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Pre-history of motives



Part I: Algebraic cycles
X: a scheme of finite type over a field k.

An algebraic cycleon X is Z = " 1 n;Z;, n; € 4, Z; C X integral
closed subschemes.

Z(X) := the group of algebraic cycles on X.
2(X) = Z+(X) := @y>0Zr(X) graded by dimension.

2(X) = 2°(X) = ®,>04"(X) graded by codimension (for X
equi-dimensional).



Functoriality X — Z«(X) is a covariant functor for proper maps
f: X —=Y:

0 if dimyg f(Z) < dimg Z
[k(Z2) - k(f(2))]- f(Z) if dimy f(Z) = dim; Z.

For p: X — Speck projective over k, have deg : Zo(X) — Z by

f+(2) 3:{

deg(z) ;= p«(2) € Zp(Speck) = Z - [Speck] = Z.

X — Z*(X) is a contravariant functor for flat maps f:Y — X:

f1(2) =cyc(fTHD) = Y Loy, (Oz7) T,
Tci-H2)

sum over irreducible components T of f~1(2).



Intersection theory Take X smooth, Z, W C X irreducible.

Z and W intersect properly on X: each irreducible component T
of ZNW has

codimxT'= codimxZ + codimx W.

The intersection product is
Z - xW:=> m(T;Z-xW)-T.
T
m(T; Z -x W) is Serre’s intersection multiplicity:
. o i Ox,r
m(T;Z -x W) :=> (-1) oy (Tor; = (Oz7, Ow,r))-
i

Extend to cycles Z = > ;n; Z;,, W = Zj ijj of pure codimension
by linearity.



Contravariant functoriality

Intersection theory extends flat pull-back to a partially defined
pull-back for f:Y — X in Sm/k:

f(Z) :=p1.(T ¢ - p3(2))
s CY x X the graph of f, p1 : 'y =Y, pp: Y XX — X the
projections.

And: a partially defined associative, commutative, unital graded
ring structure on Z*(X) with (when defined)

f*(a-b) = f*(a) - f(b)
and (the projection formula)

f«(f*(a) - b) = a fx(b)

for f projective.



Example: the zeta-function

X: smooth projective over [y.

n

Zx(t) :=exp( > ).

n>1

Note that
Ay C X x X the diagonal, Fryx the Frobenius

Fri (h) := .



Part II: cohomology

Weil: the singular cohomology of varieties over C should admit
a purely algebraic version, suitable also for varieties over Fj.

Grothendieck et al.: étale cohomology with Q, coefficients (£ #
char(k), k = k) works.

Example. The Lefschetz trace formula —

2dx |
deg(Ax Tpm) = Y (“1)'Tr(Fryicz g,)
i=0

det(l — tFT;dH_(X,Qg))

Zx(t) =

Thus: Zx(t) is a rational function with Q-coefficients.



A mystery

In fact, by the Weil conjectures, the characteristic polymomial
det(l—tFr}|H7;()—< @e)) has Q (in fact Z) coefficients, independent
of /.

However: Serre’s example of an elliptic curve E over Fpg with
End(E)@ a quaternion algebra shows: there is no “good” coho-
mology over IF“p with Q-coefficients.
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An ‘“answer”’

Grothendieck suggested: there is a Q-linear category of “mo-
tives” over kK which has the properties of a universal cohomology
theory for smooth projective varieties over k.

This category would explain why the étale cohomology H*(—,Qy)
for different ¢ all yield the same data.

Grothendieck’s idea: make a cohomology theory purely out of
algebraic cycles.
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Adequate equivalence relations

To make cycles into cohomology, we need to make the pull-back
and intersection product everywhere defined.
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Consider an equivalence relation ~ on Z* for smooth projective
varieties: for each X € SmProj/k a graded quotient Z*(X) —»
2 (X).

Definition ~ is an adequate equivalence relation if, for all X, Y €&
SmProj/k:

1. Given a,b € Z*(X) there is a’ ~ a such that &’ and b intersect
properly on X

2. Given a € 2*(X), b € Z*(X x Y) such that pj(a) intersects b
properly. Then

a~ 0= po,(pi(a)-b) ~ 0.

For a field F' (usually Q) make the same definition with Z*(X) g
replacing Z*(X).
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Functoriality
(1) and (2) imply:

e The partially defined intersection product on Z*(X) descend to
a well-defined product on Z* (X).

e Push-forward for projective f : Y — X descends to fx : Z~(Y) —
Z~(X)

e Partially defined pull-back for f : Y — X descends a well-defined
ffr2(X) — Z3(Y).

Order adequate equivalence relations by ~1>~o if Z ~1 0 =
Z ~o 0. ~1 is finer than ~».
14



Geometric examples Take Z € Z2"(X).

1. Z ~¢qt O if there is @ W € Z*(X x P1) with
P1x[(X X0 — X X 00) - W] = Z.
2. Z ~gqig O if there is a smooth projective curve C' with k-points
c,d and W € Z*(X x C) with
P X xec—Xx) W] = _Z
3. Z ~pum O if for W € 24x—"(X) with W -x Z defined,

deg(W -y Z) = 0.

~rat”~~alg~™~num

Write CH*(X) = 2% (X) = Z/4(X): the Chow ring of X.
Write Znum = Z~num, €tC.
15



Remark ~ 5t is the finest adequate equivalence relation ~:
i. [0] ~>;n;lt;] with t; =0 all © by (1).

ii. Let f(z) =1—1I; ft,(z),

ft;(x) € Ek[z/(x — 1)] minimal polynomial of t;, normalized by

ft;(0) = 1.
Then £(0) =0 f(t) =1, so
F«([0] = > _milts]) = [0] = (3_mi)[1] ~ O,
by (2), where n} = [k(ztz') L k]n;. |
iii. Send a— 1/z, get [oo] — (X;n))[1] ~ 0, so [0] ~ [cc] by (2).

iV. ~pat=~ follows from (2).
16



Remark ~pum IS the coarsest non-zero adequate equivalence
relation ~ (with fixed coefficient field F D Q).

If ~% 0, then F = 29(Speck)r — Z9(Speck)r is an isomor-
phism: if not, 22 (Speck)r = 0 so

[X]~ = px([Speck]~) =0
for all X € SmProj/k. But 7. [X]~ acts as id on Z~(X)pg.

If Z~0, Zc CH(X)r and W is in CHIX~"(X) then Z-W ~ 0
SO

0 =px.(Z W) € 22(Speck)p = 28 m(Speck)p
l.e. Z ~num O.
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Weil cohomology
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SmProj/k := smooth projective varieties over k.

SmProj/k is a symmetric monoidal category with product = x;
and symmetry the exchange of factors t: X XY — Y X X.

GrZOVecK IS the tensor category of graded finite dimensional K
vector spaces V = GBQOVT-

Gr=%Vecy has tensor @ and symmetry
r(v@w) 1= (—1)de9vdeguw,, g,

for homogeneous elements v, w.
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Definition A Weil cohomology theory over k is a symmetric
monoidal functor

H* : SmProj/k°® — GrZ%Vecy,

K is a field of characteristic 0O, satisfying some axioms.

Note: H* monoidal means: H*(X xY) = H*(X)® H*(Y). Using
oy  H*(X x X) — H*(X)

makes H* a functor to graded-commutative K-algebras.

20



T he axioms
1. dimg H2(PY) = 1. Write V(r) for V @p H2(PH® T, r € Z.

2. If X has dimension dx, then there is an isomorphism
Try : HX(X)(dyx) — K
such that Trx«y = Trx ® T'ry and the pairing

HI(X) ® H2X71(X) (dy) 25 H24X(X)(dy) —25 K

is a perfect duality.

3. There is for X € SmProj/k a cycle class homomorphism
Vi 1 CHY(X) — H?"(X)(r)
compatible with f*, -x and with Try Ofy;i(X = deg.
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Remarks

By (2), H(X) = 0 for i > 2dyx. Also, HO9(Speck) = K with
1 =~([Speck]). vx([X]) is the unit in H*(X).

Using Poincaré duality (2), we have fi : H*(X)(dx) — H*T2¢(Y)(dy)
for f : X — Y projective, ¢ = 2dy — 2dx defined as the dual of

. Trx =px«

By (3), the cycle class maps vyx are natural with respect to fs.
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Correspondences

For a € CHIMX+7(X x Y) define:

ax 1 H*(X) — H*T27(v)(r)
ax(z) 1= poy(p1+(x) Uv(a))).

Example a="';for f:Y — X (r=0). ax = f*.

a=Tlgforg: X =Y (r=dmY —dimX). ax = fs«.
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Composition law

Given a € CHIMX+7(X x V), b e CHIMY+s(y x Z) set

boa = p13.(pio(a) - ph3(b)) € CHIMXTTFs(x » 7).
Then

(boa,)* = b* O ax.
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Lemma H(P!)=o0.
Proof. Set i :=ig: Speck — PL, p: Pl — Speck.

Cid,, = Dp1 ~rat 0 X Pl4+Plx0 =

ldp1p1y = Bpi,
= (0 x P1)s 4+ (P! x 0)4
— p*’i* ‘I‘ i*p*.
But H"(Speck) = 0 for n #= 0, so
i HY(PY) — HY(Speck); p«: HY(PY) — H 1(Speck)(-1)

are zero.
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A Weil cohomology H vields an adequate equivalence relation:
Z ~pg0<=~v(Z)=0

Note: ~Nratm Y H ™ num

Take z,y € C(k). p: C — Speck. Then ps = Tro : H2(C)(1) —
HO9(Speck) = K is an isomorphism and

Tro(ve(r —y)) = 'YSpeck(P*(fE —y)) =20
so vo(z —y) = 0. Promote to ~44 by naturality of +.

Conjecture: ~y is independent of the choice of Weil cohomology
H.

We write ~g as ~pom-
26



Lefschetz trace formula

V = @,V;: a graded K-vector space with dual VV = @, V", and
duality pairing

<,>y: VeV - K.
Identify (VY)Y =V by <vV,vo>pv = (—1)99v<y, vV>.

Homgrvec(V, V) 2 @&, VY. ® V4 and for f = vV ®v : V — V the
graded trace is

Tryf = <v,v> = (—1)9297,V ().
The graded trace is (—1)" times the usual trace on V.

If W = ®&sWs is another graded K vector space, identify (Vv X
W)Y =V ® WY by the pairing

<v\/ Qw,v® w'> = (_1)degwdeg ”<vv, ’U><'w,wv>
27



Given

¢ € Homgryec(V, W) C VY @ W
Y € Homgpjec(W, V) C WY @V

get poy . W — W.

Let c: WY RV - V®WY be the exchange isomorphism, giving
c(P) eVWY =(VVeWw).

Checking on decomposable tensors gives the LTF:

Tryy (o) = <o, c(P)>yvew-



Apply the LTF to V=W = H*(X). We have

VY = H*(X)(dx)
Or V@ VY, = @ H'(X) ® H2IX77(X)(dx) = H?X(X x X)(dx)
<, >y =Trxod% : H*X(X x X)(dx) — K

Theorem (Lefschetz trace formula) Let a,b € 29X (X x X)
be correspondences. Then

2d x

deg(a . tb) s Z (—1)ZT’T'((1,* O b*)|HZ(X)
1=0

Just apply the LTF to ¢ = ax = H*(a), ¥ = bx = H*(b) and note:
H* intertwines * and ¢ and deg(a - b)) = <H*(a), H*("0)> p+(x)-

Taking b = A x gives the Lefschetz fixed point formula.
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Classical Weil cohomology

1. Betti cohomology (K =Q): 0:k—C ~ Hg _

Hyy ,(X) i= H*(X4(C),Q)

2. De Rham cohomology (K = k, for chark = 0):
Hyp(X) 1= HZz,(X, Q% /1)

3. Etale cohomology (K = Qy, ¢ # chark):
Her(X)g 1= Her (X X k5P, Q)

In particular: for each k, there exists a Weil cohomology theory
on SmProj/k.
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An application

Proposition Let F be a field of characteristic zero. X € SmProj/k.
T hen the intersection pairing

d
X Znum(X)F ®F nﬁ(mr(X)F — F
is a perfect pairing for all r.

Proof. May assume F' = the coefficient field of a Weil cohomol-
ogy H* for k.

H?"(X)(r) < Zhom X)) r = Zhum(X) F
so dimp Zhym(X)p < oo.

By definition of ~num, -x IS non-degenerate; since the factors
are finite dimensional, -y is perfect.
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Matsusaka’s theorem (weak form)
Proposition Zg-lg(X)@ = 25(X)g = Zpum(X)o-
Proof. Matsusaka's theorem is Zéng = 21

numQ-

But ~3ig>~g>~num.
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Grothendieck motives

How to construct the category of motives for an adequate equiv-
alence relation ~.
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Pseudo-abelian categories

An additive category C is abelian if every morphism f : A — B
has a (categorical) kernel and cokernel, and the canonical map
coker(ker f) — ker(cokerf) is always an isomorphism.

An additive category C is pseudo-abelian if every idempotent
endomorphism p: A — A has a kernel:

A=kerp® kerl —p.

33



The pseudo-abelian hull

For an additive category C, there is a universal additive functor
to a pseudo-abelian category 9 : C — el

€% has objects (A,p) with p : A — A an idempotent endomor-
phism,

Home((4,p), (B,q)) = gqHome(A, B)p.
and ¥(A) 1= (A,id), ¥(f) = f.

If €, ® is a tensor category, SO is CE with

(A,p) ®(B,q) = (A®B,p®q).
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Correspondences again

The category Cor~(k) has the same objects as SmProj/k. Mor-
phisms (for X irreducible) are
Homcor (X, Y) 1= 29X (X x Y)q

with composition the composition of correspondences.
In general, take the direct sum over the components of X.

Write X (as an object of Cor~(k)) = h~(X) or just h(X). For
f:Y — X, set h(f) :="'T;. This gives a functor

h~ : SmProj/k°® — Cor~ (k).
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1. Cor~(k) is an additive category with A(X)Dh(Y) = h(X1IY).

2. Cor~(k) is a tensor category with A(X) ® h(Y) = h(X X Y).
For a € 22X (X x Y)q, b € 22X (X' x Y')g

a®b:=1t"(a xb)
with t: (X x XD x (Y xY") - (X xY) x (X'xY’") the exchange.

h~ 1S @ symmetric monoidal functor.
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Effective pure motives
Definition ME&T (k) := Cor~(k)5. For a field F D Q, set

MET (k) p := [Cor(k) g’

Explicitly, M (k) has objects (X,«) with X € SmProj/k and
a € ZiX(X x X)g with a? = a (as correspondence mod ~).

MET (k) is a tensor category with unit 1 = (Speck, [Speck]).
Set ho(X) :=(X,Ax), for f:Y — X, h(f) :="Ty.

This gives the symmetric monoidal functor
b~ : SmProj(k)°® — M (k).
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Universal property

Theorem Let H be a Weil cohomology on SmProj/k. Then
the functor H* : SmProj/k°? — Gr=OVec, extends to a tensor

functor H* : MPT (k) — Gr=OVecy making

SmProj/k°P
b, {

MET (k) —5+ Gr=%Vecy.

commute.

Proof. Extend H* to Corpom(k) by H*(a) = a« for each corre-
spondence a. Since GrEOVecK is pseudo-abelian, H* extends to
MET (k) = Corpom (k)F.

hom
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Examples 1. Ap; ~Pl®0+ 0@ P! gives

h(PH) = (P, P! ®0) @ (P, 0 x PL).

The maps ig : Speck — P, p: Pl — Speck, give

p* : h(Speck) — h(PL)
ig 1 h(PY) — h(Speck)

and define an isomorphism

1= (PLoxPh.

The remaining factor (P!, Pl ® 0) is the Lefschetz motive L.

39



2. Apn ~ Y1 P x PPt The P! x P~ are orthogonal idempo-
tents so

h(P™) = @ (P, P" x P"70).
In fact (P, P x Pn—t) =2 L® so

h(P") = @?:oLi-

3. Let C be a smooth projective curve with a k-point 0. O x C
and C x 0 are orthogonal idempotents in Cor(C,C). Let o =
Ar—0xC—-Cx0so

H(C) = (C,0xC)+ (C,a) +(C,Cx0) =10 (C,a) B L
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Each decomposition of h(X) in Mﬁgrm(k) gives a corresponding

decomposition of H*(X) by using the action of correspondences
on H*.

1. The decomposition h(P1) = 1 @ L decomposes H*(P!) as
HOPY ¢ H2(PD), with 1 « HO(P!) = K and L « H?(Pl) =
K(—1). Set

hY (PY) := (P, 0 x PY), 2 (P?) := (P, P! x 0)
so h~(P1) = p2(P1) @ h2 (P1) and
H*(hhom(P1)) = HY(PY)

41



2. The factor (P*, P~ x P*) of [P"] acts by
(P* x P* )y : H*(P") — H*(P")

which is projection onto the summand H2!(P"). Since (P", P! x
Pr—t) =2 L& this gives
H27Z(Pn) >~ K(—i) 2 HQ(]P)l)@i.
Setting h2i(Pn) = (P", P* x P*—%) gives
b~ (P") = B2 (P™),
with H*(h7_ (PP)) = H"(P").

hom
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3. The decomposition h~(C) =1 ¢ (C,a) d L gives
H*(C) = HY(C)® HY(C)® H2(C) = K® HY (C) ® K(-1).
Thus we write h1(C) := (C,a), H2(C) := (C,0 x C), h2(C) :=
(C,C x 0) and
h~(C) = b2(C) @ HL(C) @ h2(C).
with H*(p7 __(C)) = H"(O).

hom
Note. h1(C) # 0 iff g(C) > 1. It suffices to take ~= num. Since
dimC x C = 2, it suffices to show hrllom((]) # 0 for some classical
Weil cohomology. But then H1(C) = K29

The decompositions in (1) and (2) are canonical. In (3), this
depends (for e.g ~= rat, but not for ~= hom,num) on the
choice of 0 € C(k) (or degree 1 cycle 0 € CHo(C)q).
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Grothendieck motives

Definition 1. Cor’ (k) has objects h(X)(r), r € Z with
Hom cors 1y (R(X) (1), h(Y) () i= 23X F5=7(X x )

with composition as correspondences.

2. M~(k) := Cor*,(k)d. For a field F D Q, set
M~ (k) := [Cor*(k) p]*

Sending X to h(X) := h(X)(0), f:Y — X to 'T'; defines the
functor

h~ : SmProj/k°® — M~ (k).
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Examples 1. 0 ¢ Z1(P!) gives a map ig : 1(-1) — h(PD),
identifying

1(—1) 2= L.

2. 1(—r) 2 LE", so h(P") = @"_,1(—r) and 2" (P") = 1(-r)
3. For C a curve, h9(C) =1, h2(C) = 1(-1).
4. The objects H(X)(r) are not in MET (k) for r > 0.

For r < 0 h(X)(r) Z hH(X)  L®T.
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Inverting L

Sending (X, a) € MET(k) to (X,0,a) € M~(k) defines a full em-
beding

it MET (k) — Mo(k).

Since i(L) = 1(—1), the functor ®L on MM (k) has inverse ®1(1)
on M~ (k).

(X,r,a) = (X,0,0) @ 1(r) 2 i(X,a) L.

Thus M~(k) = MET(R)[(-— L) 1].
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Universal property Let GrVecy be the tensor category of finite
dimensional graded K vector spaces.

Theorem Let H be a Weil cohomology on SmProj/k. Then
the functor H* : SmProj/k°® — Gr2%Vecy extends to a tensor
functor H* . Mpom(k) — GrVecyg making

SmProj/k°P

o,

Mhom(k) ? GI’VGCK.

commute.

Proof. Extend H* to H* : Cory (k) — by
H"(X,r) = H"(X)(r), H*(a) = a«

for each correspondence a. Since GrVecy is pseudo-abelian, H*
extends to Mpom(k) = Cor, (k)P
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Duality

Why extend MeT (k) to M(k)? In M(k), each object has a dual:

(Xa ’I",Oé)\/ L= (Xa dX — rata)

The diagonal Ax yields
5x 11— h(X x X)(dx) = h(X)(r) @ h(X)(r)¥
ex 1 H(X)(M)Y @H(X)(r) =h(X x X)(dx) — 1
with composition
HX)(r) =1 ® h(X) 2% h(X)(r) @ H(X)(r)" @ H(X)(r)
198 H(X)(r) © 1 = h(X)

the identity.
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This yields a natural isomorphism
Hom(A ® h(X)(r), B) = Hom(A4, B® h(X)(r)")
by sending f: A® h(X)(r) — B to
A=A4013 A0h(X) () @h(X) ()Y L2% B o (X))

The inverse is similar, using e.

This extends to objects (X,r, a) by projecting. A — (AY)V = A
IS the identity.

Theorem M- (k) is a rigid tensor category. For ~= hom, the
functor H* is compatible with duals.
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Chow motives and numerical motives
If ~>=~, the surjection Z. — Za vields functors Cor~(k) —
Corx~(k), Cor* (k) — CorLi(k) and thus

MET (k) — MET(K): Mo(k) — M~ (k).

Thus the category of pure motives with the most information is
for the finest equivalence relation ~= rat. Write

CHM(k)p := Mpat(k)
For example Home gy (1, H(X)(r)) = CH"(X).

The coarsest equivalence is ~num, SO Mnpum(k) should be the
most simple category of motives.

Set NM(]C) L= Mnum(k’), NM(IC)F L= Mnum(k’)p.
50



Jannsen’s semi-simplicity theorem

Theorem (Jannsen) Fix F' a field, charF = 0. NM(k)r is a
semi-simple abelian category. If M~ (k)r is semi-simple abelian,
then ~= num.

Proof. We show End (k) ,(0(X)) = Znum(X?)p is a finite di-
mensional semi-simple F-algebra for all X € SmProj/k. We may
extend F', so can assume F' = K is the coefficient field for a Weil
cohomology on SmProj/k.

Consider the surjection 7 : Znom(X2) r — Znum(X) r. Zhom(X2) r
is finite dimensional, so Znum(X?2)p is finite dimensional.

Also, the radical N of Zhom(X2)r is nilpotent and it suffices to
show that =(N) = 0.
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Take f € N. Then fotlgisin N for all g € Znom(X?2)r, and thus
fotlg is nilpotent. Therefore

Tr(HY(folg)) =Tr(H (folg)) =0.
By the LTF

deg(f-g) =Tr(HT(folg)) —Tr(H (folg)) =0

hence f ~num O.
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Chow motives CHM (k)r has a nice universal property extend-
ing the one we have already described:

Theorem Giving a Weil cohomology theory H* on SmProj/k
with coefficient field K D F' is equivalent to giving a tensor func-
tor

H* : CHM(k)r — GrVecyg
with H*(1(—1)) = 0 for i # 2.

“Weil cohomology” ~» H* because ~ gt>~p.

H* ~ Weil cohomology: 1(—1) is invertible and H*(1(-1)) = 0
for i 22 = H?(Pl) 2 K.

h(X)Y =h(X)(dx) ~ H*(h(X)) is supported in degrees [0, 2d x]

Rigidity of CHM (k) p ~» Poincaré duality.
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Adequate equivalence relations revisited

Definition Let € be an additive category. The Kelly radical R
IS the collection

R(X,Y) :={f € Homp(X,Y) | Vg € Home(Y, X),1—gf is invertible}
R forms an ideal in € (subgroups of Home(X,Y) closed under

0g, go).

Lemma € — C/R is conservative, and R is the largest such
ideal.

Note. If J C C is an ideal such that J(X,X) is a nil-ideal in
End(X) for all X, then J C R.
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Definition (C,®) a tensor category. A ideal J in € is a ® ideal
if fel gelC= fRgel.

€ — C/J is a tensor functor iff J is a tensor ideal. R is not in
general a @ ideal.

Theorem There is a 1-1 correspondence between adequate
equivalence relations on SmProj/k and proper ® ideals in CHM (k) g
M~ (k) := (CHM (k) p/I~)".

In particular: Let N C CHM (k)g be the tensor ideal defined by
numerical equivalence. Then N is the largest proper ® ideal in
CHM(k)@.
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