives

 $H^{2i}(\mathbb{P}^n) \cong K(-i) \cong H^2(\mathbb{P}^1)^{\otimes i}.$ Setting $\mathfrak{h}^{2i}_{\sim}(\mathbb{P}^n) := (\mathbb{P}^n, \mathbb{P}^i \times \mathbb{P}^{n-i})$ gives $\mathfrak{h}_{\sim}(\mathbb{P}^n) = \oplus_{i=0}^n \mathfrak{h}^{2i}_{\sim}(\mathbb{P}^n),$

with $H^*(\mathfrak{h}^r_{\mathrm{hom}}(\mathbb{P}^n)) = H^r(\mathbb{P}^n).$

3. The decomposition $\mathfrak{h}_{\sim}(C) = \mathbb{1} \oplus (C, \alpha) \oplus \mathbb{L}$ gives

 $H^*(C) = H^0(C) \oplus H^1(C) \oplus H^2(C) = K \oplus H^1(C) \oplus K(-1).$

Thus we write $\mathfrak{h}^1(C) := (C, \alpha), \ \mathfrak{h}^0_{\sim}(C) := (C, 0 \times C), \ \mathfrak{h}^2_{\sim}(C) := (C, C \times 0)$ and

$$\mathfrak{h}_{\sim}(C) \cong \mathfrak{h}^{0}_{\sim}(C) \oplus \mathfrak{h}^{1}_{\sim}(C) \oplus \mathfrak{h}^{2}_{\sim}(C).$$

with $H^*(\mathfrak{h}^r_{hom}(C)) = H^r(C)$.

Note. $\mathfrak{h}^1_{\sim}(C) \neq 0$ iff $g(C) \geq 1$. It suffices to take $\sim =$ num. Since dim $C \times C = 2$, it suffices to show $\mathfrak{h}^1_{\text{hom}}(C) \neq 0$ for some classical Weil cohomology. But then $H^1(C) \cong K^{2g}$.

The decompositions in (1) and (2) are canonical. In (3), this depends (for e.g $\sim =$ rat, but not for $\sim =$ hom, num) on the choice of $0 \in C(k)$ (or degree 1 cycle $0 \in CH_0(C)_{\mathbb{O}}$).

Grothendieck motives

Definition 1. $\operatorname{Cor}^*_{\sim}(k)$ has objects $h(X)(r), r \in \mathbb{Z}$ with $\operatorname{Hom}_{\operatorname{Cor}^*_{\sim}(k)}(h(X)(r), h(Y)(s)) := \mathbb{Z}^{d_X + s - r}_{\sim}(X \times Y)$ with composition as correspondences.

2.
$$M_{\sim}(k) := \operatorname{Cor}^*_{\sim}(k)^{\natural}$$
. For a field $F \supset \mathbb{Q}$, set
 $M_{\sim}(k)_F := [\operatorname{Cor}^*(k)_F]^{\natural}$

Sending X to $\mathfrak{h}(X) := h(X)(0), f : Y \to X$ to ${}^t\Gamma_f$ defines the functor

$$\mathfrak{h}_{\sim}$$
: SmProj/ $k^{\mathsf{op}} \to M_{\sim}(k)$.

Examples 1. $0 \in \mathcal{Z}^1(\mathbb{P}^1)$ gives a map $i_0 : \mathbb{1}(-1) \to \mathfrak{h}(\mathbb{P}^1)$, identifying

$$\mathbb{1}(-1)\cong\mathbb{L}$$

2. $1(-r) \cong \mathbb{L}^{\otimes r}$, so $\mathfrak{h}(\mathbb{P}^n) \cong \bigoplus_{r=0}^n \mathbb{1}(-r)$ and $\mathfrak{h}^{2r}(\mathbb{P}^n) = \mathbb{1}(-r)$

- 3. For *C* a curve, $\mathfrak{h}^0(C) = 1$, $\mathfrak{h}^2(C) = 1(-1)$.
- 4. The objects $\mathfrak{h}(X)(r)$ are *not* in $M^{\text{eff}}_{\sim}(k)$ for r > 0.

For r < 0 $\mathfrak{h}(X)(r) \cong \mathfrak{h}(X) \otimes \mathbb{L}^{\otimes r}$.

Inverting \mathbb{L}

Sending $(X, \alpha) \in M^{\text{eff}}_{\sim}(k)$ to $(X, 0, \alpha) \in M_{\sim}(k)$ defines a full embeding

$$i: M^{\mathsf{eff}}_{\sim}(k) \hookrightarrow M_{\sim}(k).$$

Since $i(\mathbb{L}) \cong \mathbb{1}(-1)$, the functor $\otimes \mathbb{L}$ on $M^{\text{eff}}_{\sim}(k)$ has inverse $\otimes \mathbb{1}(1)$ on $M_{\sim}(k)$.

 $(X, r, \alpha) = (X, 0, \alpha) \otimes \mathbb{1}(r) \cong i(X, \alpha) \otimes \mathbb{L}^{\otimes -r}.$

Thus $M_{\sim}(k) \cong M_{\sim}^{\text{eff}}(k)[(-\otimes \mathbb{L})^{-1}].$

Universal property Let $GrVec_K$ be the tensor category of finite dimensional graded K vector spaces.

Theorem Let H be a Weil cohomology on SmProj/k . Then the functor $H^* : \operatorname{SmProj}/k^{\operatorname{op}} \to \operatorname{Gr}^{\geq 0}\operatorname{Vec}_K$ extends to a tensor functor $H^* : M_{\operatorname{hom}}(k) \to \operatorname{GrVec}_K$ making

commute.

Proof. Extend H^* to H^* : $\operatorname{Cor}^*_{\operatorname{hom}}(k) \to \operatorname{by}$ $H^n(X,r) := H^n(X)(r), \ H^*(a) = a_*$

for each correspondence a. Since GrVec_K is pseudo-abelian, H^* extends to $M_{\operatorname{hom}}(k) = \operatorname{Cor}^*_{\operatorname{hom}}(k)^{\natural}$.

Duality

Why extend $M^{\text{eff}}(k)$ to M(k)? In M(k), each object has a dual:

$$(X, r, \alpha)^{\vee} := (X, d_X - r, {}^t \alpha)$$

The diagonal Δ_X yields

$$\delta_X : \mathbb{1} \to \mathfrak{h}(X \times X)(d_X) = \mathfrak{h}(X)(r) \otimes \mathfrak{h}(X)(r)^{\vee}$$

$$\epsilon_X : \mathfrak{h}(X)(r)^{\vee} \otimes \mathfrak{h}(X)(r) = \mathfrak{h}(X \times X)(d_X) \to \mathbb{1}$$

with composition

$$\mathfrak{h}(X)(r) = \mathbb{1} \otimes \mathfrak{h}(X) \xrightarrow{\delta \otimes \mathsf{id}} \mathfrak{h}(X)(r) \otimes \mathfrak{h}(X)(r)^{\vee} \otimes \mathfrak{h}(X)(r)$$
$$\xrightarrow{\mathsf{id} \otimes \epsilon} \mathfrak{h}(X)(r) \otimes \mathbb{1} = \mathfrak{h}(X)$$

the identity.

This yields a natural isomorphism

Hom $(A \otimes \mathfrak{h}(X)(r), B) \cong$ Hom $(A, B \otimes \mathfrak{h}(X)(r)^{\vee})$ by sending $f : A \otimes \mathfrak{h}(X)(r) \to B$ to $A = A \otimes \mathbb{1} \xrightarrow{\delta} A \otimes \mathfrak{h}(X)(r) \otimes \mathfrak{h}(X)(r)^{\vee} \xrightarrow{f \otimes \mathrm{id}} B \otimes \mathfrak{h}(X)(r)^{\vee}$

The inverse is similar, using ϵ .

This extends to objects (X, r, α) by projecting. $A \to (A^{\vee})^{\vee} = A$ is the identity.

Theorem $M_{\sim}(k)$ is a rigid tensor category. For $\sim =$ hom, the functor H^* is compatible with duals.

Chow motives and numerical motives

If $\sim \succ \approx$, the surjection $\mathcal{Z}_{\sim} \to \mathcal{Z}_{\approx}$ yields functors $\operatorname{Cor}_{\sim}(k) \to \operatorname{Cor}_{\approx}(k)$, $\operatorname{Cor}_{\sim}^{*}(k) \to \operatorname{Cor}_{\approx}^{*}(k)$ and thus

$$M^{\text{eff}}_{\sim}(k) \to M^{\text{eff}}_{\approx}(k); \ M_{\sim}(k) \to M_{\approx}(k).$$

Thus the category of pure motives with the most information is for the finest equivalence relation $\sim =$ rat. Write

 $CHM(k)_F := M_{\mathsf{rat}}(k)_F$

For example $\operatorname{Hom}_{CHM(k)}(1, \mathfrak{h}(X)(r)) = \operatorname{CH}^{r}(X).$

The coarsest equivalence is \sim_{num} , so $M_{num}(k)$ should be the most simple category of motives.

Set $NM(k) := M_{num}(k)$, $NM(k)_F := M_{num}(k)_F$.

Jannsen's semi-simplicity theorem

Theorem (Jannsen) Fix F a field, char F = 0. $NM(k)_F$ is a semi-simple abelian category. If $M_{\sim}(k)_F$ is semi-simple abelian, then $\sim =$ num.

Proof. We show $\operatorname{End}_{NM(k)_F}(\mathfrak{h}(X)) = \mathcal{Z}_{\operatorname{num}}(X^2)_F$ is a finite dimensional semi-simple *F*-algebra for all $X \in \operatorname{SmProj}/k$. We may extend *F*, so can assume F = K is the coefficient field for a Weil cohomology on SmProj/k .

Consider the surjection $\pi : \mathcal{Z}_{\text{hom}}(X^2)_F \to \mathcal{Z}_{\text{num}}(X^2)_F$. $\mathcal{Z}_{\text{hom}}(X^2)_F$ is finite dimensional, so $\mathcal{Z}_{\text{num}}(X^2)_F$ is finite dimensional.

Also, the radical \mathcal{N} of $\mathcal{Z}_{hom}(X^2)_F$ is nilpotent and it suffices to show that $\pi(\mathcal{N}) = 0$.

Take $f \in \mathcal{N}$. Then $f \circ {}^{t}g$ is in \mathcal{N} for all $g \in \mathcal{Z}_{hom}(X^{2})_{F}$, and thus $f \circ {}^{t}g$ is nilpotent. Therefore

$$Tr(H^+(f \circ {}^tg)) = Tr(H^-(f \circ {}^tg)) = 0.$$

By the LTF

$$\deg(f \cdot g) = Tr(H^+(f \circ {}^tg)) - Tr(H^-(f \circ {}^tg)) = 0$$

hence $f \sim_{num} 0$.

Chow motives $CHM(k)_F$ has a nice universal property extending the one we have already described:

Theorem Giving a Weil cohomology theory H^* on SmProj/k with coefficient field $K \supset F$ is equivalent to giving a tensor functor

 $H^*: CHM(k)_F \to \operatorname{GrVec}_K$

with $H^{i}(1(-1)) = 0$ for $i \neq 2$.

"Weil cohomology" $\rightsquigarrow H^*$ because $\sim_{\mathsf{rat}} \succ \sim_H$.

 $H^* \rightsquigarrow$ Weil cohomology: 1(-1) is invertible and $H^i(1(-1)) = 0$ for $i \neq 2 \implies H^2(\mathbb{P}^1) \cong K$.

 $\mathfrak{h}(X)^{\vee} = \mathfrak{h}(X)(d_X) \rightsquigarrow H^*(\mathfrak{h}(X))$ is supported in degrees $[0, 2d_X]$

Rigidity of $CHM(k)_F \rightsquigarrow$ Poincaré duality.

Adequate equivalence relations revisited

Definition Let \mathcal{C} be an additive category. The *Kelly radical* \mathcal{R} is the collection

 $\Re(X,Y) := \{ f \in \operatorname{Hom}_{\mathcal{C}}(X,Y) \mid \forall g \in \operatorname{Hom}_{\mathcal{C}}(Y,X), 1-gf \text{ is invertible} \}$

 \mathcal{R} forms an *ideal* in \mathcal{C} (subgroups of Hom_{\mathcal{C}}(X, Y) closed under $\circ g, g \circ$).

Lemma $\mathcal{C} \to \mathcal{C}/\mathcal{R}$ is conservative, and \mathcal{R} is the largest such ideal.

Note. If $\mathcal{I} \subset \mathcal{C}$ is an ideal such that $\mathcal{I}(X, X)$ is a nil-ideal in End(X) for all X, then $\mathcal{I} \subset \mathcal{R}$.

Definition (\mathcal{C}, \otimes) a tensor category. A ideal \mathcal{I} in \mathcal{C} is a \otimes *ideal* if $f \in \mathcal{I}, g \in \mathcal{C} \Rightarrow f \otimes g \in \mathcal{I}$.

 $\mathcal{C} \to \mathcal{C}/\mathcal{I}$ is a tensor functor iff \mathcal{I} is a tensor ideal. \mathcal{R} is *not* in general a \otimes ideal.

Theorem There is a 1-1 correspondence between adequate equivalence relations on SmProj/k and proper \otimes ideals in $CHM(k)_F$: $M_{\sim}(k)_F := (CHM(k)_F/\mathbb{J}_{\sim})^{\natural}.$

In particular: Let $\mathcal{N} \subset CHM(k)_{\mathbb{Q}}$ be the tensor ideal defined by numerical equivalence. Then \mathcal{N} is the largest proper \otimes ideal in $CHM(k)_{\mathbb{Q}}$.